Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-01T06:52:19.484Z Has data issue: false hasContentIssue false

Further Reading

Published online by Cambridge University Press:  01 September 2021

Michael Hannah
Affiliation:
Victoria University of Wellington
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Extinctions
Living and Dying in the Margin of Error
, pp. 215 - 236
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. (2011). How many species are there on Earth and in the ocean? PLoS Biology 9(8) e1001127.Google Scholar

Secondary Sources

Berentson, Q. (2012). Moa. Nelson, New Zealand: Craig Potten Publishing. (Book)Google Scholar
Braje, T. J. (2015). Earth systems, human agency, and the Anthropocene: Planet Earth in the Human Age. Journal of Archaeological Research, 23(4) 369396.Google Scholar
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology and Evolution, 23(8) 453460.Google Scholar
Budiansky, S. (1994). Extinction or miscalculation? Nature, 370(6485) 104105.Google Scholar
Ceballos, G. & Ehrlich, P. R. (2018). The misunderstood sixth mass extinction. Science, 360(6393) 10801081.Google Scholar
Ceballos, G., Ehrlich, P. R. & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signalled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences USA, 114(30) E6089E6096.Google Scholar
Dirzo, R. & Raven, P. H. (2003). Global state of biodiversity and loss. Annual Review of Environment and Resources, 28(1) 137167.Google Scholar
Dirzo, R., Young, H. S., Galetti, M., et al. (2014). Defaunation in the Anthropocene. Science, 345(6195) 401406.Google Scholar
Duffy, J. E. (2009). Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment, 7(8) 437444.Google Scholar
IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org (Accessed 18 September 2020.)Google Scholar
Kolbert, E. (2014). The Sixth Extinction: An Unnatural History. New York: Henry Holt and Company LLC. (Book)Google Scholar
Lenton, T. M., Daines, S. J., Dyke, J. G., et al. (2018). Selection for Gaia across multiple scales. Trends in Ecology and Evolution, 33(8) 336345.CrossRefGoogle ScholarPubMed
Pievani, T. (2014). The sixth mass extinction: Anthropocene and the human impact on biodiversity. Rendiconti Lincei, 25(1) 8593.Google Scholar
Pimm, S. L., Jenkins, C. N., Abell, R., et al. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187) 246752.Google Scholar
Pimm, S. L. & Raven, P. (2000). Extinction by numbers. Nature, 403(6772) 843845.Google Scholar
Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. (1995). The future of biodiversity. Science, 269(5222) 347350.Google Scholar
Plotnick, R. E. & Koy, K. A. (2020). The Anthropocene fossil record of terrestrial mammals. Anthropocene, 29 115.CrossRefGoogle Scholar
Rollinson, H. (2007). Early Earth Systems. Malden, MA: Blackwell Publishing. (Book)Google Scholar
Steffen, W., Rockström, J., Richardson, K., et al. (2018). Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences USA, 115(33) 82528259.CrossRefGoogle ScholarPubMed
Tyrrell, T. (2013). On Gaia. New Jersey: Princeton University Press. (Book)Google Scholar
Waters, C. N., Zalasiewicza, J., Summerhayes, C., et al. (2018). Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene series: Where and how to look for potential candidates. Earth-Science Reviews, 178 379429.Google Scholar
Waters, C. N., Zalasiewicz, J. A., Williams, M., Ellis, M. A. & Snelling, A. M. (2014). A stratigraphical basis for the Anthropocene? In Waters, C. N., et al. (Eds.), A Stratigraphical Basis for the Anthropocene. Geological Society Special Publication 395, 121. London: Geological Society.Google Scholar
Winfree, R., Reilly, J. R., Bartomeus, I., et al. (2018). Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science, 359(6377) 791793.Google Scholar
Young, H. S., McCauley, D. J., Galetti, M., et al. (2016). Patterns, causes, and consequences of Anthropocene defaunation. Annual Review of Ecology, Evolution and Systematics, 47(1) 333358.Google Scholar
Zalasiewicz, J., Waters, C. N., , M. Williams, , et al. (2015). When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quaternary International, 383 196203.Google Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. (2013; updated). The ICS International Chronostratigraphic Chart. Episodes, 36 199204.Google Scholar
Coyne, J. A. (2009). Why Evolution is True. Oxford: Oxford University Press. (Book)Google Scholar
Foote, M. & Miller, A. L. (2007). Principles of Paleontology 3rd Edition. New York: W. H. Freeman and Company. (Book)Google Scholar
Mora, C., Tittensor, D. P., Adl, S. M. & Simpson, A. (2011). How many species are there on Earth and in the ocean? PLoS Biology, 9(8) e1001127.Google Scholar
Raup, D. M. & Sepkoski, J. J. (1982). Mass extinctions in the marine fossil record. Science, 215(4539) 15011503.Google Scholar
Rudwick, M. J. S. (2005). Bursting the Limits of Time: The Reconstruction of Geohistory in the Age of Revolution. Chicago: Chicago University Press. (Book)Google Scholar
Rudwick, M. J. S. (2008). Worlds Before Adam: The Reconstruction of Geohistory in the Age of Reform. Chicago: Chicago University Press. (Book)CrossRefGoogle Scholar
Anon., (2011). Geology of the Flinders Ranges National Park. Adelaide: Government of South Australia.Google Scholar
Bellefroid, E. J., Hood, A. v. S., Hoffman, P. F., et al. (2018). Constraints on Paleoproterozoic atmospheric oxygen levels. Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.1806216115Google Scholar
Blamey, N. J. F., Brand, U., Parnell, J., et al. (2016). Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology, 44(8) 651654.Google Scholar
Bobrovskiy, I., J. M. Hope, A. Ivantsov, et al. (2018). Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science, 361(6408) 12461249.Google Scholar
Brasier, M. (2009). Darwin’s Lost World. Oxford/New York: Oxford University Press. (Book)Google Scholar
Briggs, D. E. G. (2015). The Cambrian explosion. Current Biology, 25(19) R864R868.Google Scholar
Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., et al. (2017). The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548(7669) 578581.Google Scholar
Butterfield, N. J. (2011). Animals and the invention of the Phanerozoic Earth system. Trends in Ecology and Evolution, 26(2) 8187.Google Scholar
Canfield, D. E. (2014). Oxygen: A Four Billion Year History. New Jersey: Princeton University Press. (Book)Google Scholar
Canfield, D. E., Poulton, S. W. & Narbonne, G. M. (2007). Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315(5808) 9295.Google Scholar
