Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-29T03:26:29.140Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  04 May 2018

David Eppstein
Affiliation:
University of California, Irvine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Khzam, Faisal N. 2010. A kernelization algorithm for d-hitting set. J. Comput. System Sci., 76(7), 524–531. (Cited on page 51.)CrossRefGoogle Scholar
Agarwal, Pankaj K. 1992. Ray shooting and other applications of spanning trees with low stabbing number. SIAM J. Comput., 21(3), 540–570. (Cited on page 191.)CrossRefGoogle Scholar
Agarwal, Pankaj K., and Procopiuc, Cecilia M. 2003. Approximation algorithms for projective clustering. J. Algorithms, 46(2), 115–139. (Cited on page 61.)CrossRefGoogle Scholar
Aichholzer, Oswin, Aurenhammer, Franz, and Krasser, Hannes. 2002. Enumerating order types for small point sets with applications. Order, 19(3), 265–281. (Cited on page 10.)CrossRefGoogle Scholar
Aichholzer, Oswin, Huemer, Clemens, Kappes, Sarah, Speckmann, Bettina, and Tóth, Csaba D. 2007. Decompositions, partitions, and coverings with convex polygons and pseudo-triangles. Graphs Combin., 23(5), 481–507. (Cited on page 132.)CrossRefGoogle Scholar
Aichholzer, Oswin, Miltzow, Tillmann, and Pilz, Alexander. 2013. Extreme point and halving edge search in abstract order types. Comput. Geom. Th. & Appl., 46(8), 970–978. (Cited on page 34.)CrossRefGoogle ScholarPubMed
Ailon, Nir, and Chazelle, Bernard. 2005. Lower bounds for linear degeneracy testing. J. ACM, 52(2), 157–171. (Cited on page 59.)CrossRefGoogle Scholar
Alimonti, Paola, and Kann, Viggo. 2000. Some APX-completeness results for cubic graphs. Theoret. Comput. Sci., 237(1–2), 123–134. (Cited on page 45.)CrossRefGoogle Scholar
Alon, Noga. 2012. A non-linear lower bound for planar epsilon-nets. Discrete Comput. Geom., 47(2), 235–244. (Cited on page 71.)CrossRefGoogle Scholar
Anderson, David Brent. 1979. Update on the no-three-in-line problem. J. Combin. Theory Ser. A, 27(3), 365–366. (Cited on page 73.)CrossRefGoogle Scholar
Anning, Norman H., and Erdős, Paul. 1945. Integral distances. Bull. Amer.Math. Soc., 51(8), 598–600. (Cited on page 142.)CrossRefGoogle Scholar
Appel, Kenneth, and Haken, Wolfgang. 1989. Every Planar Map Is Four Colorable. ContemporaryMathematics, vol. 98. Providence, RI: AmericanMathematical Society. (Cited on page 45.)CrossRefGoogle Scholar
Arkin, Esther M., Fekete, Sándor P., Hurtado, Ferran, Mitchell, Joseph S. B., Noy, Marc, Sacristán, Vera, and Sethia, Saurabh. 2003. On the reflexivity of point sets. Pages 139–156 of: Discrete and Computational Geometry: The Goodman–Pollack Festschrift. Algorithms and Combinatorics, vol. 25. Berlin: Springer. (Cited on pages 106, 117, 118, and 131.)Google Scholar
Aronov, Boris, Erdős, Paul, Goddard, Wayne D., Kleitman, Daniel J., Klugerman, Michael, Pach, János, and Schulman, Leonard J. 1994. Crossing families. Combinatorica, 14(2), 127–134. (Cited on page 128.)CrossRefGoogle Scholar
Balko, Martin, Kynčl, Jan, Langerman, Stefan, and Pilz, Alexander. 2017. Induced Ramsey-type results and binary predicates for point sets. Electronic Journal on Combinatorics, 24(4), Paper #P4.24. (Cited on page 10.)Google Scholar
Balogh, Jozsef, and Solymosi, József. 2017. On the number of points in general position in the plane. Electronic preprint https://arxiv.org/abs/1704.05089. (Cited on page 93.)
