Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-03T19:39:19.843Z Has data issue: false hasContentIssue false

16 - Developmental transitions during the evolution of plant form

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

THE INVASION OF LAND

Land plants evolved from aquatic algal ancestors. The algae are a polyphyletic group from which the transition to land, and acquisition of developmental features associated with land plants, have occurred many times (Lewis and McCourt 2004). Recent phylogenetic evidence points to the charophyte algal lineage as the sister group to the land plants (Figure 16.1). Developmental features shared by charophytes and land plants are cell cleavage by phragmoplasts, plasmodesmatal connections between cells, and a placental link between haploid and diploid phases of growth (Marchant and Pickett-Heaps 1973). These and other features of derived charophytes, in particular growth from an apical cell in the gametophyte (Graham 1996, Graham et al. 2000), suggest that many of the cellular characteristics required for the development of land plants may have evolved within their common stem group.

FROM HAPLOID TO DIPLOID

The major character that distinguishes land plants from charophyte algae is the development of a diploid embryo. In charophytes, the majority of the life cycle is represented by the haploid gametophyte and only the unicellular zygote is diploid, undergoing meiosis immediately after formation. Embryo development represents a major growth transition in that meiotic division of the zygote is delayed and diploid sporophytic cells divide by mitosis, giving rise to a multicellular body. Although in the earliest land plants the gametophyte generation remained dominant, this transition in growth pattern led to a dramatic change in life history such that the sporophyte generation gradually became the dominant form (Graham 1985, Kenrick 1994, Graham and Wilcox 2000).