Canfield, D. E., Ngombi-Pemba, L., Hammarlund, E. U., et al. (2013). Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere. Proceedings of the National Academy of Sciences USA, 110(42) 1673616741.Google Scholar
Cao, X. & Bao, H. (2013). Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth. Proceedings of the National Academy of Sciences USA, 110(36) 1454614550.Google Scholar
Carbone, C. & Narbonne, G. M. (2014). When life got smart: The evolution of behavioral complexity through the Ediacaran and Early Cambrian of NW Canada. Journal of Paleontology, 88(2), 309330.Google Scholar
Chen, J.-Y., Bottjer, D. J., Davidson, E. H., et al. (2009). Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Research, 173(1) 191200.Google Scholar
Crockford, P. W., Hayles, J. A., Bao, H., et al. (2018). Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature, 559(7715) 613616.Google Scholar
Daley, A. C., Antcliffe, J. B., Drage, H. B. & Pates, S. (2018). Early fossil record of Euarthropoda and the Cambrian Explosion. Proceedings of the National Academy of Sciences USA, 115(21) 53235331.Google Scholar
Darroch, S. A. F., Laflamme, M. & Wagner, P. J. (2018). High ecological complexity in benthic Ediacaran communities. Nature Ecology and Evolution, 2(10) 15411547.Google Scholar
Darroch, S. A. F., Smith, E. F., Laflamme, M. & Erwin, D. H. (2018). Ediacaran extinction and Cambrian Explosion. Trends in Ecology and Evolution, 33(9) 653663.Google Scholar
Darroch, S. A. F., Sperling, E. A., Boag, T. H., et al. (2015). Biotic replacement and mass extinction of the Ediacara biota. Proceedings of the Royal Society B: Biological Sciences, 282(1814) 20151003.Google Scholar
Droser, M. L. & Gehling, J. G. (2015). The advent of animals: The view from the Ediacaran. Proceedings of the National Academy of Sciences USA, 112(16) 48654870.Google Scholar
Droser, M. L., Tarhan, L. G. & Gehling, J. G. (2017). The rise of animals in a changing environment: Global ecological innovation in the Late Ediacaran. Annual Review of Earth and Planetary Sciences, 45(1) 593617.Google Scholar
Eickmann, B., Hofmann, A., Wille, M., et al. (2018). Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nature Geoscience, 11(2) 133138.Google Scholar
Erwin, D. H. & Valentine, J. W. (2013). The Cambrian Explosion: The Construction of Animal Biodiversity. Greenwood Village, CO: Roberts and Company. (Book)Google Scholar
Evans, S. D., Hughes, I. V., Gehling, J. G. & Droser, M. L., (2020). Discovery of the oldest bilaterian from the Ediacaran of South Australia. Proceedings of the National Academy of Sciences USA, 117(14) 78457850.CrossRefGoogle ScholarPubMed
Fakhraee, M., Crowe, S. A., & Katsev, S. (2018). Sedimentary sulfur isotopes and Neoarchean ocean oxygenation. Science Advances, 4(1), e1701835. doi:10.1126/sciadv.1701835.Google Scholar
Gehling, J. G., Jago, J. B., Paterson, J. R., G. A. Brock, Droser, M. L., (2012). Field Trip S-4 Ediacaran–Cambrian of South Australia. 34th International Geological Congress, Brisbane, Australia.Google Scholar
Gehling, J. G. & Droser, M. (2012). Ediacarian stratigraphy and the biota of the Adelaide Geosyncline, South Australia. Episodes, 35(1) 236246.Google Scholar
Guilbaud, R., Slater, B. J., Poulton, S. W., et al. (2018). Oxygen minimum zones in the early Cambrian ocean. Geochemical Perspectives Letters, 6 3338.Google Scholar
Holland, H. D. (2009). Why the atmosphere became oxygenated: A proposal. Geochimica et Cosmochimica Acta, 73(18) 52415255.CrossRefGoogle Scholar
Jago, J. B., Gehling, J. G., Paterson, J. R., et al. (2012). Cambrian stratigraphy and biostratigraphy of the Flinders Ranges and the north coast of Kangaroo Island, South Australia. Episodes, 35(1) 247255.Google Scholar
Kaufman, A. J. (2014). Early Earth: Cyanobacteria at work. Nature Geoscience, 7(4) 253254.Google Scholar
Knoll, A. H. (2003). Life on a Young Planet. The First Three Billion Years of Evolution on Earth. Princeton New Jersey: Princeton University Press. (Book)Google Scholar
Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. (2018). Transient surface ocean oxygenation recorded in the ∼2.66-Ga Jeerinah Formation, Australia. Proceedings of the National Academy of Sciences USA, 115(30) 77117716.Google Scholar
Laflamme, M. (2010). Wringing out the oldest sponges. Nature Geoscience, 3(9) 597598.Google Scholar
Lenton, T. M., Boyle, R. A., Poulton, S. W., et al. (2014). Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7(4) 257265.Google Scholar
Li, Z.-Q., Zhang, L.-C., Xue, C.-J., et al. (2018). Earth’s youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean. Scientific Reports, 8(1) 9970.Google Scholar
Maloof, A. C., Rose, C. V., Beach, R., et al. (2010). Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience, 3(9) 653659.Google Scholar
Marshall, C. R. (2006). Explaining the Cambrian ‘explosion’ of animals. Annual Review of Earth and Planetary Sciences, 34(1) 355384.Google Scholar
McMenamin, M. A. (1998). The Garden of Ediacara: Discovering the First Complex Life. New York: Colombia University Press. (Book)Google Scholar
Meysman, F. J. R. (2014). Biogeochemistry: Oxygen burrowed away. Nature Geoscience, 7(9) 620621.Google Scholar
Mills, B., Lenton, T. M. & Watson, A. J.. (2014). Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. Proceedings of the National Academy of Sciences USA, 111(25) 90739078.Google Scholar
Mills, D. B., Ward, L. M., Jones, C., et al. (2014). Oxygen requirements of the earliest animals. Proceedings of the National Academy of Sciences USA, 111(11) 41684172.Google Scholar
Muscente, A. D., Boag, T. H., Bykova, N. & Schiffbauer, J. D. (2018). Environmental disturbance, resource availability, and biologic turnover at the dawn of animal life. Earth-Science Reviews, 177 248264.Google Scholar
Planavsky, N. J., Reinhard, C. T., Wang, X., et al. (2014). Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209) 635638.Google Scholar
Sahoo, S. K., Planavsky, N. J., Jiang, G., et al. (2016). Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology, 14(5) 457468.Google Scholar
Schiffbauer, J. D. & Xiao, S. (2014). An examination of life history and behavioral evolution across the Ediacaran–Cambrian transition. Journal of Paleontology, 88(2) 205206.Google Scholar
Schopf, J. W., Kitajima, K., Spicuzza, M. J., Kudryavtsev, A. B. & Valley, J. W. (2018). SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proceedings of the National Academy of Sciences USA, 115(1) 5358.CrossRefGoogle ScholarPubMed
Seilacher, A. (1989). Vendozoa: Organismic construction in the Proterozoic biosphere. Lethaia, 22(3) 229239.Google Scholar