Bannister, Michael J., Cheng, Zhanpeng, Devanny, William E., and Eppstein, David. 2014. Superpatterns and universal point sets. J. Graph Algorithms Appl., 18(2), 177–209. (Cited on pages 151, 181, and 183.)CrossRefGoogle Scholar
Bannister, Michael J., Devanny, William E., Dujmovic, Vida, Eppstein, David, and Wood, David R. 2016. Track layout is hard. Pages 499–510 of: 24th Int. Symp. Graph Drawing and Network Visualization (GD 2016). Lecture Notes in Computer Science, vol. 9801. Berlin: Springer. (Cited on page 180.)Google Scholar
Baran, Ilya, Demaine, Erik D., and Pǎtrascu, Mihai. 2008. Subquadratic algorithms for 3SUM. Algorithmica, 50(4), 584–596. (Cited on page 60.)CrossRefGoogle Scholar
Barnett, Vic. 1976. The ordering of multivariate data. J. Roy. Statist. Soc. Ser. A, 139(3), 318–355. (Cited on page 129.)CrossRefGoogle Scholar
Beck, József. 2008. Combinatorial Games: Tic-Tac-Toe Theory. Encyclopedia of Mathematics and Its Applications, vol. 114. Cambridge: Cambridge University Press. (Cited on page 89.)CrossRefGoogle Scholar
Björner, Anders, Las Vergnas, Michel, Sturmfels, Bernd, White, Neil, and Ziegler, Günter M. 1999. Oriented Matroids. 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 46. Cambridge: Cambridge University Press. (Cited on page 11.)CrossRefGoogle Scholar
Borwein, Peter, and Moser, William O. J. 1990. A survey of Sylvester's problem and its generalizations. Aequationes Mathematicae, 40(1), 111–135. (Cited on page 53.)CrossRefGoogle Scholar
Brandenburg, Franz J. 2008. Drawing planar graphs on 89 n2 area. Pages 37–40 of: The International Conference on Topological and Geometric Graph Theory. Electronic Notes in DiscreteMathematics, vol. 31. Amsterdam: Elsevier. (Cited on pages 181 and 182.)Google Scholar
Bremner, David, Chen, Dan, Iacono, John, Langerman, Stefan, and Morin, Pat. 2008. Output-sensitive algorithms for Tukey depth and related problems. Stat. Comput., 18(3), 259–266. (Cited on page 136.)CrossRefGoogle Scholar
Brinkmann, Gunnar, and McKay, Brendan D. 2007. Fast generation of planar graphs. MATCH Commun. Math. Comput. Chem., 58(2), 323–357. (Cited on page 184.)Google Scholar
Bukh, Boris, Matoušek, Jiří, and Nivasch, Gabriel. 2011. Lower bounds for weak epsilon-nets and stair-convexity. Israel J. Math., 182, 199–208. (Cited on pages 151 and 157.)CrossRefGoogle Scholar
Burr, Michael A., Rafalin, Eynat, and Souvaine, Diane L. 2004. Simplicial depth: An improved definition, analysis, and efficiency for the finite sample case. Pages 136–139 of: 16th Canadian Conference on ComputationalGeometry (CCCG ‘04), www.cccg.ca/proceedings/2004/58.pdf. (Cited on page 140.)
Burr, Stefan A., Grünbaum, Branko, and Sloane, Neil J. A. 1974. The orchard problem. Geometriae Dedicata, 2, 397–424. (Cited on pages 54 and 55.)CrossRefGoogle Scholar
Cabello, Sergio. 2006. Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl., 10(2), 353–363. (Cited on page 184.)CrossRefGoogle Scholar
Carathéodory, Constantin. 1907. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann., 64(1), 95–115. (Cited on page 106.)CrossRefGoogle Scholar
Cardinal, Jean, Hoffmann, Michael, and Kusters, Vincent. 2015. On universal point sets for planar graphs. J.Graph Algorithms Appl., 19(1), 529–547. (Cited on page 182.)CrossRefGoogle Scholar
Chan, Timothy M. 2004. An optimal randomized algorithm formaximum Tukey depth. Pages 430–436 of: 15th ACM/SIAM Symposium on Discrete Algorithms (SODA ‘04). Philadelphia: Society for Industrial and Applied Mathematics. (Cited on page 137.)Google Scholar
Chan, Timothy M., and Lewenstein, Moshe. 2015. Clustered integer 3SUM via additive combinatorics. Pages 31–40 of: 47th Symposium on Theory of Computing (STOC ‘15). New York: Association for Computing Machinery. (Cited on page 60.)Google Scholar
Chazelle, Bernard. 1985. On the convex layers of a planar set. IEEE Trans. Inform. Theory, 31(4), 509–517. (Cited on page 130.)CrossRefGoogle Scholar
Chazelle, Bernard, and Welzl, Emo. 1989. Quasi-optimal range searching in spaces of finite VC-dimension. Discrete Comput. Geom., 4(5), 467–489. (Cited on page 191.)CrossRefGoogle Scholar
Chazelle, Bernard, Guibas, Leonidas J., and Lee, Der-Tsai. 1985. The power of geometric duality. BIT, 25(1), 76–90. (Cited on page 129.)CrossRefGoogle Scholar
Chen, Jianer, Huang, Xiuzhen, Kanj, Iyad A., and Xia, Ge. 2006. Strong computational lower bounds via parameterized complexity. J. Comput. System Sci., 72(8), 1346–1367. (Cited on page 171.)CrossRefGoogle Scholar
Chew L., Paul, Goodrich, Michael T., Huttenlocher, Daniel P., Kedem, Klara, Kleinberg, Jon M., and Kravets, Dina. 1997. Geometric pattern matching under Euclidean motion. Comput. Geom. Th. & Appl., 7(1–2), 113–124. (Cited on page 36.)CrossRefGoogle Scholar
Chor, Benny, and Sudan, Madhu. 1998. A geometric approach to betweenness. SIAM J. DiscreteMath., 11(4), 511–523. (Cited on page 15.)Google Scholar
Chrobak, Marek, and Karloff, Howard. 1989. A lower bound on the size of universal sets for planar graphs. SIGACT News, 20, 83–86. (Cited on page 181.)CrossRefGoogle Scholar
Chvátal, Václav, and Klincsek, Gheza T. 1980. Finding largest convex subsets. Pages 453–460 of: Proceedings of the Eleventh Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1980), Vol. bt. Congressus Numerantium, vol. 29. (Cited on page 115.)