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 299 - 316
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aida, M., Beis, D., Heidstra, R.et al. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120.CrossRefGoogle ScholarPubMed
Albert, V. A., Oppenheimer, D. G. & Lindqvist, C. 2002. Pleiotropy, redundancy and the evolution of flowers. Trends in Plant Science 7, 297–301.CrossRefGoogle ScholarPubMed
Banks, H. P. 1975. Reclassification of Psilophyta. Taxon 24, 401–413.CrossRefGoogle Scholar
Bateman, R. M. 1994. Evolutionary developmental change in the growth architecture of fossil rhizomorphic lycopsids: scenarios conducted on cladistic foundations. Biological Reviews 69, 527–597.CrossRefGoogle Scholar
Bateman, R. M. & DiMichele, W. A. 1994. Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom. Biological Reviews 69, 345–417.CrossRefGoogle Scholar
Bateman, R. M., Hilton, J. & Rudall, P. J. 2006. Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. Journal of Experimental Botany 57, 3471–3503.CrossRefGoogle Scholar
Beerling, D. J. 2005. Leaf evolution: gases, genes and geochemistry. Annals of Botany 96, 345–352.CrossRefGoogle ScholarPubMed
Beerling, D. J., Osborne, C. P. & Chaloner, W. G. 2001. Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410, 352–354.CrossRefGoogle ScholarPubMed
Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C. & Leyser, O. 2006. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology 16, 553–563.CrossRefGoogle ScholarPubMed
Bierhorst, D. W. 1977. On the stem apex, leaf initiation and early leaf ontogeny in filicalean ferns. American Journal of Botany 64, 125–152.CrossRefGoogle Scholar
Bommert, P., Lunde, C., Nardmann, J.et al. 2005. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132, 1235–1245.CrossRefGoogle ScholarPubMed
Booker, J., Sieberer, T., Wright, W.et al. 2005. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Developmental Cell 8, 443–449.CrossRefGoogle ScholarPubMed
Bower, F. 1935. Primitive Land Plants. London: Macmillan.Google Scholar
Boyce, C. K., Cody, G. D., Fogel, M. L.et al. 2003. Chemical evidence for cell wall lignification and the evolution of tracheids in Early Devonian plants. International Journal of Plant Science 164, 691–702.CrossRefGoogle Scholar
Brand, U., Fletcher, J. C., Hobe, M., Meyerowitz, E. M. & Simon, R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617–619.CrossRefGoogle ScholarPubMed
Byrne, M. E., Barley, R., Curtis, M.et al. 2000. ASYMMETRIC LEAVES1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967–971.CrossRefGoogle ScholarPubMed
Casamitjana, M., Nez, E., Hofhuis, H. F.et al. 2003. Suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Current Biology 13, 1435–1441.CrossRefGoogle Scholar
Cook, M. E. & Friedman, W. E. 1998. Tracheid structure in a primitive extant plant provides an evolutionary link to earliest fossil tracheids. International Journal of Plant Science 159, 881–890.CrossRefGoogle Scholar
Cooke, T. J., Poli, D. & Cohen, J. D. 2003. Did auxin play a crucial role in the evolution of novel body plans during the Late Silurian–Early Devonian radiation of land plants? In Poole, I. & Helmsley, A. R. (eds.) The Evolution of Plant Physiology. London: Elsevier Academic Press, pp. 85–107.Google Scholar
Crane, P. R., Herendeen, P. & Friis, E. M. 2004. Fossils and plant phylogeny. American Journal of Botany 91, 1683–1699.CrossRefGoogle ScholarPubMed
Cronk, Q. C. B. 2001. Plant evolution and development in a post-genomic context. Nature Reviews Genetics 2, 607–619.CrossRefGoogle Scholar
DiMichele, W. A. & Bateman, R. M. 1996. Plant paleoecology and evolutionary inference: two examples from the Paleozoic. Review of Paleobotany and Palynology 90, 223–247.CrossRefGoogle Scholar
Dolan, L., Janmaat, K., Willemsen, V.et al. 1993. Cellular organization of the Arabidopsis thaliana root. Development 119, 71–84.Google ScholarPubMed
Edwards, D., Feehan, J. & Smith, D. G. 1983. A late Wenlock flora from County Tipperrary, Ireland. Botanical Journal of the Linnean Society 86, 19–36.CrossRefGoogle Scholar
Endress, P. K. 2001. Origins of flower morphology. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 291, 105–115.CrossRefGoogle ScholarPubMed
Eshed, Y., Baum, S. F., Perea, J. V. & Bowman, J. L. 2001. Establishment of polarity in lateral organs of plants. Current Biology 11, 1251–1260.CrossRefGoogle Scholar
Fairon-Demaret, M. & Li, C.-S. 1993. Lorophyton goense gen. et sp. nov. from the Lower Givetian of Belgium and a discussion of the Middle Devonian Cladoxylopsida. Review of Palaeobotany and Palynology 77, 1–22.CrossRefGoogle Scholar
