Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-03T17:05:46.070Z Has data issue: false hasContentIssue false

35 - Disease Transmission at the Interface between Wild and Domestic Suiform Species in the Old and New Worlds

from Part III - Conservation and Management

Published online by Cambridge University Press:  21 November 2017

Mario Melletti
Affiliation:
AfBIG (African Buffalo Initiative Group), IUCN SSC ASG
Erik Meijaard
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlhoch, C., Wolf, A., Meisel, H., et al. (2009). High HEV presence in four different wild boar populations in East and West Germany. Veterinary Microbiology 139: 270278.CrossRefGoogle ScholarPubMed
Alexandrov, T., Stefanov, D., Kamenov, P., et al. (2013). Surveillance of foot-and-mouth disease (FMD) in susceptible wildlife and domestic ungulates in Southeast of Bulgaria following a FMD case in wild boar. Veterinary Microbiology 166: 8490.Google Scholar
Algers, B., Blokhuis, H., Bøtner, A., et al. (2009). Porcine brucellosis (Brucella suis). Scientific opinion of the Panel on Animal Health and Welfare. The EFSA Journal 1144: 1112.Google Scholar
Altrichter, M., Taber, A., Beck, H., et al. (2012). Range-wide declines of a key Neotropical ecosystem architect, the Near Threatened white-lipped peccary Tayassu pecari. Oryx 46: 8798.Google Scholar
Artois, M., Depner, K. R., Guberti, V., et al. (2002). Classical swine fever (hog cholera) in wild boar in Europe. Revue Scientifique et Technique – Office International des Épizooties 21: 287304.Google Scholar
Arzt, J., Baxt, B., Grubman, M. J., et al. (2011). The pathogenesis of foot-and-mouth disease II: viral pathways in swine, small ruminants, and wildlife; myotropism, chronic syndromes, and molecular virus–host interactions. Transboundary and Emerging Diseases 58: 305326.CrossRefGoogle ScholarPubMed
Barasona, J. A., VerCauteren, K. C., Saklou, N., Gortazar, C. & Vicente, J. (2013). Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Preventive Veterinary Medicine 111: 4250.Google Scholar
Barasona, J., Latham, M., Acevedo, P., et al. (2014). Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Veterinary Research 45: 111.Google Scholar
Barman, N. N., Bora, D. P., Tiwari, A. K., et al. (2012). Classical swine fever in the pygmy hog. Revue Scientifique et Technique, Office Nationale des Epizooties, 31: 919930.CrossRefGoogle ScholarPubMed
Barth, S., Geue, L., Hinsching, A., et al. (2017). Experimental evaluation of faecal Escherichia coli and Hepatitis E Virus as biological indicators of contacts between domestic pigs and Eurasian wild boar. Transboundary and Emerging Diseases 64: 487494.Google Scholar
Blome, S., Gabriel, C. & Beer, M. (2013). Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Research 173: 122130.Google Scholar
Blomström, A. L., Ståhl, K., Masembe, C., et al. (2012). Viral metagenomic analysis of bushpigs (Potamochoerus larvatus) in Uganda identifies novel variants of Porcine parvovirus 4 and Torque teno sus virus 1 and 2. Virology Journal 9: 192.Google Scholar
Boadella, M., Gortázar, C., Vicente, J. & Ruiz-Fons, F. (2012a). Wild boar: an increasing concern for Aujeszky's disease control in pigs? BMC Veterinary Research 8: 7.Google Scholar
Boadella, M., Barasona, J. A., Pozio, E., et al. (2012b). Spatio-temporal trends and risk factors for Trichinella species infection in wild boar (Sus scrofa) populations of central Spain: a long-term study. International Journal for Parasitology 42: 739745.Google Scholar
Brook, R. & McLachlan, S. (2008). Trends and prospects for local knowledge in ecological and conservation research and monitoring. Biodiversity and Conservation 17: 35013512.Google Scholar
Brook, R. K. & McLachlan, S. M. (2009). Transdisciplinary habitat models for elk and cattle as a proxy for bovine tuberculosis transmission risk. Preventive Veterinary Medicine 91: 197208.Google Scholar