Clarkson, Kenneth L., and Varadarajan, Kasturi. 2007. Improved approximation algorithms for geometric set cover. Discrete Comput. Geom., 37(1), 43–58. (Cited on page 70.)CrossRefGoogle Scholar
Craggs, D. and Hughes-Jones, Richard. 1976. On the no-three-in-line problem. J. Combin. Theory Ser. A, 20(3), 363–364. (Cited on page 73.)CrossRefGoogle Scholar
Croot, Ernie, Lev, Vsevolod, and Pach, Peter. 2016. Progression-free sets in Zn 4 are exponentially small. Electronic preprint arxiv:1605.01506. (Cited on page 92.)
Csima, Joseph, and Sawyer, Eric T. 1993. There exist 6n/13 ordinary points. Discrete Comput. Geom., 9, 187–202. (Cited on page 55.)CrossRefGoogle Scholar
de Fraysseix, Hubert, Pach, János, and Pollack, Richard. 1988. Small sets supporting Fary embeddings of planar graphs. Pages 426–433 of: 20th Symposium on Theory of Computing (STOC ‘88). New York: Association for Computing Machinery. (Cited on pages 181 and 182.)Google Scholar
Dey, Tamal K. 1998. Improved bounds for planar k-sets and related problems. Discrete Comput. Geom., 19, 373–382. (Cited on page 18.)CrossRefGoogle Scholar
Dickson, Leonard Eugene. 1913. Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Amer. J. Math., 35(4), 413–422. (Cited on page 23.)CrossRefGoogle Scholar
Dolev, Danny, Leighton, F. Thomson, and Trickey, Howard. 1984. Planar embedding of planar graphs. Advances in Computing Research, 2, 147–161. (Cited on page 182.)Google Scholar
Donoho, David L., and Gasko, Miriam. 1992. Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Statist., 20(4), 1803–1827. (Cited on page 136.)CrossRefGoogle Scholar
Downey, Rodney G., and Fellows, Michael R. 2013. Fundamentals of Parameterized Complexity. Texts in Computer Science. Berlin: Springer. (Cited on pages 46 and 47.)CrossRefGoogle Scholar
Dudeney, Henry. 1917. 317. A puzzle with pawns. Page 94 of: Amusements in Mathematics. Edinburgh: Nelson. (Cited on page 73.)Google Scholar
Dumitrescu, Adrian, and Jiang, Minghui. 2015. On the approximability of covering points by lines and related problems. Comput. Geom. Th. & Appl., 48(9), 703–717. (Cited on pages 67 and 71.)CrossRefGoogle Scholar
Eddy, William F. 1982. Convex hull peeling. Pages 42–47 of: COMPSTAT 1982 5th Symposium held at Toulouse 1982. Heidelberg: Physica-Verlag. (Cited on page 129.)Google Scholar
Edel, Yves. 2004. Extensions of generalized product caps. Designs, Codes and Cryptography, 31(1), 5–14. (Cited on page 92.)CrossRefGoogle Scholar
Edelsbrunner, Herbert, and Guibas, Leonidas J. 1989. Topologically sweeping an arrangement. J. Comput. System Sci., 38(1), 165–194. (Cited on pages 58 and 116.)CrossRefGoogle Scholar
Edelsbrunner, Herbert, and Mücke, Ernst Peter. 1988. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. Pages 118–133 of: 4th Symposium on Computational Geometry (SoCG ‘88). New York: Association for Computing Machinery. (Cited on page 11.)Google Scholar
Ellenberg, Jordan S., and Gijswijt, Dion. 2017. On large subsets of Fnq with no three-term arithmetic progressions . Ann. ofMath., 185(1), 339–343. (Cited on page 92.)Google Scholar
Eppstein, David. 2010. Happy endings for flip graphs. J. Comput. Geom., 1(1), 3–28. (Cited on page 110.)Google Scholar
Eppstein, David. 2014. Drawing arrangement graphs in small grids, or how to play planarity. J. Graph Algorithms Appl., 18(2), 211–231. (Cited on page 178.)CrossRefGoogle Scholar
Eppstein, David, Overmars, Mark H., Rote, Günter, and Woeginger, Gerhard. 1992. Finding minimum area k-gons. Discrete Comput. Geom., 7(1), 45–58. (Cited on page 134.)CrossRefGoogle Scholar
Erdős, Paul. 1986. On some metric and combinatorial geometric problems. DiscreteMath., 60, 147–153. (Cited on page 80.)Google Scholar
Erdős, Paul. 1988. Some old and new problems in combinatorial geometry. Pages 32–37 of: Applications of Discrete Mathematics (Clemson, SC, 1986). Philadelphia: Society for Industrial and Applied Mathematics. (Cited on page 80.)Google Scholar
Erdős, Paul, and Lovász, László. 1975. Problems and results on 3-chromatic hypergraphs and some related questions. Pages 609–627 of: Hajnal, András, Rado, Richard, and Sós, Vera T. (eds.), Infinite and Finite Sets (to Paul Erdős onHis 60th Birthday), vol. II. Amsterdam: North-Holland. (Cited on page 81.)Google Scholar
Erdős, Paul, and Rado, Richard. 1960. Intersection theorems for systems of sets. J. LondonMath. Soc., 2nd Ser., 35(1), 85–90. (Cited on page 49.)Google Scholar
Erdős, Paul, and Szekeres, George. 1935. A combinatorial problem in geometry. CompositioMath., 2, 463–470. (Cited on pages 2 and 158.)Google Scholar
Erdős, Paul, and Szekeres, George. 1960. On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 3–4, 53–62. (Cited on pages 2 and 106.)
