Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-04T05:38:49.034Z Has data issue: false hasContentIssue false

3 - Diet and Ecology of Extant and Fossil Wild Pigs

from Part I - Evolution, Taxonomy, and Domestication

Published online by Cambridge University Press:  21 November 2017

Mario Melletti
Affiliation:
AfBIG (African Buffalo Initiative Group), IUCN SSC ASG
Erik Meijaard
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balasse, M. (2002). Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra-tooth sequential sampling. International Journal of Osteoarchaeology 12: 155165.Google Scholar
Bibi, F. & Kiessling, W. (2015). Continuous evolutionary change in Plio–Pleistocene mammals of eastern Africa. Proceedings of the National Academy of Sciences of the United States of America 112: 1062310628.Google Scholar
Bishop, L. C. (1999). Suid paleoecology and habitat preferences at African Pliocene and Pleistocene hominid localities. In Bromage, T. G. & Schrenk, F. (eds.), African biogeography, climate change and human evolution. Oxford: Oxford University Press, pp. 216225.Google Scholar
Boisserie, J.-R., Souron, A., Mackaye, H. T., et al. (2014). A new species of Nyanzachoerus (Cetartiodactyla: Suidae) from the Late Miocene Toros-Ménalla, Chad, Central Africa. PLoS ONE 9: e103221.CrossRefGoogle ScholarPubMed
Bonnefille, R. (2010). Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Global and Planetary Change 72: 390411.CrossRefGoogle Scholar
Calandra, I. & Merceron, G. (2016). Dental microwear texture analysis in mammalian ecology. Mammal Review 46: 215228.CrossRefGoogle Scholar
Cerling, T. E. & Harris, J. M. (1999). Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120: 347363.Google Scholar
Cerling, T. E., Harris, J. M., Leakey, M. G., Passey, B. H. & Levin, N. E. (2010). Stable carbon and oxygen isotopes in East African mammals: modern and fossil. In Werdelin, L. & Sanders, W. J. (eds.), Cenozoic mammals of Africa. Berkeley, CA: University of California Press, pp. 941952.Google Scholar
Cerling, T. E., Andanje, S. A., Blumenthal, S. A., et al. (2015). Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proceedings of the National Academy of Sciences of the United States of America 112: 1146711472.Google Scholar
Cernusak, L. A., Tcherkez, G., Keitel, C., et al. (2009). Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology 36: 199213.CrossRefGoogle ScholarPubMed
Clauss, M., Kaiser, T. & Hummel, J. (2008a). The morphophysiological adaptations of browsing and grazing mammals. In Gordon, I. J. & Prins, H. H. T. (eds.), The ecology of browsing and grazing. Berlin: Springer, pp. 4788.Google Scholar
Clauss, M., Nijboer, J., Loermans, J. H. M., et al. (2008b). Comparative digestion studies in wild suids at Rotterdam Zoo. Zoo Biology 27: 305319.CrossRefGoogle ScholarPubMed
Codron, D., Codron, J., Sponheimer, M., Bernasconi, S.M. & Clauss, M. (2011). When animals are not quite what they eat: diet digestibility influences 13C-incorporation rates and apparent discrimination in a mixed-feeding herbivore. Canadian Journal of Zoology 89: 453465.CrossRefGoogle Scholar
Codron, J., Codron, D., Lee-Thorp, J.A., et al. (2005). Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science 32: 17571772.Google Scholar
Cooke, H. B. S. & Wilkinson, A. F. (1978). Suidae and Tayassuidae. In Maglio, V. J. & Cooke, H. B. S. (eds.), Evolution of African mammals. Cambridge, MA: Harvard University Press, pp. 435482.Google Scholar
deMenocal, P. B. (2004). African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters 220: 324.CrossRefGoogle Scholar
d'Huart, J.-P. (1978). Ecologie de l'hylochère (Hylochoerus meinertzhageni Thomas) au Parc National des Virunga. Exploration du Parc National des Virunga, Deuxième Série, Fascicule 25, Fondation pour Favoriser les Recherches scientifiques en Afrique. Brussels.Google Scholar
Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503537.Google Scholar
Francey, R. J., Allison, C. E., Etheridge, D. M., et al. (1999). A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B: 170193.Google Scholar
Gearing, J. N. (1991). The study of diet and trophic relationships through natural abundance 13C. In Coleman, D. C. & Fry, B. (eds.), Carbon isotope techniques. New York, NY: Academic Press, pp. 201218.Google Scholar
Gilbert, W. H. (2008). Suidae. In Gilbert, W. H. & Asfaw, B. (eds.), Homo erectus: Pleistocene evidence from the Middle Awash, Ethiopia. Berkeley, CA: University of California Press, pp. 231260.Google Scholar
Harris, J. M. & Cerling, T. E. (2002). Dietary adaptations of extant and Neogene African suids. Journal of Zoology 256: 4554.CrossRefGoogle Scholar
Harris, J. M. & White, T. D. (1979). Evolution of the Plio–Pleistocene African Suidae. Transactions of the American Philosophical Society 69: 1128.Google Scholar
Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences of the United States of America 107: 1969119695.Google Scholar
Kullmer, O. (1999). Evolution of African Plio–Pleistocene suids (Artiodactyla: Suidae) based on tooth pattern analysis. Kaupia Darmstädter Beiträg zur Naturgeschichte 9: 134.Google Scholar