Sperling, E. A., Frieder, C. A., Raman, A. V., et al. (2013). Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences USA, 110(33) 13446.Google Scholar
van de Velde, S., Mills, B., Meysman, F. J. R. & Lenton, T. M. (2018). Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing. Nature Communications, 9(1) 2554.Google Scholar
Wei, G.-Y., Planavsky, N. J., Tarhan, L. G. & Chen, X. (2018). Marine redox fluctuation as a potential trigger for the Cambrian Explosion. Geology, 46(7) 587590.Google Scholar
Wen, H., Carignan, J., Zhang, Y., et al. (2011). Molybdenum isotopic records across the Precambrian–Cambrian boundary. Geology, 39(8) 775778.Google Scholar
Wood, R., Liu, A. G., Bowyer, F., et al. (2019). Integrated records of environmental change and evolution challenge the Cambrian explosion. Nature Ecology and Evolution, 3(4) 528538.Google Scholar
Zhang, F., Xiao, S., Kendall, B., et al. (2018). Extensive marine anoxia during the terminal Ediacaran Period. Science Advances, 4(6) eaan8983.Google Scholar
Zhu, M., Zhuravlev, A. Yu., Wood, R. A., Zhao, F. & Sukhov, S. S. (2017). A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform. Geology, 45(5) 459462.Google Scholar
Alroy, J. (2010a). Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology, 53(6) 12111235.Google Scholar
Alroy, J. (2010b). The shifting balance of diversity among major marine animal groups. Science, 329(5996) 11911194.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., et al. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science, 321(5885) 97100.Google Scholar
Benton, M. (1995). Diversification and extinction in the history of life. Science, 268(5207) 5258.CrossRefGoogle ScholarPubMed
Benton, M. J. (2001). Biodiversity on land and in the sea. Geological Journal, 36(3–4) 211230.Google Scholar
Benton, M. J. (2013). Origins of biodiversity. Palaeontology, 56(1) 17.Google Scholar
Benton, M. J. & Emerson, B. C. (2007). How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology, 50(1) 2340.Google Scholar
Fan, J.-X., Shen, S.-Z., Erwin, D. H., et al. (2020). A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475) 272277.Google Scholar
Gould, S. J. (1989). Wonderful Life: The Burgess Shale and the Nature of History. New York: W. W. Norton. (book)Google Scholar
Harper, D. A. T. & Benton, M. J. (2001). Preface: History of biodiversity. Geological Journal, 36(3–4) 185186.Google Scholar
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M. & Anderson, P. S. (2003). The impact of the Pull of the Recent on the history of marine diversity. Science, 300(5622) 11331135.Google Scholar
Phillips, J. (1860). Life on the Earth: Its Origin and Succession. Cambridge: Macmillan and Co. (Book)Google Scholar
Sepkoski, J. J. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7(1) 3653.Google Scholar
Sepkoski, J. J. (1984). A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology, 10(2) 246267.Google Scholar
Sepkoski, J. J. (1993). Ten years in the library: New data confirm paleontological patterns. Paleobiology, 19(1) 4351.Google Scholar
Winchester, S. (2001). The Map That Changed the World: William Smith and the Birth of Modern Geology. New York: Harper Collins. (Book)Google Scholar
Womack, T. M., Crampton, J. S. & Hannah, M. J. (2020). The Pull of the Recent revisited: Negligible species-level effect in a regional marine fossil record. Paleobiology, 46(4), 470477.Google Scholar
Alroy, J. (2008). Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA, 105 (Supplement 1) 1153611542.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., et al. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science, 321(5885) 97100.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., et al. (2001). Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA, 98(11) 62616266.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. (1980). Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science, 208(4448) 10951108.Google Scholar
Alvarez, W. (2003). Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions. Astrobiology, 3(1) 153161.Google Scholar
Alvarez, W. & Muller, R. A. (1984). Evidence from crater ages for periodic impacts on the Earth. Nature, 308(5961) 718720.Google Scholar
Arens, N. C. & West, I. D. (2008). Press-pulse: A general theory of mass extinction? Paleobiology, 34(4) 456471.Google Scholar
Artemieva, N. & Morgan, J. (2020). Global K–Pg layer deposited from a dust cloud. Geophysical Research Letters, 47(6) https://doi.org/10.1029/2019gl086562Google Scholar
Bailer-Jones, C. A. L. (2009). The evidence for and against astronomical impacts on climate change and mass extinctions: A review. International Journal of Astrobiology, 8(3) 213219.Google Scholar
Bailer-Jones, C. A. L. (2011). Bayesian time series analysis of terrestrial impact cratering. Monthly Notices of the Royal Astronomical Society, 416(2) 11631180.Google Scholar
Bambach, R. K. (2006). Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences, 34(1) 127155.Google Scholar
Bambach, R. K., Knoll, A. H. & Wang, S. C. (2004). Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30(4) 522542.Google Scholar
Benton, M. J. (2003). When Life Nearly Died. London: Thames and Hudson. (Book)Google Scholar
Berner, R. A. & Beerling, D. J. (2007). Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1–4) 368373.Google Scholar
Brenchley, P. J., Marshall, J. D. & Underwood, C. J.. (2001). Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geological Journal, 36(3–4) 329340.Google Scholar
Cloud, P. E. (1948). Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution, 2(4) 322350.Google Scholar
Davis, M., Hut, P. & Muller, R. A. (1984). Extinction of species by periodic comet showers. Nature, 308(5961) 715717.Google Scholar
Editorial, (2013). The upside of impacts. Nature Geoscience, 6(12) 987.Google Scholar
Fischer, A. G. & Arthur, M. A. (1977). Secular variations in the pelagic realm. Society of Economic Paleontologists and Mineralogists Special Publication, 25 1950Google Scholar
Fisher, A. (1985). Death star. Popular Science, 226 7277.Google Scholar
Hatfield, C. B. & Camp, M. J. (1970). Mass extinctions correlated with periodic galactic events. GSA Bulletin, 81(3) 911914.Google Scholar
Kornei, K. (2018). Huge global tsunami followed dinosaur-killing asteroid impactEOS, 99 https://doi.org/10.1029/2018EO112419Google Scholar
Jablonski, D., (1994). Extinctions in the fossil record. Philosophical Transactions: Biological Sciences, 344(1307) 1117.Google Scholar