Erickson, Jeff, and Seidel, Raimund. 1995. Better lower bounds on detecting affine and spherical degeneracies. Discrete Comput. Geom., 13(1), 41–57. (Cited on page 59.)CrossRefGoogle Scholar
Estivill-Castro, Vladimir, Heednacram, Apichat, and Suraweera, Francis. 2009. Reduction rules deliver efficient FPT-algorithms for covering points with lines. ACMJ. Exp. Algorithmics, 14, A1.7:1–26. (Cited on page 62.)Google Scholar
Euler, Leonhard. 1862. Fragmenta arithmetica ex Adversariis mathematicis depromta, C: Analysis Diophantea. Pages 204–263 of: Opera postuma, vol. I. Petropolis: Eggers. Theorem 65, p. 229. (Cited on page 144.)Google Scholar
Fáry, István. 1948. On straight-line representation of planar graphs. Acta Sci. Math. (Szeged), 11, 229–233. (Cited on page 150.)Google Scholar
Fekete, Sándor P., Lübbecke, Marco E., and Meijer, Henk. 2008. Minimizing the stabbing number of matchings, trees, and triangulations. Discrete Comput. Geom., 40(4), 595–621. (Cited on page 196.)CrossRefGoogle Scholar
Flammenkamp, Achim. 1992. Progress in the no-three-in-line problem. J. Combin. Theory Ser. A, 60(2), 305–311. (Cited on page 73.)CrossRefGoogle Scholar
Flammenkamp, Achim. 1998. Progress in the no-three-in-line problem. II. J. Combin. Theory Ser. A, 81(1), 108–113. (Cited on page 73.)CrossRefGoogle Scholar
Flum, Jörg, and Grohe, Martin. 2006. Parameterized Complexity Theory. Texts in Theoretical Computer Science: An EATCS Series. Berlin: Springer. (Cited on pages 46, 47, and 49.)Google Scholar
Fortnow, Lance. 2013. The Golden Ticket: P, NP, and the Search for the Impossible. Princeton, NJ: Princeton University Press. (Cited on page 43.)Google Scholar
Freimer, Robert Wilson. 2000. Investigations in Geometric Subdivisions: Linear Shattering and Cartographic Map Coloring. Ph.D. thesis, Cornell University. (Cited on page 197.)
Fulek, Radoslav, and Tóth, Csaba D. 2015. Universal point sets for planar threetrees. J. Discrete Algorithms, 30, 101–112. (Cited on page 151.)CrossRefGoogle Scholar
Füredi, Zoltán. 1991. Maximal independent subsets in Steiner systems and in planar sets. SIAM J. Discrete Math., 4(2), 196–199. (Cited on pages 80, 88, and 91.)Google Scholar
Furstenberg, Hillel, and Katznelson, Yitzhak. 1989. A density version of the Hales-Jewett theorem for k = 3. Discrete Math., 75(1–3), 227–241. (Cited on page 91.)CrossRefGoogle Scholar
Gajentaan, Anka, and Overmars, Mark H. 1995. On a class of O(n2 ) problems in computational geometry. Comput. Geom. Th. & Appl., 5(3), 165–185. (Cited on pages 59 and 60.)CrossRefGoogle Scholar
Garey, Michael R., and Johnson, David S. 1979. Computers and Intractibility: A Guide to the Theory of NP-Completeness. New York: W.H. Freeman. (Cited on page 96.)Google Scholar
Gil, Joseph, Steiger, William, and Wigderson, Avi. 1992. Geometric medians. DiscreteMath., 108(1–3), 37–51. (Cited on page 140.)Google Scholar
Giménez, Omer, and Noy, Marc. 2009. Asymptotic enumeration and limit laws of planar graphs. J. Amer.Math. Soc., 22(2), 309–329. (Cited on page 183.)Google Scholar
Goldreich, Oded. 2010. Property Testing: Current Research and Surveys. Lecture Notes in Computer Science, vol. 6390. Berlin: Springer. (Cited on page 38.)Google Scholar
Goodman, Jacob E., and Pollack, Richard. 1986. Upper bounds for configurations and polytopes in R d . Discrete Comput. Geom., 1(3), 219–227. (Cited on pages 6 and 10.)CrossRefGoogle Scholar
Goodman, Jacob E., Pollack, Richard, and Sturmfels, Bernd. 1989. Coordinate representation of order types requires exponential storage. Pages 405–410 of: 21st Symposium on Theory of Computing (STOC ‘89). New York: Association for Computing Machinery. (Cited on page 33.)Google Scholar
Grantson, Magdalene, and Levcopoulos, Christos. 2006. Covering a set of points with a minimum number of lines. Pages 6–17 of: 6th Italian Conf. on Algorithms and Complexity (CIAC 2006). Lecture Notes in Computer Science, vol. 3998. Berlin: Springer. (Cited on page 62.)Google Scholar
Green, Ben, and Tao, Terence. 2013. On sets defining few ordinary lines. Discrete Comput. Geom., 50(2), 409–468. (Cited on page 55.)CrossRefGoogle Scholar
Grønlund, Allan, and Pettie, Seth. 2014. Threesomes, degenerates, and love triangles. Pages 621–630 of: 55th Symposium on Foundations of Computer Science (FOCS ‘14). Los Alamitos, CA: IEEE Computer Society. (Cited on page 60.)Google Scholar
Grünbaum, Branko. 2003. Convex polytopes. 2nd edn. Graduate Texts in Mathematics, vol. 221. Berlin: Springer. See in particular Grünbaum's discussion of the Perles configuration on pp. 93–94. (Cited on pages 12, 143, and 144.)
