Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-12T05:22:23.088Z Has data issue: false hasContentIssue false

Simulations of light scattering in planetary rings

Published online by Cambridge University Press:  06 July 2010

J. A. Sellwood
Affiliation:
University of Manchester
Get access

Summary

Statement of the problem

Most studies of light scattering in planetary rings have assumed layers which are many particles thick, plane parallel, and homogeneous. However, real rings may be thin, vertically warped, and clumpy. We have developed a ray tracing code which calculates the light scattered by an arbitrary distribution of particles. This approach promises to clarify a number of puzzling observations of the Saturnian and Uranian rings.

(1) Many studies have concluded that Saturn's rings are many particles thick (e.g. Lumme et al. 1983), whereas dynamical calculations predict that optically thick rings should be physically thin (Wisdom & Tremaine 1988 and references therein). Lumme et al. argue that the particles in Saturn's B Ring fill only 2% of the volume of the ring, while Wisdom and Tremaine predict a filling factor of 20% or more.

The claim that Saturn's rings are thick is based on their observed opposition surge, a rapid brightening (0.3 mag in the V band) which occurs at phase angles below about 1.5°. The surge is attributed to particles covering their own shadows near opposition. Shadowing can occur either between discrete particles, or within the surface structure of a particle. The range in phase angle over which the brightening takes place is proportional to the volume filling factor of the ring or surface. Thus the very narrow opposition effect of Saturn's rings implies a very porous ring, unless individual particles backscatter extremely strongly.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×