Lipowski, A. (2005). Periodicity of mass extinctions without an extraterrestrial cause. Physical Review E, 71(5) 052902.Google Scholar
MacLeod, N. (2003). Causes of Phanerozoic extinctions. In Rothschild, L. & Lister, A. (Eds.), Evolution on Planet Earth (pp. 253277). London: Academic Press.Google Scholar
Melott, A. L. (2008). Long-term cycles in the history of life: Periodic biodiversity in the paleobiology database. PLoS ONE, 3(12) e4044.Google Scholar
Melott, A. L. & Bambach, R. K. (2010). Nemesis reconsidered. Monthly Notices of the Royal Astronomical Society: Letters, 407(1) L99L102.Google Scholar
Melott, A. L. & Bambach, R. K. (2011a). A ubiquitous ∼62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation. Paleobiology, 37(1) 92112.Google Scholar
Melott, A. L. & Bambach, R. K. (2011b). A ubiquitous ∼62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology, 37(3) 383408.Google Scholar
Melott, A. L. & Bambach, R. K. (2013). Do periodicities in extinction – with possible astronomical connections – survive a revision of the geological timescale? The Astrophysical Journal, 773(1) 6.Google Scholar
Melott, A. L. & Bambach, R. K. (2014). Analysis of periodicity of extinction using the 2012 geological time scale. Paleobiology, 40(2) 177196.Google Scholar
Muller, R. A., Hut, P., Davis, M. & Alvarez, W. (1984). Cometary showers and unseen solar companions (reply). Nature, 312(5992) 380381.Google Scholar
Nater, A., Mattle-Greminger, M. P., Nurcahyo, A., et al. (2017). Morphometric, behavioral, and genomic evidence for a new orangutan species. Current Biology, 27(22) 34873498.Google Scholar
Newell, N. D. (1952). Periodicity in invertebrate evolution. Journal of Paleontology, 26(3) 371385.Google Scholar
Newell, N. D. (1962). Paleontological gaps and geochronology. Journal of Paleontology, 36(3) 592610.Google Scholar
Newell, N. D. (1965). Mass extinctions at the end of the Cretaceous Period. Science, 149(3687) 922924.Google Scholar
Newell, N. D. (1967). Revolutions in the history of life. Geological Society of America Special Papers, 89 6392.Google Scholar
Rampino, M. R. (2015). Disc dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events. Monthly Notices of the Royal Astronomical Society, 448(2) 18161820.Google Scholar
Rampino, M. R. & Caldeira, K. (2015). Periodic impact cratering and extinction events over the last 260 million years. Monthly Notices of the Royal Astronomical Society, 454(4) 34803484.Google Scholar
Rampino, M. R. & Stothers, R. B. (1984). Terrestrial mass extinctions, cometary impacts and the Sun’s motion perpendicular to the Galactic Plane. Nature, 308, 709.Google Scholar
Raup, D. M. (1992). Large-body impact and extinction in the Phanerozoic. Paleobiology, 18(1) 8088.Google Scholar
Raup, D. M., & Sepkoski, J. J. (1984). Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences, 81(3) 801805. doi:10.1073/pnas.81.3.801.Google Scholar
Raup, D. M. & Sepkoski, J. J. (1986). Periodic extinction of families and genera. Science, 231(4740) 833836.Google Scholar
Raup, D. M. & Sepkoski, J. J. (1988). Testing for periodicity of extinction. Science, 241(4861) 9496.Google Scholar
Rohde, R. A. & Muller, R. A. (2005). Cycles in fossil diversity. Nature, 434 208210.Google Scholar
Schulte, P., Alegret, L., , I. Arenillas, , et al. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science, 327(5970) 12141218.Google Scholar
Schwartz, R. D. & James, P. B. (1984). Periodic mass extinctions and the Sun’s oscillation about the Galactic Plane. Nature, 308(5961) 709712.Google Scholar
Tabor, C. R., Bardeen, C. G., Otto‐Bliesner, B. L., Garcia, R. R. & Toon, O. B. (2020). Causes and climatic consequences of the impact winter at the Cretaceous–Paleogene boundary. Geophysical Research Letters, 47(3) https://doi.org/10.1029/2019GL085572Google Scholar
Weissman, P. R. (1984). Cometary showers and unseen solar companions. Nature, 312 (5992) 380381.Google Scholar
Whitmire, D. P. & Jackson, A. A. (1984). Are periodic mass extinctions driven by a distant solar companion? Nature, 308 (5992) 713715.Google Scholar
Wolfe, J. A. (1991). Palaeobotanical evidence for a June impact winter at the Cretaceous/Tertiary boundary. Nature, 352(6334) 420423.Google Scholar
Abrajevitch, A., Font, E., Florindo, F. & Roberts, A. P. (2015). Asteroid impact vs. Deccan eruptions: The origin of low magnetic susceptibility beds below the Cretaceous–Paleogene boundary revisited. Earth and Planetary Science Letters, 430 209223.Google Scholar
Alroy, J. (2008). Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA, 105 (Supplement 1) 1153611542.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., et al. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science, 321(5885) 97100.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. (1980). Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science, 208(4448) 10951108.Google Scholar
Alvarez, W. (2003). Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions. Astrobiology, 3(1) 153161.Google Scholar
Archibald, J., Clemens, W. A., Padian, K., et al. (2010). Cretaceous extinctions: Multiple causes. Science, 328(5981) 973.Google Scholar
Arens, N. C. & West, I. D. (2008). Press-pulse: A general theory of mass extinction? Paleobiology, 34(4) 456471.Google Scholar
Artemieva, N. & Morgan, J. (2020). Global K–Pg layer deposited from a dust cloud. Geophysical Research Letters, 47(6) https://doi.org/10.1029/2019gl086562Google Scholar
Baresel, B., Bucher, H., Bagherpour, B., et al. (2017). Timing of global regression and microbial bloom linked with the Permian–Triassic boundary mass extinction: Implications for driving mechanisms. Scientific Reports, 7(1) 43630.Google Scholar
Berner, R. A. & Beerling, D. J. (2007). Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1–4) 368373.Google Scholar
Black, B. A., Lamarque, J.-F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. (2013). Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology, 42(1) 6770.Google Scholar
Bonis, N. R. & Kürschner, W. M. (2012). Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiology, 38(2) 240264.Google Scholar
Bramlette, M. N. (1965). Massive extinctions in biota at the end of Mesozoic time. Science, 148(3678) 16961699.Google Scholar
Broadley, M. W., Barry, P. H., Ballentine, C. J., Taylor, L. A. & Burgess, R. (2018). End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nature Geoscience, 11(9) 682687.Google Scholar
Burgess, S. D., Bowring, S. A. & Shen, S. (2014). High-precision timeline for Earth’s most severe extinction. Proceedings of the National Academy of Sciences USA, 111(9) 33163321.Google Scholar