Guibas, Leonidas J., Overmars, Mark H., and Robert, Jean-Marc. 1996. The exact fitting problem in higher dimensions. Comput. Geom. Th. & Appl., 6(4), 215–230. (Cited on page 61.)CrossRefGoogle Scholar
Guillemot, Sylvain, and Marx, Dániel. 2014. Finding small patterns in permutations in linear time. Pages 82–101 of: 25th ACM–SIAM Symposium on Discrete Algorithms (SODA ‘14). Philadelphia: Society for Industrial and Applied Mathematics. (Cited on page 165.)Google Scholar
Guth, Larry, and Katz, Nets Hawk. 2015. On the Erdős distinct distances problem in the plane. Ann. ofMath. (2), 181(1), 155–190. (Cited on page 7.)Google Scholar
Guy, Richard K., and Kelly, Patrick A. 1968. The no-three-in-line problem. Canad.Math. Bull., 11, 527–531. (Cited on page 73.)CrossRefGoogle Scholar
Hales, Alfred W., and Jewett, Robert I. 1963. Regularity and positional games. Trans. Amer.Math. Soc., 106, 222–229. (Cited on page 90.)CrossRefGoogle Scholar
Hall, Richard R., Jackson, Terence H., Sudbery, Anthony, and Wild, Ken. 1975. Some advances in the no-three-in-line problem. J. Combin. Theory Ser. A, 18, 336–341. (Cited on pages 74 and 75.)CrossRefGoogle Scholar
Har-Peled, Sariel. 2009. Approximating spanning trees with low crossing number. Electronic preprint arxiv:0907.1131. (Cited on page 196.)
Har-Peled, Sariel, and Jones, Mitchell. 2017. On separating points by lines. Electronic preprint arxiv:1706.02004. (Cited on pages 192 and 197.)
Har-Peled, Sariel, and Lidický, Bernard. 2013. Peeling the grid. SIAM J. Discrete Math., 27(2), 650–655. (Cited on page 130.)CrossRefGoogle Scholar
Harborth, Heiko. 1998. Integral distances in point sets. Pages 213–224 of: Charlemagne and His Heritage: 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995). Turnhout, Belgium: Brepols. (Cited on pages 144 and 145.)Google Scholar
Hartnett, Kevin. 2017. A puzzle of clever connections nears a happy end. Quanta, www.quantamagazine.org/a-puzzle-of-clever-connections-nearsa- happy-end-20170530/. (Cited on page 2.)
Haussler, David, and Welzl, Emo. 1987. nets and simplex range queries. Discrete Comput. Geom., 2(2), 127–151. (Cited on page 70.)CrossRefGoogle Scholar
Hearn, Robert A., and Demaine, Erik D. 2009. Games, Puzzles, and Computation. Wellesley, MA: A K Peters. (Cited on page 44.)Google Scholar
Hesse, Otto. 1844. Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln. J. Reine Angew. Math., 28, 68–96. (Cited on page 92.)Google Scholar
Higman, Graham. 1952. Ordering by divisibility in abstract algebras. Proc. LondonMath. Soc., 3rd Ser., 2, 326–336. (Cited on page 23.)Google Scholar
Huttenlocher, Daniel P., and Kedem, Klara. 1990. Computing the minimum Hausdorff distance for point sets under translation. Pages 340–349 of: 6th Symposium on Computational Geometry (SoCG ‘90). New York: Association for Computing Machinery. (Cited on page 36.)Google Scholar
Impagliazzo, Russell, Paturi, Ramamohan, and Zane, Francis. 2001. Which problems have strongly exponential complexity? J. Comput. System Sci., 63(4), 512–530. (Cited on page 48.)CrossRefGoogle Scholar
Jackson, John. 1821. Trees planted in rows. Pages 33–34 of: John Jackson, Rational Amusement for Winter Evenings, or, A Collection of Above 200 Curious and Interesting Puzzles and Paradoxes. London: n.p. (Cited on pages 53 and 125.)Google Scholar
Jadhav, Shreesh, and Mukhopadhyay, Asish. 1994. Computing a centerpoint of a finite planar set of points in linear time. Discrete Comput. Geom., 12(3), 291–312. (Cited on page 137.)CrossRefGoogle Scholar
Jarník, Vojtech. 1926. Über die Gitterpunkte auf konvexen Kurven. Math. Z., 24(1), 500–518. (Cited on page 110.)CrossRefGoogle Scholar