Campbell, T. A., DeYoung, R. W., Wehland, E. M., et al. (2008). Feral swine exposure to selected viral and bacterial pathogens in southern Texas. Journal of Swine Health and Production 16: 312315.Google Scholar
Carpentier, A., Chaussade, H., Rigaud, E., et al. (2012). High Hepatitis E Virus seroprevalence in forestry workers and in wild boars in France. Journal of Clinical Microbiology 50: 28882893.Google Scholar
Carrasco-Garcia, R., Barasona, J., Gortazar, C., et al. (2015). Wildlife and livestock use of extensive farm resources in South Central Spain: implications for disease transmission. European Journal of Wildlife Research 62: 65. doi:10.1007/s10344-015-0974-9Google Scholar
Castro, A., Brombila, T., Bersano, J. & al, S. H. e. (2014). Swine infectious agents in Tayassu pecari and Pecari tajacu tissue samples from Brazil. Journal of Wildlife Diseases 50: 205209.Google Scholar
Chiari, M., Ferrari, N., Bertoletti, M., et al. (2015). Long-term surveillance of Aujeszky's disease in the Alpine wild boar (Sus scrofa). EcoHealth 12(4): 563570. doi: 10.1007/s10393-015-1064-xGoogle Scholar
Corn, J., Lee, R., Erickson, G. & Murphy, C. (1987). Serologic survey for evidence of exposure to vesicular stomatitis virus, pseudorabies virus, brucellosis and leptospirosis in collared peccaries from Arizona. Journal of Wildlife Diseases 23: 551557.Google Scholar
Cowie, C. E., Hutchings, M. R., Barasona, J. A., et al. (2016). Interactions between four species in a complex wildlife: livestock disease community: implications for Mycobacterium bovis maintenance and transmission. European Journal of Wildlife Research 62: 51.Google Scholar
De Freitas, T. T., Keuroghlian, A., Eaton, D., et al. (2010). Prevalence of Leptospira interrogans antibodies in free-ranging Tayassu pecari of the Southern Pantanal, Brazil, an ecosystem where wildlife and cattle interact. Tropical Animal Health and Production 42: 16951703.Google Scholar
Desbiez, A., Santos, S., Keuroghlian, A. & Bodmer, R. E. (2009). Niche partitioning among white-lipped peccaries (Tayassu pecari ), collared peccaries (Pecari tajacu), and feral pigs (Sus scrofa). Journal of Mammalogy 90: 207217.Google Scholar
Dohna, H. z., Peck, D. E., Johnson, B. K., Reeves, A. & Schumaker, B. A. (2014). Wildlife–livestock interactions in a western rangeland setting: quantifying disease-relevant contacts. Preventive Veterinary Medicine 113: 447456.Google Scholar
EFSA (2015). Scientific opinion on African swine fever – EFSA Panel on Animal Health and Welfare (AHAW). EFSA Journal 8(3): 1556.Google Scholar
Everett, H., Crooke, H., Gurrala, R., et al. (2011). Experimental infection of common warthogs (Phacochoerus africanus) and bushpigs (Potamochoerus larvatus) with classical swine fever virus. I: susceptibility and transmission. Transboundary and Emerging Diseases 58: 128134.Google Scholar
Fragoso, J. M. V. (2004). A long-term study of white-lipped peccary (Tayassu pecari) population fluctuations in northern Amazonia – anthropogenic versus “natural” causes. In Silvius, K. M., Bodmer, R. E. & Fragoso, J. M. V. (eds.), People in nature: wildlife conservation in South and Central America. New York, NY: Columbia University Press, pp. 286296.Google Scholar
Gavier-Widen, D., Ståhl, K., Neimanis, A. S., et al. (2015). African swine fever in wild boar in Europe: a notable challenge. Veterinary Record 176: 199200.CrossRefGoogle ScholarPubMed
Gers, S., Vosloo, W., Drew, T., et al. (2011). Experimental infection of common warthogs (Phacochoerus africanus) and bushpigs (Potamochoerus larvatus) with classical swine fever virus II: a comparative histopathological study. Tranboundary and Emerging Dieases 58: 135144.Google Scholar