Capriolo, M., Marzoli, A., Aradi, L. E., et al. (2020). Deep CO2 in the end-Triassic Central Atlantic magmatic province. Nature Communications, 11(1) https://doi.org/10.1038/s41467-020-15325-6Google Scholar
Chen, Z.-Q. & Benton, M. J. (2012). The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience, 5(6) 375383.Google Scholar
Chenet, A.-L., Courtillot, V., Fluteau, F., et al. (2009). Determination of rapid Deccan eruptions across the Cretaceous–Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. Journal of Geophysical Research, 114(B6) B06103.Google Scholar
Clapham, M. E. & Renne, P. R. (2019). Flood basalts and mass extinctions. Annual Review of Earth and Planetary Sciences, 47(1) 275303.Google Scholar
Courtillot, V. & Fluteau, F. (2010). Cretaceous extinctions: The volcanic hypothesis. Science, 328(5981) 973974.Google Scholar
DePalma, R. A., Smit, J., Burnham, D. A., et al. (2019). A seismically induced onshore surge deposit at the KPg boundary, North Dakota. Proceedings of the National Academy of Sciences USA, 116(17) 81908199.Google Scholar
Editorial, (2013). The upside of impacts. Nature Geoscience, 6(12) 987.Google Scholar
Erwin, D. H. (2001). Lessons from the past: Biotic recoveries from mass extinctions Proceedings of the National Academy of Sciences USA, 98(10) 53995403.Google Scholar
Erwin, D. H. (2006). Extinction. How Life Nearly Died 250 Million Years Ago. Princeton, New Jersey: Princeton University Press. (Book)Google Scholar
Fields, B. D., Melott, A. L., Ellis, J., et al. (2020). Supernova triggers for end-Devonian extinctions. Proceedings of the National Academy of Sciences USA, 117(35) 2100821010.Google Scholar
Georgiev, S., Stein, H., Hannah, J. & Bingen, B. (2011). Hot acidic Late Permian seas stifle life in record time. Earth and Planetary Science Letters, 310(3–4) 389400.Google Scholar
Gertsch, B., Kelly, G., Adarry, T. & Garg, R. (2011). Environmental effects of Deccan volcanism across the Cretaceous–Tertiary transition in Meghalaya, India. Earth and Planetary Science Letters, 310(3–4) 272285.Google Scholar
Gulick, S. P. S., Bralower, T. J., Ormö, J., et al. (2019). The first day of the Cenozoic. Proceedings of the National Academy of Sciences USA, 116(39) 1934219351.Google Scholar
Hull, P. M., Bornemann, A., Penman, D. E., et al. (2020). On impact and volcanism across the Cretaceous–Paleogene boundary. Science, 367(6475) 266272.Google Scholar
Jones, D. S., Martini, A., Fike, D. & Kaiho, K. (2017). A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, 45(7) 631634.Google Scholar
Keller, G. (1993). The Cretaceous–Tertiary boundary transition in the Antarctic Ocean and its global implications. Marine Micropaleontology, 21(1–3) 145.Google Scholar
Keller, G., Adatte, T., Stinnesbeck, W., et al. (1997). The Cretaceous–Tertiary transition on the shallow Saharan Platform of southern Tunisia. Geobios, 30(7) 951975.Google Scholar
Keller, G., Armstrong, H., Courtillot, V., et al. (2012). Volcanism, impacts and mass extinctions (long version). Geoscientist Online http://www.geolsoc.org.uk/Geoscientist/Archive/November-2012/Volcanism-impacts-and-mass-extinctions-2Google Scholar
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. (2007). Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256(3) 295313.Google Scholar
Kornei, K. (2018). Huge global tsunami followed dinosaur-killing asteroid impact. EOS, 99 https://doi.org/10.1029/2018EO112419Google Scholar
Lindström, S., Sanei, H., van de Schootbrugge, B., et al. (2019). Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. Science Advances, 5(10) eaaw4018.Google Scholar
Linzmeier, B. J., Jacobson, A. D., Sageman, B. B., et al. (2019). Calcium isotope evidence for environmental variability before and across the Cretaceous–Paleogene mass extinction. Geology. 48(48) 3438.Google Scholar
Looy, C. V., Twitchett, R. J., Dilcher, D. L., et al. (2001). Life in the end-Permian dead zone. Proceedings of the National Academy of Sciences USA, 98(14) 78797883.Google Scholar
MacLeod, N. (2003). Causes of Phanerozoic extinctions. In Rothschild, L. & Lister, A. (Eds.), Evolution on Planet Earth (pp. 253277). London: Academic Press.Google Scholar
Paul, C. R. C. (2005). Interpreting bioevents: What exactly did happen to planktonic foraminifers across the Cretaceous–Tertiary boundary? Palaeogeography, Palaeoclimatology, Palaeoecology, 224(1) 291310.Google Scholar
Petersen, S. V., Dutton, A. & Lohmann, K. C. (2016). End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nature Communications, 7(1) 12079.Google Scholar
Phipps, M. J., Reston, T. J. & Ranero, C. R. (2004). Contemporaneous mass extinctions, continental flood basalts, and ‘impact signals’: Are mantle plume-induced lithospheric gas explosions the causal link? Earth and Planetary Science Letters, 217(3) 263284.Google Scholar
Prauss, M. L. (2009). The K/Pg boundary at Brazos-River, Texas, USA – an approach by marine palynology. Palaeogeography, Palaeoclimatology, Palaeoecology, 283(3–4) 195215.Google Scholar
Retallack, G. J., Veevers, J. J. & Morante, R. (1996). Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society of America Bulletin, 108 195207.Google Scholar
Richoz, S., van de Schootbrugge, B., Pross, J., et al. (2012). Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nature Geoscience, 5(9) 662667.Google Scholar
Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. (2013). K–Pg extinction: Re-evaluation of the heat-fire hypothesis. Journal of Geophysical Research: Biogeosciences, 118(1) 329336.Google Scholar
Rothman, D. H., Fournier, G. P., French, K. L., et al. (2014). Methanogenic burst in the end-Permian carbon cycle. Proceedings of the National Academy of Sciences USA. https://doi.org/10.1073/pnas.1318106111Google Scholar
Schulte, P., Alegret, L., Arenillas, I., et al. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science, 327(5970) 12141218.Google Scholar
Song, H., Wignall, P. B., Chu, D., et al. (2014). Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Scientific Reports, 4 4132.Google Scholar
Stordal, F., Svensen, H. H., Aarnes, I. & Roscherd, M. (2017). Global temperature response to century-scale degassing from the Siberian Traps large igneous province. Palaeogeography, Palaeoclimatology, Palaeoecology, 471 96107.Google Scholar
Tabor, C. R., Bardeen, C. G., Otto‐Bliesner, B. L., Garcia, R. R. & Toon, O. B. (2020). Causes and climatic consequences of the impact winter at the Cretaceous–Paleogene boundary. Geophysical Research Letters, 47(3) https://doi.org/10.1029/2019gl085572Google Scholar