Kalbfleisch, James G., and Stanton, Ralph G. 1995. On the maximum number of coplanar points containing no convex n-gons. Utilitas Math., 47, 235–245. (Cited on page 106.)Google Scholar
Károlyi, Gyula, and Solymosi, József. 2006. Erdős–Szekeres theorem with forbidden order types. J. Combin. Theory Ser. A, 113(3), 455–465. (Cited on page 110.)CrossRefGoogle Scholar
Károlyi, Gyula, and Tóth, Géza. 2012. Erdős–Szekeres theorem for point sets with forbidden subconfigurations. Discrete Comput. Geom., 48(2), 441–452. (Cited on pages 20 and 110.)CrossRefGoogle Scholar
Károlyi, Gyula, Pach, János, and Tóth, Géza. 2001. A modular version of the Erdős–Szekeres theorem. Studia Sci. Math. Hungar., 38, 245–259. (Cited on page 135.)Google Scholar
Kelly, Leroy M., and Moser, William O. J. 1958. On the number of ordinary lines determined by n points. Canad. J.Math., 10, 210–219. (Cited on page 55.)CrossRefGoogle Scholar
Kemnitz, Arnfried, and Harborth, Heiko. 2001. Plane integral drawings of planar graphs. DiscreteMath., 236(1–3), 191–195. (Cited on page 148.)Google Scholar
Khuller, Samir, and Mitchell, Joseph S. B. 1990. On a triangle counting problem. Inform. Process. Lett., 33(6), 319–321. (Cited on page 140.)CrossRefGoogle Scholar
Kitaev, Sergey. 2011. Patterns in Permutations and Words. EATCS Monographs in Theoretical Computer Science. Berlin: Springer. (Cited on page 156.)CrossRefGoogle Scholar
Kleber, Michael. 2008. Encounter at far point. Mathematical Intelligencer, 1, 50–53. (Cited on pages 147 and 148.)Google Scholar
Klee, Victor, and Wagon, Stan. 1991. Approximation by rational sets. Pages 54–57, 132–136 of: Old and New Unsolved Problems in Plane Geometry and Number Theory. Cambridge: Cambridge University Press. (Cited on page 142.)Google Scholar
Kløve, Torleiv. 1978. On the no-three-in-line problem. II. J. Combin. Theory Ser. A, 24(1), 126–127. (Cited on page 73.)CrossRefGoogle Scholar
Kløve, Torleiv. 1979. On the no-three-in-line problem. III. J. Combin. Theory Ser. A, 26(1), 82–83. (Cited on page 73.)CrossRefGoogle Scholar
Knuth, Donald E. 1992. Axioms and Hulls. Lecture Notes in Computer Science, vol. 606. Berlin: Springer. (Cited on pages 11 and 34.)CrossRefGoogle Scholar
Komusiewicz, Christian, and Niedermeier, Rolf. 2012. New races in parameterized algorithmics. Pages 19–30 of: 37th International Symposium on Mathematical Foundations of Computer Science (MFCS 2012). Lecture Notes in Computer Science, vol. 7464. Berlin: Springer. (Cited on page 29.)Google Scholar
Kratsch, Stefan, Philip, Geevarghese, and Ray, Saurabh. 2016. Point line cover: The easy kernel is essentially tight. ACM Trans. Algorithms, 12(3), A40:1–16. (Cited on page 62.)Google Scholar
Kreisel, Tobias, and Kurz, Sascha. 2008. There are integral heptagons, no three points on a line, no four on a circle. Discrete Comput. Geom., 39(4), 786–790. (Cited on pages 147 and 148.)CrossRefGoogle Scholar
Kruskal, Joseph B. 1972. The theory of well-quasi-ordering: A frequently discovered concept. J. Combin. Theory Ser. A, 13, 297–305. (Cited on page 22.)CrossRefGoogle Scholar
Kurowski, Maciej. 2004. A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inform. Process. Lett., 92(2), 95–98. (Cited on page 181.)CrossRefGoogle Scholar
Lagrange, Jean, and Leech, John. 1986. Two triads of squares. Math. Comp., 46(174), 751–758. (Cited on page 146.)CrossRefGoogle Scholar
Langerman, Stefan, and Morin, Pat. 2005. Covering things with things. Discrete Comput. Geom., 33(4), 717–729. (Cited on page 61.)CrossRefGoogle Scholar
Lefmann, Hanno. 2012. Extensions of the no-three-in-line problem. Revision of a paper from Proc. AAIM 2008, www.tu-chemnitz.de/informatik/ ThIS/downloads/publications/lefmann_no_three_submitted.pdf. (Cited on page 80.)
