Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-13T00:50:05.923Z Has data issue: false hasContentIssue false

29 - Dissolution

Published online by Cambridge University Press:  05 June 2012

Douglas Heggie
Affiliation:
University of Edinburgh
Piet Hut
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

The previous chapter dealt mostly with a highly idealised model. All stars were single and had the same mass, and the system was isolated. As we saw, even the presence of a spectrum of stellar masses changes the picture, as it is found that gravothermal oscillations set in only for considerably larger values of N. In the present chapter we shall also see that the presence of primordial binaries further weakens their probable relevance. Even when gravothermal oscillations do occur, they seriously affect the structure of only the innermost 1% or so of a cluster. Therefore, in this chapter we concentrate once more on the steady post-collapse evolution of a stellar system. Also, we mainly have in mind a system with a significant population of primordial binaries, and boundary conditions set by the tidal field of the surrounding galaxy. First, however, we consider the simpler case of an isolated cluster.

Isolated clusters

The first thing that is changed in post-collapse evolution when we add primordial binaries is the radius of the core. A similar argument to that of Box 28.1 shows that the ratio rh/rc is now almost independent of N (cf. Problem 1). In fact the ratio depends more on the proportion of binaries (which decreases as the binaries are consumed).

These statements greatly weaken the clues to the occurrence of gravothermal oscillations which we discussed in the case of post-collapse evolution powered by three-body binaries (Chapter 28).

Type
Chapter
Information
The Gravitational Million–Body Problem
A Multidisciplinary Approach to Star Cluster Dynamics
, pp. 272 - 276
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Dissolution
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.038
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Dissolution
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.038
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Dissolution
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.038
Available formats
×