Friedman, W. E. & Cook, M. E. 2000. The origin and early evolution of tracheids in vascular plants: integration of paleobotanical and neobotanical data. Philosophical Transactions of the Royal Society of London B 355, 857–868.CrossRefGoogle Scholar
Friedman, W. E., Moore, R. C. & Purugganan, M. D. 2004. The evolution of plant development. American Journal of Botany 91, 1726–1741.CrossRefGoogle ScholarPubMed
Frohlich, M. W. 2003. An evolutionary scenario for the origin of flowers. Nature Reviews Genetics 4, 559–566.CrossRefGoogle ScholarPubMed
Galinat, W. C. 1959. The phytomer in relation to floral homologies in the American Maydea. Botanical Museum Leaflets Harvard University 19, 1–32.Google Scholar
Geldner, N., Anders, N., Wolters, H.et al. 2003. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230.CrossRefGoogle ScholarPubMed
Geldner, N., Richter, S., Vieten, A.et al. 2004. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131, 389–400.CrossRefGoogle ScholarPubMed
Gillespie, W., Rothwell, G. & Schlecker, S. 1981. The earliest seeds. Nature 293, 462–464.CrossRefGoogle Scholar
Gradstein, F., Ogg, J. & Smith, A. 2005. A Geological Time Scale 2004. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Graham, L. E. 1985. The origin of the life cycle of land plants. American Scientist 73, 178–186.Google Scholar
Graham, L. E. 1996. Green algae to land plants: an evolutionary transition. Journal of Plant Research 109, 241–251.CrossRefGoogle Scholar
Graham, L. E., Cook, M. E. & Busse, J. S. 2000. The origin of plants: body plan changes contributing to a major evolutionary radiation. Proceedings of the National Academy of Sciences USA 97, 4535–4540.CrossRefGoogle ScholarPubMed
Graham, L. E. & Wilcox, L. W. 2000. The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport. Philosophical Transactions of the Royal Society of London B 355, 757–766.CrossRefGoogle ScholarPubMed
Groover, A. & Robischon, M. 2006. Developmental mechanisms regulating secondary growth in woody plants. Current Opinion in Plant Biology 9, 55–58.CrossRefGoogle ScholarPubMed
Harrison, C. J., Corley, S. B., Moylan, E. C.et al. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434, 509–514.CrossRefGoogle ScholarPubMed
Helariutta, Y., Fukaki, H., Wysocka-Diller, J.et al. 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555–567.CrossRefGoogle ScholarPubMed
Irish, V. F. 2003. The evolution of floral homeotic gene function. BioEssays 25, 637–646.CrossRefGoogle ScholarPubMed
Irish, V. F. & Litt, A. 2005. Flower development and evolution: gene duplication, diversification and redeployment. Current Opinion in Genetics and Development 15, 454–460.CrossRefGoogle ScholarPubMed
Jackson, D., Veit, B. & Hake, S. 1994. Expression of maize Knotted1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120, 404–413.Google Scholar
Johri, B. M. 1984. Embryology of Angiosperms. Berlin: Springer.CrossRefGoogle Scholar
Kamiya, N., Nagasaki, H., Morikami, A., Sato, Y. & Matsuoka, M. 2003. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant Journal 35, 429–441.CrossRefGoogle ScholarPubMed
Kato, M. & Akiyama, H. 2005. Interpolation hypothesis for origin of the vegetative sporophyte of land plants. Taxon 54, 443–450.CrossRefGoogle Scholar
Kenrick, P. 1994. Alternation of generations in land plants: new phylogenetic and paleobotanical evidence. Biological Reviews 69, 293–330.CrossRefGoogle Scholar
Kenrick, P. & Crane, P. R. 1991. Water conducting cells in early fossil land plants: implications for the early evolution of tracheophytes. Botanical Gazette 152, 335–356.CrossRefGoogle Scholar
Kenrick, P. & Crane, P. R. 1997. The Origin and Early Diversification of Land Plants: A Cladistic Study. London: Smithsonian Institution Press.Google Scholar
Kenrick, P. 2002. The telome theory. In Cronk, Q. C. B., Bateman, R. M. & Hawkins, J. A. (eds.) Developmental Genetics and Plant Evolution. London: Taylor and Francis, pp. 365–387.Google Scholar
Kidston, R. & Lang, W. H. 1920. On Old Red Sandstone plants showing structure from the Rhynie Chert bed, Aberdeenshire. Part III. Asteroxylon mackiei. Transactions of the Royal Society of Edinburgh 52, 643–680.CrossRefGoogle Scholar
Kieffer, M., Stern, Y., Cook, H.et al. 2006. Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. Plant Cell 18, 560–573.CrossRefGoogle ScholarPubMed
Kubo, M., Udagawa, M., Nishikubo, N.et al. 2005. Transcription switches for protoxylem and metaxylem vessel formation. Genes & Development 19, 1855–1860.CrossRefGoogle ScholarPubMed
Lewis, I. A. & McCourt, R. M. 2004. Green algae and the origin of land plants. American Journal of Botany 91, 1535–1556.CrossRefGoogle ScholarPubMed
Marchant, H. J. & Pickett-Heaps, J. D. 1973. Mitosis and cytokinesis in Coleochaete scutata. Journal of Phycology 9, 461–471.Google Scholar