Tarailo, D. A. & Fastovsky, D. E. (2012). Post-Permo-Triassic terrestrial vertebrate recovery: Southwestern United States. Paleobiology, 38(4) 644663.Google Scholar
Tyrrell, T., Merico, A. & Armstrong McKay, D. I.. (2015). Severity of ocean acidification following the end-Cretaceous asteroid impact. Proceedings of the National Academy of Sciences USA, 112(21) 65566561.Google Scholar
van de Schootbrugge, B., Quan, T. M., Lindström, S., et al. (2009). Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience 2(8) 589594.Google Scholar
Visscher, H., Sephton, M. A. & Looy, C. V. (2011). Fungal virulence at the time of the end-Permian biosphere crisis? Geology, 39 883886.Google Scholar
Ward, P. D., Haggart, J. W., Carter, E. S., et al. (2001). Sudden productivity collapse associated with the Triassic–Jurassic boundary mass extinction. Science, 292(5519) 11481151.Google Scholar
White, R. V. & Saunders, A. D. (2005). Volcanism, impact and mass extinctions: Incredible or credible coincidences? Lithos, 79(3) 299316.Google Scholar
Wignall, P. B. (2001). Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1–2) 133.Google Scholar
Wignall, P. B. (2005). The link between large igneous province eruptions and mass extinctions. Elements, 1(5) 293297.Google Scholar
Wignall, P. B. (2015). The Worst of Times. Princeton, New Jersey: Princeton University Press. (Book)Google Scholar
Atkinson, J. W. & Wignall, P. B. (2019). How quick was marine recovery after the end-Triassic mass extinction and what role did anoxia play? Palaeogeography, Palaeoclimatology, Palaeoecology, 528, 99119.Google Scholar
Barreda, V. D., Cúneo, N. R., Wilf, P., et al. (2012). Cretaceous/Paleogene floral turnover in Patagonia: Drop in diversity, low extinction, and a Classopollis spike. PLoS ONE, 7(12) e52455.Google Scholar
Henehan, M. J., Ridgwell, A., Thomas, E., et al. (2019). Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proceedings of the National Academy of Sciences USA, 116(45) 2250022504.Google Scholar
Hull, P. (2015). Life in the aftermath of mass extinctions. Current Biology, 25(19) R941R952.Google Scholar
Lowery, C. M. & Fraass, A. J. (2019). Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nature Ecology and Evolution, 3(6) 900904.Google Scholar
Lyson, T. R., Miller, I. M., Bercovici, A. D., et al. (2019). Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science, 366(6468) 977983.Google Scholar
Rodríguez-Tovar, F. J., Lowery, C. M., Bralower, T. J., Gulick, S. P. S. & Jones, H. L. (2020). Rapid macrobenthic diversification and stabilization after the end-Cretaceous mass extinction event. Geology https://doi.org/10.1130/g47589.1Google Scholar
Vajda, V. & McLoughlin, S. (2007). Extinction and recovery patterns of the vegetation across the Cretaceous–Palaeogene boundary – a tool for unravelling the causes of the end-Permian mass-extinction. Review of Palaeobotany and Palynology, 144(1–2) 99112.Google Scholar
Vajda, V., Raine, J. I. & Hollis, C. J. (2001). Indication of global deforestation at the Cretaceous–Tertiary boundary by New Zealand fern spike. Science, 294(5547) 17001702.Google Scholar
Whittle, R. J., Witts, J. D., Bowman, V. C., et al. (2019). Nature and timing of biotic recovery in Antarctic benthic marine ecosystems following the Cretaceous–Palaeogene mass extinction. Palaeontology, 62(6) 919934.Google Scholar
Alley, R. B. (2004). GISP2 ice core temperature and accumulation data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2004-013. Boulder, Colorado: NOAA/NGDC Paleoclimatology Program.Google Scholar
Ardelean, C. F., Becerra-Valdivia, L., Pedersen, M. W. et al. (2020). Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature, 584(7819) 8792.Google Scholar
Barnosky, A. D. (2008). Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proceedings of the National Academy of Sciences USA 105(Supplement 1) 1154311548.Google Scholar
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. (2004). Assessing the causes of Late Pleistocene extinctions on the continents. Science 306(5693) 7075.Google Scholar
Barnosky, A. D. & Lindsey, E. L. (2010). Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International 217(1) 1029.Google Scholar
Barnosky, A. D., Lindsey, E. L., Villavicencio, N. A., et al. (2016). Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proceedings of the National Academy of Sciences USA 113(4) 856861.Google Scholar
Bartlett, L. J., Williams, D. R., Prescott, G. W., et al. (2016). Robustness despite uncertainty: regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. Ecography, 39(2) 152161.Google Scholar
Barbuzano, J. (2020). Armageddon at 10,000 BCE. EOS, 101 https://doi.org/10.1029/2020EO142127Google Scholar
Becerra-Valdivia, L., Waters, M. R., Stafford, T. W. Jr, et al. (2018). Reassessing the chronology of the archaeological site of Anzick. Proceedings of the National Academy of Sciences USA, 115(27) 70007003.Google Scholar
Bocherens, H. (2018). The rise of the Anthroposphere since 50,000 years: An ecological replacement of megaherbivores by humans in terrestrial ecosystems? Frontiers in Ecology and Evolution, 6(3) https://doi.org/10.3389/fevo.2018.00003Google Scholar
Brook, B. W., Bowman, D. M. J. S., Burney, D. A. & Flannery, T. F. (2007). Would the Australian megafauna have become extinct if humans had never colonised the continent? Comments on ‘A review of the evidence for a human role in the extinction of Australian megafauna and an alternative explanation’ by S. Wroe and J. Field. Quaternary Science Reviews, 26(3) 560564.Google Scholar
Burney, D. A. & Flannery, T. F. (2005). Fifty millennia of catastrophic extinctions after human contact. Trends in Ecology and Evolution, 20(7) 395401.Google Scholar
Carrasco, M. A., Barnosky, A. D. & Graham, R. W. (2009). Quantifying the extent of North American mammal extinction relative to the pre-Anthropogenic baseline. PLoS ONE, 4(12) e8331.Google Scholar
Ceballos, G. & Ehrlich, P. R. (2002). Mammal population losses and the extinction crisis. Science, 296(5569) 904907.Google Scholar
Charles, R. K., Que Hee, S. S., Stich, A., et al. (2014). Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 Cal BP. The Journal of Geology, 122(5) 475506.Google Scholar
Cooper, A., Turney, C., Hughen, K. A., et al. (2015). Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science, 349(6248) 602606.Google Scholar
Daulton, T. L., Amari, S., Scott, A. C., et al. (2017). Comprehensive analysis of nanodiamond evidence relating to the Younger Dryas impact hypothesis. Journal of Quaternary Science, 32(1) 734.Google Scholar