Livingstone, D. A. & Clayton, W. D. (1980). An altitudinal cline in tropical African grass floras and its paleoecological significance. Quaternary Research 13: 392402.Google Scholar
Lucas, P. W. (2004). Dental functional morphology: how teeth work. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lüdecke, T., Mulch, A., Kullmer, O., et al. (2016). Stable isotope dietary reconstructions of herbivore enamel reveal heterogeneous savanna ecosystems in the Plio–Pleistocene Malawi Rift. Palaeogeography, Palaeoclimatology, Palaeoecology 459: 170181.CrossRefGoogle Scholar
Luyt, J., Lee-Thorp, J. A. & Avery, G. (2000). New light on Middle Pleistocene west coast environments from Elandsfontein, Western Cape Province, South Africa. South African Journal of Science 96: 399403.Google Scholar
Martin, J. E., Vance, D. & Balter, V. (2015). Magnesium stable isotope ecology using mammal tooth enamel. Proceedings of the National Academy of Sciences of the United States of America 112: 430435.Google Scholar
Meijaard, E., Oliver, W. L. R. & d'Huart, J.-P. (2011). Suidae. In Wilson, D. E. & Mittermeier, R. (eds.), Handbook of the mammals of the world. Vol. 2. Hoofed mammals. Madrid: Lynx Edicions, pp. 248291.Google Scholar
Merceron, G., Ramdarshan, A., Blondel, C., et al. (2016). Untangling the environmental from the dietary: dust does not matter. Proceedings of the Royal Society B 283: 20161032.Google Scholar
Passey, B. H., Robinson, T. F., Ayliffe, L. K., et al. (2005). Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science 32: 14591470.CrossRefGoogle Scholar
Rossouw, L. & Scott, L. (2011). Phytoliths and pollen, the microscopic plant remains in Pliocene volcanic sediments around Laetoli, Tanzania. In Harrison, T. (ed.), Paleontology and geology of Laetoli: human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment. Berlin: Springer, pp. 201215.Google Scholar
Sage, R. F. & Monson, R. K. (eds.). (1999). C4 plant biology. In Mooney, H. A. (series ed.), Physiological ecology series. New York, NY: Academic Press, p. 596.Google Scholar
Smedley, M. P., Dawson, T. E., Comstock, J. P., et al. (1991). Seasonal carbon isotope discrimination in a grassland community. Oecologia 85: 314320.Google Scholar
Souron, A. (2012). Histoire évolutive du genre Kolpochoerus (Cetartiodactyla : Suidae) au Plio–Pléistocène en Afrique orientale. Université de Poitiers, Poitiers, p. 517.Google Scholar
Souron, A., Balasse, M. & Boisserie, J.-R. (2012). Intra-tooth isotopic profiles of canines from extant Hippopotamus amphibius and late Pliocene hippopotamids (Shungura Formation, Ethiopia): insights into the seasonality of diet and climate. Palaeogeography, Palaeocli-matology, Palaeoecology 342–343: 97110.Google Scholar
Souron, A., Boisserie, J.-R. & White, T. D. (2015a). A new species of the suid genus Kolpochoerus from the Pliocene of Ethiopia. Acta Palaeontologica Polonica 60: 7996.Google Scholar
Souron, A., Merceron, G., Blondel, C., et al. (2015b). Three-dimensional dental microwear texture analysis and diet in extant Suidae (Mammalia: Cetartiodactyla). Mammalia 79: 279291.Google Scholar
Sponheimer, M., Ruiter, D. d., Lee-Thorp, J. A. & Späth, A. (2005). Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. Journal of Human Evolution 48: 147156.Google Scholar
Tseng, Z. J. (2012). Connecting Hunter–Schreger Band microstructure to enamel microwear features: new insights from durophagous carnivores. Acta Palaeontologica Polonica 57: 473484.CrossRefGoogle Scholar
Uno, K. T., Cerling, T. E., Harris, J. M., et al. (2011). Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proceedings of the National Academy of Sciences of the United States of America 108: 65096514.Google Scholar
Vercammen, P. & Mason, D. R. (1993). The warthogs (Phacochoerus africanus and P. aethiopicus). In Oliver, W. L. R. (ed.), Pigs, peccaries and hippos: status survey and conservation action plan. Gland: IUCN, pp. 7584.Google Scholar
Wang, Y. & Cerling, T. E. (1994). A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeography, Palaeocli-matology, Palaeoecology 107: 281289.Google Scholar
Warinner, C. & Tuross, N. (2009). Alkaline cooking and stable isotope tissue-diet spacing in swine: archaeological implications. Journal of Archaeological Research 36: 16901697.Google Scholar
White, T. D. (1995). African omnivores: global climatic change and Plio–Pleistocene hominids and suids. In Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H. (eds.). Paleoclimate and evolution with emphasis on human origins. New Haven, CT: Yale University Press, pp. 369384.Google Scholar
White, T. D., Howell, F. C. & Gilbert, H. (2006). The earliest Metridiochoerus (Artiodactyla: Suidae) from the Usno Formation, Ethiopia. Transactions of the Royal Society of South Africa 61: 7579.Google Scholar
Zazzo, A., Lécuyer, C., Sheppard, S. M. F., Grandjean, P. & Mariotti, A. (2004). Diagenesis and the reconstruction of paleoenvironments: a method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel. Geochimica et Cosmochimica Acta 68: 22452248.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×