Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-30T09:30:15.726Z Has data issue: false hasContentIssue false

Part III - Development of and differences in color vision

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abramov, I., and Gordon, J. (1997). Constraining color categories: the problem of the baby and the bath water. Behavioral and Brain Sciences, 20, 179–80.CrossRefGoogle Scholar
Abramov, I., Gordon, J., Hendrickson, A., Hainline, L., Dobson, V., and LaBossiere, E. (1982). The retina of the newborn human infant. Science, 217, 265–7.CrossRefGoogle ScholarPubMed
Adams, R. J. (1987). An evaluation of color preference in early infancy. Infant Behavior and Development, 10, 143–50.CrossRefGoogle Scholar
Adams, R. J. (1995). Further exploration of human neonatal chromatic-achromatic discrimination. Journal of Experimental Child Psychology, 60, 344–60.CrossRefGoogle ScholarPubMed
Adams, R. J., and Courage, M. L. (1995). Development of chromatic discrimination in early infancy. Behavioral Brain Research, 67, 99101.CrossRefGoogle ScholarPubMed
Adams, R. J., and Courage, M. L. (1998). Human newborn color vision: measurement with chromatic stimuli varying in excitation purity. Journal of Experimental Psychology, 68, 2234.Google ScholarPubMed
Adams, R. J., and Courage, M. L. (2002). A psychophysical test of the early maturation of infants’ mid- and long-wavelength retinal cones. Infant Behavior and Development, 25, 247–54.CrossRefGoogle Scholar
Adams, R. J., Courage, M. L., and Mercer, M. E. (1994). Systematic measurement of human neonatal color vision. Vision Research, 34, 16911701.CrossRefGoogle ScholarPubMed
Allen, D., Banks, M. S., and Norcia, A. M. (1993). Does chromatic sensitivity develop more slowly than luminance sensitivity? Vision Research, 33, 2553–62.CrossRefGoogle ScholarPubMed
Ankrum, C., Clavadetscher, J., and Teller, D. (1986). Chromatic discriminations and brightness matches in infants. Investigative Ophthalmology and Vision Science Supplement, 27(3), 264.Google Scholar
Anstis, S., and Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. In Mollon, J. D. and Sharpe, L. T. (eds.), Colour Vision: Physiology and Psychophysics (pp. 475–81). London: Academic Press.Google Scholar
Anstis, S., Cavanagh, P., Maurer, D., and Lewis, T. (1986). Early maturation of luminous efficiency for colored stimuli. Investigative Ophthalmology and Vision Science Supplement, 27(3), 264.Google Scholar
Backscheider, A. G., and Shatz, M. (1993). Children’s acquisition of lexical domains. Paper presented at the regional meeting of the Chicago Linguistics Society.Google Scholar
Baldwin, J. M. (1893). Distance and color perception by infants. Science, 21, 231–2.Google ScholarPubMed
Baldwin, J. M. (1906). Mental Development in the Child and the Race. New York: Macmillan.Google Scholar
Banks, M. S., and Bennett, P. J. (1988). Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2059–79.CrossRefGoogle Scholar
Banks, M. S., and Crowell, J. A. (1993). Front-end limitations to infant spatial vision: examination of two analyses. In Simons, K. (ed.), Early Visual Development: Normal and Abnormal (pp. 91116). New York: Oxford University Press.Google Scholar
Bartlett, E. J. (1977). The acquisition of the meaning of color terms: a study of lexical development. In Campbell, R. N. and Smith, P. T. (eds.), Recent Advances in the Psychology of Language (pp. 89108). New York: Plenum.Google Scholar
Beau Lotto, R. (2004). Visual development: experience puts the color in life. Current Biology, 14, R619–21.CrossRefGoogle ScholarPubMed
Berlin, B., and Kay, P. (1969). Basic Color Terms: Their Universality and Evolution. Berkeley, CA: University of California Press.Google Scholar
Bieber, M. L., Knoblauch, K., and Werner, J. S. (1997). Detecting color vision deficiency in 4- and 8-week-old human infants. In Cavonius, C. R., Color Vision Deficiencies XIII (pp. 277–82). Boston: Kluwer Academic.Google Scholar
Bieber, M., Volbrecht, V., and Werner, J. (1995). Spectral efficiency measured by heterochromatic flicker photometry is similar in human infants and adults. Vision Research, 35, 1385–92.CrossRefGoogle ScholarPubMed
Bieber, M. L., Werner, J. S., Knoblauch, K., Neitz, J., and Neitz, M. (1998). Comparison of genotypic and phenotypic markers of color vision in infants and adults. Vision Research, 38, 3293–7.CrossRefGoogle ScholarPubMed
Boothe, R., Teller, D. Y., and Sackett, G. P. (1975). Trichromacy in normally reared and light deprived infant monkeys (Macaca nemestrina). Vision Research, 15, 1187–91.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1973). Color vision and color naming: a psychophysiological hypothesis of cultural difference. Psychological Bulletin, 80, 257–85.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1975a). Spectral sensitivity of the modulation-sensitive mechanism of vision: effects of field size and retinal locus. Vision Research, 15, 865–9.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1975b). Qualities of color vision in infancy. Journal of Experimental Child Psychology, 19, 401–19.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1975c). Hue is an absolute code for young children. Nature, 256, 309–10.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1976a). Infants are trichomats. Journal of Experimental Child Psychology, 21, 425–45.CrossRefGoogle Scholar