Godfroid, J., Garin-Bastuji, B., Saegerman, C. & Blasco, J. M. (2013). Brucellosis in terrestrial wildlife. Revue Scientifique et Technique, Office Nationale des Epizooties 32: 2742.CrossRefGoogle ScholarPubMed
Gresham, C., Gresham, C., Duffy, M., Faulkner, C. & Patton, S. (2002). Increased prevalence of Brucella suis and pseudorabies virus antibodies in adults of isolated feral swine population in coastal South California. Journal of Wildlife Diseases 38: 653656.Google Scholar
Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E. T., & Doncaster, C. P. (2009). Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a Neotropical forest. Journal of Mammalogy 90: 612620. doi: 10.1644/08-MAMM-A-140R.1Google Scholar
Hill, D. E., Dubey, J. P., Baroch, J. A., et al. (2014). Surveillance of feral swine for Trichinella spp. and Toxoplasma gondii in the USA and host-related factors associated with infection. Veterinary Parasitology 205: 653665.Google Scholar
Ito, F., Vasconcellos, S. & Bernardi, F. (1998). Evidência sorologica de brucelose e leptospirose e parasitismo por ixodideos em animais silvestres do Pantanal sul mato grossense,. Ars Veterinaria 14: 302310.Google Scholar
Jori, F. (2014). African swine fever and the risks of its spread to new territories and wild pig species. Suiform Soundings 13: 2124.Google Scholar
Jori, F. & Bastos, A. D. S. (2009). Role of wild suids in the epidemiology of African swine fever. EcoHealth 6: 296310.Google Scholar
Jori, F., Gálvez, H., Mendoza, P., Céspedes, M. & Mayor, P. (2009). Monitoring of leptospirosis seroprevalence in a colony of captive collared peccaries (Tayassu tajacu) from the Peruvian Amazon. Research in Veterinary Science 86: 383387.Google Scholar
Jori, F., Brahmbhatt, D., Fosgate, G. T., et al. (2011). A questionnaire-based evaluation of the veterinary cordon fence separating wildlife and livestock along the boundary of the Kruger National Park, South Africa. Preventive Veterinary Medicine 100: 210220.Google Scholar
Jori, F., Vial, L., Penrith, M. L., et al. (2013). Review of the sylvatic cycle of African swine fever in sub-Saharan Africa and the Indian ocean. Virus Research 173: 212227.CrossRefGoogle ScholarPubMed
Jori, F., Relun, A., Trabucco, B., et al. (2017). Assessment of wild boar/domestic pig interactions and implications for disease risk management in Corsica. Frontiers in Veterinary Science (in press).CrossRefGoogle Scholar
Jori, F., Laval, M., Maestrini, O., et al. (2016). Assessment of domestic pigs, wild boars and feral hybrid pigs as reservoirs of Hepatitis E Virus in Corsica, France. Viruses 8: 236; doi:10.3390/v8080236Google Scholar
Kaare, M. T., Picozzi, K., Mlengeya, T., et al. (2007). Sleeping sickness – a re-emerging disease in the Serengeti? Travel Medicine and Infectious Diseases 5: 117124.CrossRefGoogle ScholarPubMed
Karesh, W. B., Uhart, M., Painter, L., et al. (1998). Health evaluation of white lipped peccary populations in Bolivia. Omaha, NB: American Association of Wildlife Veterinarians, pp. 445449.Google Scholar
Kjaer, L. J., Schauber, E. M. & Nielsen, C. K. (2008). Spatial and temporal analysis of contact rates in female white-tailed deer. The Journal of Wildlife Management 72: 18191825.Google Scholar
Kreizinger, Z., Foster, J. T., Rónai, Z., et al. (2014). Genetic relatedness of Brucella suis biovar 2 isolates from hares, wild boars and domestic pigs. Veterinary Microbiology 172: 492498.Google Scholar
Kukielka, E., Barasona, J. A., Cowie, C. E., et al. (2013). Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Preventive Veterinary Medicine 112: 213221.Google Scholar
Kukielka, D., Rodriguez-Prieto, V., Vicente, J. & Sánchez-Vizcaíno, J. M. (2015a). Constant Hepatitis E Virus (HEV) circulation in wild boar and red deer in Spain: an increasing concern source of HEV zoonotic transmission. Transboundary and Emerging Diseases 63: e360368. doi: 10.1111/tbed.1231Google Scholar