Firestone, R. B., West, A., Kennett, J. P., et al. (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences USA, 104(41), 1601616021Google Scholar
Grayson, D. K. & Meltzer, D. J. (2002). Clovis hunting and large mammal extinction: A critical review of the evidence. Journal of World Prehistory, 16(4) 313359.Google Scholar
Grayson, D. K. & Meltzer, D. J. (2003). A requiem for North American overkill. Journal of Archaeological Science, 30(5) 585593.Google Scholar
Halligan, J. J., Waters, M. R., Perrotti, A., et al. (2016). Pre-Clovis occupation 14,550 years ago at the Page-Ladson site, Florida, and the peopling of the Americas. Science Advances, 2(5) e1600375.Google Scholar
Holdaway, R. N. & Jacomb, C. (2000). Rapid extinction of the moas (Aves dinornithiformes): Model, test, and implications. Science, 287(5461) 22502254.Google Scholar
Johnson, C. N., Bradshaw, C. J. A., Cooper, A., Gillespie, R. & Brook, B. W. (2013). Rapid megafaunal extinction following human arrival throughout the New World. Quaternary International, 308 –309 273277.Google Scholar
Kinzie, C. R., Que Hee, S. S., Stich, A., et al. (2014). Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 Cal BP. The Journal of Geology, 122(5) 475506.Google Scholar
Kjær, K. H., Larsen, N. K., Binder, T., et al. (2018). A large impact crater beneath Hiawatha Glacier in northwest Greenland. Science Advances, 4(11) eaar8173.Google Scholar
Koch, P. L. & Barnosky, A. D. (2006). Late Quaternary extinctions: State of the debate. Annual Review of Ecology, Evolution, and Systematics, 37(1) 215250.Google Scholar
Lima-Ribeiro, M. S. & Felizola Diniz-Filho, J. A. (2013). American megafaunal extinctions and human arrival: Improved evaluation using a meta-analytical approach. Quaternary International, 299 3852.Google Scholar
Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. (2019). Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: The Plaids and Stripes Hypothesis. Biological Reviews, 94(1) 328352.Google Scholar
Mann, D. H., Groves, P., Reanier, R. E., et al. (2015). Life and extinction of megafauna in the ice-age Arctic. Proceedings of the National Academy of Sciences USA, 112(46) 1430114306.Google Scholar
Martin, P. S. (1966). Africa and Pleistocene overkill. Nature, 212 (5075) 16151616.Google Scholar
Martin, P. S. (1990). 40,000 years of extinctions on the ‘planet of doom’. Palaeogeography, Palaeoclimatology, Palaeoecology, 82(1) 87201.Google Scholar
Mauro, G., Moleón, M., Jordano, P., et al. (2018). Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews, 93(2) 845862.Google Scholar
Meltzer, D. J., Holliday, V. T., Cannon, M. D. & Miller, D. S. (2014). Chronological evidence fails to support claim of an isochronous widespread layer of cosmic impact indicators dated to 12,800 years ago. Proceedings of the National Academy of Sciences USA, 111(21) E2162E2171.Google Scholar
Miller, G. H., Fogel, M. L., Magee, J. W., et al. (2005). Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science, 309 (5732) 287290.Google Scholar
Moore, A. M. T., Kennett, J. P., Napier, W. M., et al. (2020). Evidence of cosmic impact at Abu Hureyra, Syria at the Younger Dryas onset (~12.8 ka): High-temperature melting at >2200 °C. Scientific Reports, 10(1) 4185.Google Scholar
O’Connell, J. F., Allen, J., Williams, M. A. J., et al. (2018). When did Homo sapiens first reach Southeast Asia and Sahul? Proceedings of the National Academy of Sciences USA, 115(34) 84828490.Google Scholar
Pääbo, S. (2014) Neanderthal Man, In Search of Lost Genomes. New York: Basic Book (Book)Google Scholar
Perry, G. L. W., Wheeler, A. B., Wood, J. R. & Wilmshurst, J. M. (2014). A high-precision chronology for the rapid extinction of New Zealand moa (Aves, Dinornithiformes). Quaternary Science Reviews, 105 126135.Google Scholar
Pimiento, C., Griffin, J., Clements, C. F., et al. (2017). The Pliocene marine megafauna extinction and its impact on functional diversity. Nature Ecology and Evolution, 1(8) 11001106.Google Scholar
Pinter, N., Scott, A. C., Daulton, T. L., et al. (2011). The Younger Dryas impact hypothesis: A requiem. Earth-Science Reviews, 106(3–4) 247264.Google Scholar
Pino, M., Abarzúa, A. M., Astorga, G., et al. (2019). Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Scientific Reports, 9(1) 4413.Google Scholar
Politis, G. G., Gutiérrez, M. A., Rafuse, D. J. & Blasi, A. (2016). The arrival of Homo sapiens into the Southern Cone at 14,000 years ago. PLoS ONE, 11(9) e0162870.Google Scholar
Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. (2012). Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proceedings of the National Academy of Sciences USA, 109(12) 45274531.Google Scholar
Prideaux, G. J., Gully, G., Couzens, A., et al. (2010). Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia. Proceedings of the National Academy of Sciences USA, 107(51) 2215722162.Google Scholar
Reich, D. (2018) Who We Are and How We Got Here, Oxford: Oxford University Press (Book)Google Scholar
Rick, T. C., Kirch, P. V., Erlandson, J. M. & Fitzpatricke, S. M. (2013). Archeology, deep history, and the human transformation of island ecosystems. Anthropocene, 4 3345.Google Scholar
Robinson, G. S., Pigott Burney, L. & Burney, D. A. (2005). Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecological Monographs, 75(3) 295315.Google Scholar
Rule, S., Brook, B. W., Haberle, S. G., et al. (2012). The aftermath of megafaunal extinction ecosystem transformation in Pleistocene Australia. Science, 335(6075) 14831486.Google Scholar
Saltré, F., Rodríguez-Rey, M., Brook, B. W., et al. (2016). Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications, 7 10511.Google Scholar
Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. (2014). Global late Quaternary megafauna extinctions linked to humans, not climate change. Proceedings of the Royal Society B: Biological Sciences, 281(1787) https://doi.org/10.1098/rspb.2013.3254Google Scholar
Seersholm, F. V., Werndly, D. J., Grealy, A., et al. (2020). Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nature Communications, 11(1) https://doi.org/10.1038/s41467-020-16502-3Google Scholar
Shillito, L.-M., Whelton, H. L., Blong, J. C., et al. (2020). Pre-Clovis occupation of the Americas identified by human faecal biomarkers in coprolites from Paisley Caves, Oregon. Science Advances, 6(29) eaba6404.Google Scholar
Steadman, D. W. (1995). Prehistoric extinctions of Pacific Island birds: Biodiversity meets zooarchaeology. Science, 267(5201) 11231131.Google Scholar