Mayer, K. F. X., Schoof, H., Haecker, A.et al. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815.CrossRefGoogle ScholarPubMed
McCann, M. C. 1997. Tracheary element formation: building up to a dead end. Trends in Plant Science 2, 333–338.CrossRefGoogle Scholar
McConnell, J. R., Emery, J., Eshed, Y.et al. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713.CrossRefGoogle ScholarPubMed
McHale, N. A. & Koning, R. E. 2004a. PHANTASTICA regulates development of the adaxial mesophyll in Nicotiana leaves. Plant Cell 16, 1251–1262.CrossRefGoogle Scholar
McHale, N. A. & Koning, R. E. 2004b. MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell 16, 1730–1740.CrossRefGoogle Scholar
Mele, G., Ori, N., Sato, Y. & Hake, S. 2003. The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes & Development 17, 2088–2093.CrossRefGoogle ScholarPubMed
Nakajima, K., Sena, G., Nawy, T. & Benfey, P. N. 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413, 307–311.CrossRefGoogle ScholarPubMed
Oh, S. H., Park, S. & Han, K.-Y. 2003. Transcriptional regulation of secondary growth in Arabidopsis thaliana. Journal of Experimental Botany 54, 2709–2722.CrossRefGoogle ScholarPubMed
Palmer, J. D., Soltis, D. E. & Chase, M. W. 2004. The plant tree of life: an overview and some points of view. American Journal of Botany 91, 1437–1445.CrossRefGoogle ScholarPubMed
Phillips, T. L. & DiMichele, W. A. 1992. Comparative ecology and life-history biology of arborescent lycopsids in Late Carboniferous swamps of Euroamerica. Annals of the Missouri Botanical Garden 79, 560–588.CrossRefGoogle Scholar
Pryer, K. M., Schneider, H., Smith, A. R.et al. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409, 618–622.CrossRefGoogle ScholarPubMed
Qiu, Y. L., Li, L., Wang, B.et al. 2006. The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences of the USA 103, 15511–15516.CrossRefGoogle ScholarPubMed
Raven, J. A. & Edwards, D. 2001. Roots: evolutionary origins and biogeochemical significance. Journal of Experimental Botany 52, 381–401.CrossRefGoogle ScholarPubMed
Sabatini, S., Heidstra, R., Wildwater, M. & Scheres, B. 2003. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes & Development 17, 354–358.CrossRefGoogle ScholarPubMed
Scheres, B., Wolkenfeit, H., Willemsen, V.et al. 1994. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120, 2475–2487.Google Scholar
Schneeberger, R., Tsiantis, M., Freeling, M. & Langdale, J. A. 1998. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 125, 2857–2865.Google ScholarPubMed
Schoof, H., Lenhard, M., Haecker, A.et al. 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644.CrossRefGoogle ScholarPubMed
Smith, L. G., Greene, B., Veit, B. & Hake, S. 1992. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116, 21–30.Google ScholarPubMed
Stein, W. E. & Boyer, J. S. 2006. Evolution of land plant architecture: beyond the telome theory. Paleobiology 32, 450–482.CrossRefGoogle Scholar
Taguchi-Shiobara, F., Yuan, Z., Hake, S. & Jackson, D. 2001. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes & Development 15, 2755–2766.CrossRefGoogle ScholarPubMed
Tattersall, A. D., Turner, L., Knox, M. R.et al. 2005. The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Plant Cell 17, 1046–1060.CrossRefGoogle ScholarPubMed
Theißen, G., Becker, A., Winter, K.-U. et al. 2002. How land plants learned their floral ABCs: the role of MADS box genes in the evolutionary origin of flowers. In Cronk, Q. C. B., Bateman, R. M. & Hawkins, J. A. (eds.) Developmental Genetics and Plant Evolution. London: Taylor and Francis, pp. 173–205.Google Scholar
Timmermans, M. C. P., Hudson, A., Becraft, P. W. & Nelson, T. 1999. ROUGH SHEATH2: A myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284, 151–153.CrossRefGoogle ScholarPubMed
Tsiantis, M., Schneeberger, R., Golz, J. F., Freeling, M. & Langdale, J. A. 1999. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284, 154–156.CrossRefGoogle ScholarPubMed
Berg, C., Willemsen, V., Hendricks, G., Weisbeek, P. & Scheres, B. 1997. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390, 287–289.Google ScholarPubMed
Waites, R. & Hudson, A. 1995. Phantastica: a gene required for dorsoventrality of leaves in Antirrhinum. Development 121, 2143–2154.Google Scholar
Wellman, C. H., Osterloff, P. L. & Mohiuddin, U. 2003. Fragments of the earliest land plants. Nature 425, 282–285.CrossRefGoogle ScholarPubMed
Wysocka-Diller, J. W., Helariutta, Y., Fukaki, H., Malamy, J. E. & Benfey, P. N. 2000. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127, 595–603.Google ScholarPubMed
Zimmermann, W. 1965. Die Telomtheorie. Stuttgart: Fischer.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×