Kukielka, E., Jori, F., Martínez López, B., et al. (2015b). Evaluation of the wild and domestic pig interactions and their association with African swine fever outbreaks using structured questionnaires and spatio-temporal modelling. In 14th International Conference on Veterinary Epidemiology and Economic, Mérida, Mexico.Google Scholar
Kukielka, E., Jori, F., Martínez López, B., et al. (2016). Interactions between wild and domestic pigs at the interface of Murchison Falls National Park, Northern Uganda. Frontiers in Veterinary Science, 3. https://doi.org/10.3389/fvets.2016.00031Google Scholar
Lahm, S. A., Kombila, M., Swanepoel, R. & Barnes, R. F. (2007). Morbidity and mortality of wild animals in relation to outbreaks of Ebola haemorrhagic fever in Gabon, 1994–2003. Transactions for the Royal Society of Tropical Medicine and Hygiene 101: 6478.Google Scholar
Latham, A. D. M. & Latham, M. C. (2015). The GPS craze: six questions to address before deciding to deploy GPS technology on wildlife. New Zealand Journal of Ecology 39: 143152.Google Scholar
Leslie, D. M. & Huffman, B. A. (2015). Potamochoerus porcus (Artiodactyla: Suidae). Mammalian Species 47: 1531.CrossRefGoogle Scholar
Long, J. A., Nelson, T. A., Webb, S. L. & Kenneth, L. G. (2014). A critical examination of indices of dynamic interaction for wildlife telemetry studies. The Journal of Animal Ecology 83: 12161233.Google Scholar
Lord, V. & Lord, R. (1991). Brucella suis infections in collared peccaries in Venezuela. Journal of Wildlife Diseases 27: 477481.Google Scholar
Mannelli, A., Sotgia, S., Patta, C., et al. (1998). Temporal and spatial patterns of African swine fever in Sardinia. Preventive Veterinary Medicine 35: 297306.Google Scholar
Martinez-Lopez, B., Alexandrov, T., Mur, L., Sànchez-Vizcaino, F. & Sànchez-Vizcaino, J. (2014). Evaluation of the spatial patterns and risk factors, including backyard pigs, for classical swine fever occurrence in Bulgaria using a Bayesian model. Geospatial Health 8: 489501.Google Scholar
Massei, G., Roy, S. & Bunting, R. (2011). Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human–Wildlife Interactions 5: 7999.Google Scholar
Meier, R., Ruiz-Fons, F. & Ryser-Degiorgis, M. (2015). A picture of trends in Aujeszky's disease virus exposure in wild boar in the Swiss and European contexts. BMC Veterinary Research 11: 277.Google Scholar
Meijaard, E. (2000) Bearded pig (Sus barbatus). Ecology, conservation status, and research methodology. Bogor, Indonesia: World Wildlife Fund for Nature (WWF), CIFOR and Ecosense Consultants. www.researchgate.net/publication/236898567Google Scholar
Mendoza, A., Céspedes, M., Gálvez, H., Mayor, P. & Jori, F. (2007). Antibodies against Leptospira spp. in captive collared peccaries, Peru. Emerging Infectious Diseases 13: 793794.CrossRefGoogle ScholarPubMed
Meng, X. J., Lindsay, D. S. & Sriranganathan, N. (2009). Wild boars as sources for infectious diseases in livestock and humans. Philosophical Transactions of the Royal Society of London, B Biological Sciences 364: 26972707, doi: 10.1098/rstb.2009.0086Google Scholar
Meunier, N. V., Sebulime, P., White, R. G. & Kock, R. (2017). Wildlife–livestock interactions and risk areas for cross-species spread of bovine tuberculosis. The Onderstepoort Journal of Veterinary Research 84(1): e1e10. doi:10.4102/ojvr.v84i1.1221Google Scholar
Miguel, E., Grosbois, V., Caron, A., et al. (2013). Contacts and foot and mouth disease transmission from wild to domestic bovines in Africa. Ecosphere 4: 132. http://dx.doi.org/10.1890/ES12-00239.1Google Scholar
Miller, M., Buss, P., De Klerk-Lorist, L., et al. (2015). Application of rapid serologic tests for detection of Mycobacterium bovis infection in free-ranging warthogs (Phacochoerus africanus). Implications for antemortem disease screening. Journal of Wildlife Diseases 52: 180182. doi: 10.7589/2015-07-186.Google Scholar