Liu, Regina Y. 1990. On a notion of data depth based on random simplices. Ann. Statist., 18(1), 405–414. (Cited on page 140.)CrossRefGoogle Scholar
Lovász, László. 1979. Combinatorial Problems and Exercises. Amsterdam: North-Holland. (Cited on page 106.)Google Scholar
Loyd, Sam. 1914. Christopher Columbus shows some egg tricks. Page 301 of: Sam Loyd's Cyclopedia of 5000 Puzzles, Tricks, and Conundrums with Answers. New York: Lamb Publishing. (Cited on page 54.)Google Scholar
Marcus, Adam, and Tardos, Gábor. 2004. Excluded permutation matrices and the Stanley-Wilf conjecture. J. Combin. Theory Ser. A, 107(1), 153–160. (Cited on page 6.)CrossRefGoogle Scholar
Matiyasevich, Yuri V. 1993. Hilbert's Tenth Problem. Foundations of Computing Series. Cambridge, MA: MIT Press. (Cited on page 144.)Google Scholar
Matoušek, Jiří. 1991a. Computing the center of planar point sets. Pages 221–230 of: Goodman, Jacob, E., Pollack, Richard, and Steiger, William L. (eds.), Discrete and Computational Geometry: Papers from the DIMACS Special Year. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 6. Providence, RI: American Mathematical Society. (Cited on page 139.)Google Scholar
Matoušek, Jiří. 1991b. Spanning trees with low crossing number. RAIRO Inform. Théor. Appl., 25(2), 103–123. (Cited on page 191.)Google Scholar
Mazurkiewicz, Stefan. 1916. Sur un ensemble fermé, punctiforme, qui rencontre toute droite passant par un certain domaine. Prace Mat.-Fiz., 27, 11–16. (Cited on page 188.)Google Scholar
McMahon, Liz, Gordon, Gary, Gordon, Hannah, and Gordon, Rebecca. 2016. The Joy of Set: The Many Mathematical Dimensions of a Simple Card Game. Princeton, NJ: Princeton University Press. (Cited on page 91.)Google Scholar
Megiddo, Nimrod, and Tamir, Arie. 1982. On the complexity of locating linear facilities in the plane. Oper. Res. Lett., 1(5), 194–197. (Cited on page 61.)CrossRefGoogle Scholar
Middendorf, Matthias, and Pfeiffer, Frank. 1992. The max clique problem in classes of string-graphs. Discrete Math., 108(1–3), 365–372. (Cited on page 151.)CrossRefGoogle Scholar
Moon, John, and Moser, Leo. 1963. On Hamiltonian bipartite graphs. Israel J. Math., 1, 163–165. (Cited on page 101.)CrossRefGoogle Scholar
Morris, Walter D., and Soltan, Valeriu. 2000. The Erdős–Szekeres problem on points in convex position: A survey. Bull. Amer. Math. Soc., 37(4), 437–458. (Cited on page 106.)CrossRefGoogle Scholar
Moser, Robin A., and Tardos, Gábor. 2010. A constructive proof of the general Lovász local lemma. J. ACM, 57(2), A11. (Cited on page 83.)CrossRefGoogle Scholar
Mustafa, Nabil H., and Ray, Saurabh. 2014. Near-optimal generalisations of a theorem of Macbeath. Pages 578–589 of: 31st International Symposium on Theoretical Aspects of Computer Science (STACS ‘14). Leibniz International Proceedings in Informatics (LIPIcs), vol. 25. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik. (Cited on page 71.)Google Scholar
OEIS Foundation. 2017. A003035: Maximal number of 3-tree rows in n-tree orchard problem. In: The On-line Encyclopedia of Integer Sequences, http:// oeis.org/A003035. (Cited on pages 54 and 55.)
Pach, János, and Sharir, Micha. 2009. Sylvester–Gallai problem: The beginnings of combinatorial geometry. Pages 1–12 of: Combinatorial Geometryand Its Algorithmic Applications: The Alcalá Lectures. Mathematical Surveys and Monographs, vol. 152. Providence, RI: American Mathematical Society. (Cited on page 53.)Google Scholar
Payne, Michael S., and Wood, David R. 2013. On the general position subset selection problem. SIAM J. Discrete Math., 27(4), 1727–1733. (Cited on pages 80, 83, and 84.)CrossRefGoogle Scholar
Peeples, William D. Jr. 1954. Elliptic curves and rational distance sets. Proc. Amer.Math. Soc., 5, 29–33. (Cited on page 146.)CrossRefGoogle Scholar
Pegg, Ed. Jr. 2005 (April 11). Math Games: Chessboard tasks, www.mathpuzzle.com/MAA/36-Chessboard%20Tasks/mathgames_04_11_05.html. (Cited on page 74.)