Tobler, R., Rohrlach, A., Soubrier, J., et al. (2017). Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia. Nature, 544 180184.Google Scholar
van der Kaars, S., Miller, G. H., Turney, C. S. M., et al. (2017). Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nature Communications, 8 14142.Google Scholar
Villavicencio, N. A., Lindsey, E. L., Martin, F. M., et al. (2016). Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography, 39(2) 125140.Google Scholar
Waters, M. R., Keene, J. L., Forman, S. L., et al. (2018). Pre-Clovis projectile points at the Debra L. Friedkin site, Texas – Implications for the Late Pleistocene peopling of the Americas. Science Advances, 2(5) eaat4505.Google Scholar
Westaway, M. C., Olley, J. & Grün, R. (2017). At least 17,000 years of coexistence: Modern humans and megafauna at the Willandra Lakes, South-Eastern Australia. Quaternary Science Reviews, 157 206211.Google Scholar
Wood, J. R., Alcover, J. A., Blackburn, T. M., et al. (2017). Island extinctions: Processes, patterns, and potential for ecosystem restoration. Environmental Conservation, 44(4) 348358.Google Scholar
Wroe, S. & Field, J. (2006). A review of the evidence for a human role in the extinction of Australian megafauna and an alternative interpretation. Quaternary Science Reviews, 25(21) 26922703.Google Scholar
Wroe, S., Field, J., Fullagar, R. & Jermin, L. S. (2004). Megafaunal extinction in the late Quaternary and the global overkill hypothesis. Alcheringa: An Australasian Journal of Palaeontology, 28(1) 291331.Google Scholar
Wroe, S., Field, J. & Grayson, D. K. (2006). Megafaunal extinction: Climate, humans and assumptions. Trends in Ecology and Evolution, 21(2) 6162.Google Scholar
Zeberg, H. & Pääbo, S. (2020). The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature, 587 610612.Google Scholar
Zelenkov, N. V., Lavrov, A. V., Startsev, D. B., Vislobokova, I. A. & Lopatin, A. V. (2019). A giant early Pleistocene bird from eastern Europe: Unexpected component of terrestrial faunas at the time of early Homo arrival. Journal of Vertebrate Paleontology, 39(2) e1605521Google Scholar
Barnosky, A. D., Hadly, E. A., Bascompte, J., et al. (2012). Approaching a state shift in Earth’s biosphere. Nature, 486(7401) 5258.Google Scholar
Barnosky, A. D., Matzke, N., Tomiya, S., et al. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471(7336) 5157.Google Scholar
Berentson, Q. (2012). Moa. Nelson: Craig Potten Publishing. (Book)Google Scholar
Braje, T. J. (2015). Earth Systems, human agency, and the Anthropocene: Planet Earth in the Human Age. Journal of Archaeological Research, 23(4) 369396.Google Scholar
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology and Evolution, 23(8) 453460.Google Scholar
Budiansky, S. (1994). Extinction or miscalculation? Nature 370(6485) 104.Google Scholar
Ceballos, G. & Ehrlich, P. R. (2002). Mammal population losses and the extinction crisis. Science, 296(5569) 904907.Google Scholar
Ceballos, G. & Ehrlich, P. R. (2018). The misunderstood sixth mass extinction. Science, 360(6393) 10801081.Google Scholar
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., et al. (2015). Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1(5) e1400253.Google Scholar
Ceballos, G., Ehrlich, P. R. & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signalled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences USA, 114(30) E6089E6096.Google Scholar
Ceballos, G., Garcia, A. & Ehrlich, P. R. (2010). The Sixth Extinction Crisis loss of animal populations and species. Journal of Cosmology, 8 18211831.Google Scholar
Davis, M., Faurby, S. & Svenning, J.-C. (2018). Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proceedings of the National Academy of Sciences USA, 115(44) 1126211267.Google Scholar
Dirzo, R. & Raven, P. H. (2003). Global state of biodiversity and loss. Annual Review of Environment and Resources, 28(1) 137167.Google Scholar
Dirzo, R., Young, H. S., Galetti, M., et al. (2014). Defaunation in the Anthropocene. Science, 345(6195) 401406.Google Scholar
Duffy, J. E. (2009). Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment, 7(8) 437444.Google Scholar
Frieling, J., Svensen, H. H., Planke, S., et al. (2016). Thermogenic methane release as a cause for the long duration of the PETM. Proceedings of the National Academy of Sciences USA, 113(43) 1205912064.Google Scholar
Gutjahr, M., Ridgwell, A., Sexton, P. F., et al. (2017). Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature, 548(7669) 573577.Google Scholar
IUCN (2020). The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org (Accessed 18 September 2020.)Google Scholar
McInerney, F. A. & Wing, S. L. (2011). The Paleocene–Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implication for the future. Annual Review of Earth and Planetary Science, 39 489516.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772) 853858.Google Scholar
Pimm, S. L., Jenkins, C. N., Abell, R., et al. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187) 1246752.Google Scholar
Pimm, S. L. & Raven, P. (2000). Extinction by numbers. Nature, 403(6773) 843845.Google Scholar
Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. (1995). The future of biodiversity. Science 269(5222) 347350.Google Scholar
Rollinson, H. (2007). Early Earth Systems. Malden, MA: Blackwell Publishing. (Book)Google Scholar
Steffen, W., Rockström, J., Richardson, K., et al. (2018). Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences USA, 115(33) 82528259.Google Scholar
Strassburg, B. B. N., Iribarrem, A., Beyer, H. L., et al. (2020). Global priority areas for ecosystem restoration. Nature https://doi.org/10.1038/s41586-020-2784-9Google Scholar
Tyrrell, T. (2013). On Gaia. Princeton, New Jersey: Princeton University Press. (Book)Google Scholar
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(7176) 279283.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Further Reading
  • Michael Hannah, Victoria University of Wellington
  • Book: Extinctions
  • Online publication: 01 September 2021
  • Chapter DOI: https://doi.org/10.1017/9781108919012.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Further Reading
  • Michael Hannah, Victoria University of Wellington
  • Book: Extinctions
  • Online publication: 01 September 2021
  • Chapter DOI: https://doi.org/10.1017/9781108919012.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Further Reading
  • Michael Hannah, Victoria University of Wellington
  • Book: Extinctions
  • Online publication: 01 September 2021
  • Chapter DOI: https://doi.org/10.1017/9781108919012.014
Available formats
×