Miller, R. S. & Sweeney, S. J. (2013). Mycobacterium bovis (bovine tuberculosis) infection in North American wildlife: current status and opportunities for mitigation of risks of further infection in wildlife populations. Epidemiology & Infection 141: 13571370.Google Scholar
Monger, V. R., Stegeman, J. A., Dukpa, K., Gurung, R. B. & Loeffen, W. L. A. (2016). Evaluation of oral bait vaccine efficacy against classical swine fever in village backyard pig farms in Bhutan. Transboundary and Emerging Diseases 63: e211e218.Google Scholar
Mukaratirwa, S., La Grange, L. & Pfukenyi, D. M. (2013). Trichinella infections in animals and humans in sub-Saharan Africa: a review. Acta Tropica 125: 8289.CrossRefGoogle ScholarPubMed
Müller, T., Hahn, E. C., Tottewitz, F., et al. (2011). Pseudorabies virus in wild swine: a global perspective. Archives of Virology 156: 1691.Google Scholar
Muñoz-Mendoza, M., Marreros, N., Boadella, M., et al. (2013). Wild boar tuberculosis in Iberian Atlantic Spain: a different picture from Mediterranean habitat. BMC Veterinary Research 9: 176.Google Scholar
Mur, L., Boadella, M., Martinez-Lopez, B., et al. (2012). Monitoring of African swine fever in the wild boar population of the most recent endemic area of Spain. Transboundary and Emerging Diseases 59: 526531.Google Scholar
Mur, L., Atzeni, M., Martínez-López, B., et al. (2014). Thirty-five-year presence of African swine fever in Sardinia: history, evolution and risk factors for disease maintenance. Transboundary and Emerging Diseases 63: e165e177. doi: 10.1111/tbed.12264Google Scholar
Nava, A. (2008) Espécies sentinelas para a Mata Atlântica: As conseqüências epidemiológicas da fragmentação florestal no Pontal do Paranapanema. PhD thesis. Universidade de São Paulo (USP), 147 pp.Google Scholar
Nava, A. & Cullen, L. (2003). Peccaries as sentinel species: conservation, health and training in Atlantic Forest Fragments, Brazil. Suiform Soundings 3: 1516.Google Scholar
Nieto-Pelegrín, E., Rivera-Arroyo, B. & Sánchez-Vizcaíno, J. M. (2015). First detection of antibodies against African swine fever virus in faeces samples. Transboundary and Emerging Diseases 62: 594602.Google Scholar
Nugent, G., Gortazar, C. & Knowles, G. (2015). The epidemiology of Mycobacterium bovis in wild deer and feral pigs and their roles in the establishment and spread of bovine tuberculosis in New Zealand wildlife. New Zealand Veterinary Journal 63: 54675467.Google Scholar
OIE (2015) WAHID Disease information. Retrieved from www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseaseoutbreakmaps/ (accessed 9 December 2015).Google Scholar
Okoth, E., Gallardo, C., Macharia, J. M., et al. (2013). Comparison of African swine fever virus prevalence and risk in two contrasting pig-farming systems in south-west and Central Kenya. Preventive Veterinary Medicine 110: 198205.Google Scholar
Oura, C. A. L., Powell, P. P., Anderson, E. & Parkhouse, R. M. E. (1998). The pathogenesis of African swine fever in the resistant bushpig. Journal of General Virology 79: 14391443.Google Scholar
Paes, R. C. D. S., Fonseca Junior, A. A., Monteiro, L. A. R. C., et al. (2013). Serological and molecular investigation of the prevalence of Aujeszky's disease in feral swine (Sus scrofa) in the subregions of the Pantanal wetland, Brazil. Veterinary Microbiology 165: 448454.Google Scholar
Pannwitz, G., Freuling, C., Denzin, N., et al. (2012). A long-term serological survey on Aujeszky's disease virus infections in wild boar in East Germany. Epidemiology and Infection 140: 348–58. doi:10.1017/S0950268811000033Google Scholar
Paton, D. & Greiser-Wilke, I. (2003). Classical swine fever – an update. Research in Veterinary Science 75: 169178.Google Scholar