Pilz, Alexander, and Welzl, Emo. 2015. Order on order types. Pages 285–299 of: Arge, Lars, and Pach, János (eds.), 31st International Symposium on Computational Geometry (SoCG ‘15). Leibniz International Proceedings in Informatics (LIPIcs), vol. 34. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz- Zentrum für Informatik. (Cited on page 19.)Google Scholar
Roth, Klaus F. 1951. On a problem of Heilbronn. J. London Math. Soc., 26, 198–204. (Cited on page 74.)Google Scholar
Saaty, Thomas L., and Kainen, Paul C. 1986. The Four-Color Problem: Assaults and Conquest. 2nd edn. Mineola, NY: Dover. (Cited on page 45.)Google Scholar
Schaefer, Marcus, and Umans, Christopher. 2002. Complexity theory column 37: Completeness in the polynomial-time hierarchy: A compendium. SIGACT News, 33(3), 32–49. Updated 2008 on the authors' web site, http:// ovid.cs.depaul.edu/documents/phcom.pdf. (Cited on pages 44 and 171.)Google Scholar
Schnyder, Walter. 1990. Embedding planar graphs on the grid. Pages 138–148 of: 1st ACM/SIAM Symposium on Discrete Algorithms (SODA ‘90). Philadelphia: Society for Industrial and Applied Mathematics. (Cited on pages 181 and 182.)Google Scholar
Shearer, James B. 1985. On a problem of Spencer. Combinatorica, 5(3), 241–245. (Cited on page 81.)CrossRefGoogle Scholar
Shelah, Saharon. 1988. Primitive recursive bounds for van der Waerden numbers. J. Amer.Math. Soc., 1(3), 683–697. (Cited on page 90.)CrossRefGoogle Scholar
Shneiderman, Ben, and Mayer, Richard. 1979. Syntactic/semantic interactions in programmer behavior: A model and experimental results. International Journal of Computer & Information Sciences, 8(3), 219–238. (Cited on page 13.)CrossRefGoogle Scholar
Shor, Peter W. 1991. Stretchability of pseudolines is NP-hard. Pages 531–554 of: Gritzmann, Peter, and Sturmfels, Bernd (eds.), Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift. DIMACS Series in DiscreteMathematics and Theoretical Computer Science, vol. 4. Providence, RI: AmericanMathematical Society. (Cited on pages 44 and 177.)Google Scholar
Solymosi, József, and de Zeeuw, Frank. 2010. On a question of Erdős and Ulam. Discrete Comput. Geom., 43(2), 393–401. (Cited on page 149.)CrossRefGoogle Scholar
Spencer, Joel. 1977. Asymptotic lower bounds for Ramsey functions. Discrete Math., 20(1), 69–76. (Cited on page 81.)CrossRefGoogle Scholar
Sprinzak, Josef, and Werman, Michael. 1994. Affine point matching. Pattern Recognition Letters, 15(4), 337–339. (Cited on page 36.)CrossRefGoogle Scholar
Stein, Sherman K. 1951. Convex maps. Proc. Amer. Math. Soc., 2(3), 464–466. (Cited on page 150.)CrossRefGoogle Scholar
Steinitz, Ernst. 1913. Bedingt konvergente Reihen und konvexe Systeme. J. Reine Angew.Math., 143(143), 128–175. (Cited on page 126.)Google Scholar
Suk, Andrew. 2017. On the Erdős–Szekeres convex polygon problem. J. Amer. Math. Soc., 30, 1047–1053. (Cited on page 2.)Google Scholar
Székely, László A. 1997. Crossing numbers and hard Erdős problems in discrete geometry. Combin. Probab. Comput., 6(3), 353–358. (Cited on page 84.)CrossRefGoogle Scholar
Endre, Szemerédi and Trotter, William T. Jr. 1983. Extremal problems in discrete geometry. Combinatorica, 3(3–4), 381–392. (Cited on page 84.)Google Scholar
Tóth, Gábor. 2001. Point sets with many k-sets. Discrete Comput. Geom., 26(2), 187–194. (Cited on page 18.)CrossRefGoogle Scholar
Tukey, John W. 1975. Mathematics and the picturing of data. Pages 523–531 of: Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2. (Cited on page 136.)Google Scholar
Urabe, Masatsugu. 1996. On a partition into convex polygons. Discrete Appl. Math., 64(2), 179–191. (Cited on page 131.)CrossRefGoogle Scholar
Vapnik, Vladimir N., and Chervonenkis, Alexey Ya. 1971. On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl., 16(2), 264–280. (Cited on page 70.)CrossRefGoogle Scholar
Wagner, Klaus. 1936. Bemerkungen zum Vierfarbenproblem. Jber. Deutsch. Math.-Verein., 46, 26–32. (Cited on page 150.)Google Scholar
Wang, Jianxin, Li, Wenjun, and Chen, Jianer. 2010. A parameterized algorithm for the hyperplane-cover problem. Theoret. Comput. Sci., 411(44–46), 4005–4009. (Cited on page 62.)CrossRefGoogle Scholar
Welzl, Emo. 1992. On spanning trees with low crossing numbers. Pages 233–249 of: Monien, Burkhard, and Ottmann, Thomas (eds.), Data Structures and Efficient Algorithms: Final Report on the DFG Special Joint Initiative. Lecture Notes in Computer Science, vol. 594. Berlin: Springer. (Cited on pages 191, 193, and 194.)CrossRefGoogle Scholar
Wilson, Robin. 2014. Four Colors Suffice: How the Map Problem Was Solved. Princeton Science Library. Princeton, NJ: Princeton University Press. (Cited on page 45.)Google Scholar
Wood, David R. 2004. A note on colouring the plane grid. Geombinatorics, 13(4), 193–196. (Cited on page 87.)Google Scholar
Ziegler, Günter M. 2008. Nonrational configurations, polytopes, and surfaces. Mathematical Intelligencer, 30(3), 36–42. (Cited on page 143.)CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • David Eppstein, University of California, Irvine
  • Book: Forbidden Configurations in Discrete Geometry
  • Online publication: 04 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781108539180.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • David Eppstein, University of California, Irvine
  • Book: Forbidden Configurations in Discrete Geometry
  • Online publication: 04 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781108539180.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • David Eppstein, University of California, Irvine
  • Book: Forbidden Configurations in Discrete Geometry
  • Online publication: 04 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781108539180.019
Available formats
×