Paton, D. J., McGoldrick, A., Greiser-Wilke, I., et al. (2000). Genetic typing of classical swine fever virus. Veterinary Microbiology 73: 137157.Google Scholar
Pavio, N., Laval, M., Maestrini, O., et al. (2016). Possible foodborne transmission of Hepatitis E Virus from domestic pigs and wild boars from Corsica. Emerging Infectious Diseases 22: 21972199. doi:10.3201/eid2212.160612Google Scholar
Payne, A., Rossi, S., Lacour, S., et al. (2011). Bilan sanitaire du sanglier vis-à-vis de la trichinellose, de la maladie d'Aujeszky, de la brucellose, de l'hépatite E et des virus influenza porcins en France. Bulletin en Epidémiologie, Santé Animale et Alimentation 44: 28.Google Scholar
Payne, A., Chappa, S., Hars, J., Dufour, B. & Gilot-Fromont, E. (2016). Wildlife visits to farm facilities assessed by camera-traps in a bovine tuberculosis infected area in France. European Journal of Wildlife Disease 62: 3342.Google Scholar
Pérez, J., Fernandez, A. I., Sierra, M. A., et al. (1998). Serological and immunohistochemical study of African swine fever in wild boar in Spain. The Veterinary Record 143: 136139.Google Scholar
Pozio, E., Rinaldi, L., Marucci, G. & Musella, V. e. a. (2009). Hosts and habitats of Trichinella spiralis and Trichinella britovi in Europe. International Journal for Parasitology 39: 7179.Google Scholar
Rahman, H., Chakraborty, A., Deka, P., Narayan, G. & Prager, R. (2001). An outbreak of Salmonella enteritidis infection in pygmy hogs (Sus salvanius). Tropical Animal Health and Production 33: 95102.Google Scholar
Ravaomanana, J., Jori, F., Vial, L., et al. (2011). Assessment of interactions between African swine fever virus, bushpigs (Potamochoerus larvatus), Ornithodoros ticks and domestic pigs in north-western Madagascar. Transboundary and Emerging Diseases 58: 247254.Google Scholar
Real, V. V., Dutra, V., Nakazato, L., et al. (2010). PCR of Salmonella spp., Streptococcus suis, Brucella abortus and Porcine circovirus type 2 in free-living and captive peccaries. Revista Brasileira de Saúde e Produção Animal, Salvador 11(3): 858864.Google Scholar
Reyna-Hurtado, R., Moreira-Ramírez, J. F., Briceño-Méndez, M., et al. (2014). White-lipped peccaries with skin problems in the Maya Forest. Suiform Soundings 13: 2932.Google Scholar
Rivera, G. H., Cárdenas, P. L., Ramírez, V. M., et al. (2013). Infección por orbivirus en huanganas (Tayassu pecari) de Madre de Dios. Revista de Investigaciones Veterinarias del Perú 24: 544550.Google Scholar
Rossi, S., Hars, J., Garin-Bastuji, B., et al. (2008). Résultats de l'enquête nationale sérologique menée chez le sanglier sauvage (2000–2004). Bulletin Epidémiologique, Santé Animale et Alimentation 29: 7.Google Scholar
Rossi, S., Staubach, C., Blome, S., et al. (2015). Controlling of CSFV in European wild boar using oral vaccination: a review. Frontiers in Microbiology 6: 1141.Google Scholar
Rowlands, R. J., Michaud, V., Heath, L., et al. (2008). African swine fever virus isolate, Georgia, 2007. Emerging Infectious Diseases 14: 18701874.CrossRefGoogle ScholarPubMed
Ruiz-Fons, F. (2017). A review of the current status of relevant zoonotic pathogens in wild swine (Sus scrofa) populations: changes modulating the risk of transmission to humans. Transboundary and Emerging Diseases 64: 6888. doi:10.1111/tbed.12369Google Scholar
Ruiz-Fons, F., Vidal, D., Höfle, U., Vicente, J. & Gortázar, C. (2007). Aujeszky's disease virus infection patterns in European wild boar. Veterinary Microbiology 120: 241250.Google Scholar
Rwego, I. B., Gillespie, T. R., Isabirye-Basuta, G. & Goldberg, T. L. (2008). High rates of Escherichia coli transmission between livestock and humans in rural Uganda. Journal of Clinical Microbiology 46: 31873191.Google Scholar
Sanchez-Vizcaino, J. M., Mur, L. & Martinez-Lopez, B. (2013). African swine fever (ASF): five years around Europe. Veterinary Microbiology 165: 4550.CrossRefGoogle ScholarPubMed
Sánchez-Vizcaíno, J. M., Mur, L., Gomez-Villamandos, J. C. & Carrasco, L. (2015). An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology 152: 921.Google Scholar
Sato, Y., Sato, H., Naka, K., et al. (2011). A nationwide survey of hepatitis E virus (HEV) infection in wild boars in Japan: identification of boar HEV strains of genotypes 3 and 4 and unrecognized genotypes. Archives of Virology 156: 13451358.Google Scholar
Shome, B., Shome, R., Bujarbaruah, K., et al. (2010). Investigation of haemorrhagic enteritis in pygmy hogs (Sus salvanius) from India. Revue Scientifique et Technique, Office Nationale des Epizooties 29: 687693.Google Scholar
Stahl, K., Ogweng, P., Okoth, E., et al. (2014). Understanding the dynamics and spread of African swine fever at the wildlife livestock interface: insights into the potential role of the bushpig Potamochoerus larvatus. Suiform Soundings 13: 2429.Google Scholar
Thiry, D., Mauroy, A., Pavio, N., et al. (2017). Hepatitis E Virus and related viruses in animals. Transboundary and Emerging Diseases 64: 3752. doi:10.1111/tbed.12351Google Scholar
Thomas, L., De Glanville, W., Cook, E. & Fèvre, E. (2013). The spatial ecology of free-ranging domestic pigs (Sus scrofa) in western Kenya. BMC Veterinary Research 9: 46.Google Scholar
Trabucco, B., Charrier, F., Jori, F., et al. (2014). Stakeholder's practices and representations of contact between domestic and wild pigs: a new approach for disease risk assessment? Acta Agriculturae Slovenia 4: 117122.Google Scholar
Trolliet, F., Huynen, M., Vermeulen, C. & Hambuckers, A. (2014). Use of camera traps for wildlife studies. A review. Biotechnologie Agronomie Société et Environnement 18(3): 446454.Google Scholar
Vergne, T., Gogin, A. & Pfeiffer, D. U. (2017). Statistical exploration of local transmission routes for African swine fever in pigs in the Russian Federation, 2007–2014. Transboundary and Emerging Diseases 64: 504512. doi: 10.1111/tbed.12391Google Scholar
Watarai, M., Ito, N., Omata, Y. & Ishiguro, N. (2006). A serological survey of Brucella spp. in free-ranging wild boar (Sus scrofa leucomystax) in Shikoku, Japan. Journal of Veterinary Medical Science 68: 11391141.CrossRefGoogle ScholarPubMed
Weaver, G. V., Domenech, J., Thiermann, A. R. & Karesh, W. B. (2013). Foot and mouth disease: a look from the wild side. Journal of Wildlife Diseases 49: 759785.Google Scholar
Wiethoelter, A. K., Beltrán-Alcrudo, D., Kock, R. & Mor, S. M. (2015). Global trends in infectious diseases at the wildlife–livestock interface. Proceedings of the National Academy of Sciences 112: 96629667.CrossRefGoogle ScholarPubMed
Woodford, M. H. (1982). Tuberculosis in wildlife in the Ruwenzori National Park, Uganda (Part II). Tropical Animal Health and Production 14: 155160.Google Scholar
Woodger, N. G. & Hosegood, O. M. (2011). PMWS associated with diarrhoea and illthrift in a captive red river hog (Potamochoerus porcus). The Veterinary Record 168: 512.Google Scholar
Wu, N., Abril, C., Hinicacute, V., et al. (2011). Free-ranging wild boar: a disease threat to domestic pigs in Switzerland? Journal of Wildlife Diseases 47: 868879.Google Scholar
Wu, N., Abril, C., Thomann, A., et al. (2012). Risk factors for contacts between wild boar and outdoor pigs in Switzerland and investigations on potential Brucella suis spill-over. BMC Veterinary Research 8: 112.Google Scholar
Wyckoff, C., Henke, S. E., Campbell, T., Hewitt, D. G. & Vercauteren, K. C. (2009). Feral swine contact with domestic swine: a serologic survey and assessment of potential for disease transmission. Journal of Wildlife Diseases 45: 422429.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×