Bornstein, M. H. (1976b). Infants’ recognition memory for hue. Developmental Psychology, 12, 185–91.CrossRefGoogle Scholar
Bornstein, M. H. (1976c). Name codes and color memory. American Journal of Psychology, 89, 269–79.Google Scholar
Bornstein, M. H. (1977). Developmental pseudocyananopsia: ontogenetic change in human color vision. American Journal of Optometry and Physiological Optics, 54, 464–9.CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1978a). Chromatic vision in infancy. In Reese, H. W. and Lipsitt, L. P. (eds.), Advances in Child Development and Behavior (vol. XII, pp. 117–82). New York: Academic Press.Google Scholar
Bornstein, M. H. (1978b). Visual behavior in the young human infant. Journal of Experimental Child Psychology, 26, 174–92.Google ScholarPubMed
Bornstein, M. H. (1979). Effects of habituation experience on posthabituation behavior in young infants: discrimination and generalization among colors. Developmental Psychology, 15, 348–9.CrossRefGoogle Scholar
Bornstein, M. H. (1981a). Psychological studies of color perception in human infants. In Lipsitt, L. P. (ed.), Advances in Infancy Research (vol. I, pp. 140). Norwood, NJ: Ablex.Google Scholar
Bornstein, M. H. (1981b). Two kinds of perceptual organization near the beginning of life. In Collins, W. A. (ed.), Minnesota Symposia on Child Psychology (vol. XIV, pp. 3991). Hillsdale, NJ: Erlbaum.Google Scholar
Bornstein, M. H. (2006). Hue categorization and color naming: physics to sensation to perception. In Pitchford, N. and Biggam, C. P. (eds.), Progress in Color Studies, vol. II: Psychological Aspects (pp. 134). Amsterdam: John Benjamins.Google Scholar
Bornstein, M. H. (2007). Hue categorization and color naming: cognition to language to culture. In MacLaury, R. E., Paramei, G. V., and Dedrick, D. (eds.), Anthropology of Color: Interdisciplinary Multilevel Modeling (pp. 327). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Bornstein, M. H., Arterberry, M. E., and Lamb, M. E. (2014). Development in Infancy: A Contemporary Introduction. New York: Psychology Press.Google Scholar
Bornstein, M. H., Kessen, W., and Weiskopf, S. (1976a). The categories of hue in infancy. Science, 191, 201–2.CrossRefGoogle ScholarPubMed
Bornstein, M. H., Kessen, W., and Weiskopf, S. (1976b). Color vision and hue categorization in young human infants. Journal of Experimental Psychology: Human Perception and Performance, 2, 115–29.Google ScholarPubMed
Bornstein, M. H., and Korda, N. O. (1984). Discrimination and matching within and between hues measured by reaction times: some implications for categorical perception and levels of information processing. Psychological Research, 46, 207–22.CrossRefGoogle ScholarPubMed
Bornstein, M. H., and Marks, L. E. (1972). Photopic luminosity measured by the method of critical frequency. Vision Research, 12, 2023–33.CrossRefGoogle ScholarPubMed
Bornstein, M. H., and Marks, L. E. (1973). Studies of spectral sensitivity as measured by a procedure of flicker threshold. American Journal of Optometry and Archives of American Academy of Optometry, 50, 376–82.CrossRefGoogle ScholarPubMed
Bornstein, M. H., and Monroe, M. D. (1978). Color-naming evidence for tritan vision in the fovea. American Journal of Optometry and Physiological Optics, 55, 627–30.CrossRefGoogle ScholarPubMed
Bornstein, M. H., and Monroe, M. D. (1980). Chromatic information processing: rate depends on stimulus location in the category and psychological complexity. Psychological Research, 42, 213–25.CrossRefGoogle Scholar
Bosworth, R. G., and Dobkins, K. R. (2009). Chromatic and luminance contrast sensitivity in fullterm and preterm infants. Journal of Vision, 9, 116.CrossRefGoogle ScholarPubMed
Boynton, R. M. (1971). Color vision. In Riggs, L. A. and Kling, J. (eds.), Woodworth and Schlosberg’s Experimental Psychology. New York: Holt.Google Scholar
Boynton, R. M. (1975). Color, hue, and wavelength. In Carterette, E. C. and Friedman, M. P. (eds.), Handbook of Perception (vol. V). New York: Academic Press.Google Scholar
Boynton, R. M. (1979). Human Color Vision. New York: Holt.Google Scholar
Boynton, R. M., and Gordon, J. (1965). Bezold–Brücke hue shift measured by color-naming technique. Journal of the Optical Society of America, 55, 7885.CrossRefGoogle Scholar
Brenner, E., Cornelissen, F., and Nuboer, W. (1990). Striking absence of long-lasting effects of early color deprivation on monkey vision. Developmental Psychobiology, 23, 441–8.CrossRefGoogle ScholarPubMed
Brenner, E., Schelvis, J., and Nuboer, W. (1985). Early colour deprivation in a monkey (Macaca fascicularis). Vision Research, 25, 1337–9.CrossRefGoogle Scholar
Brindley, G. S. (1970). Physiology of the Retina and the Visual Pathway, 2nd edn. Baltimore, MD: Williams and Wilkins.Google Scholar
Brown, A. M. (1994). Intrinsic contrast noise and infant visual contrast discrimination. Vision Research, 34, 1947–64.CrossRefGoogle ScholarPubMed
Brown, A. M. (2009). Contrast insensitivity: the critical immaturity in infant visual performance. Optometry and Vision Science, 86, 572–6.CrossRefGoogle ScholarPubMed
Brown, A. M., and Lindsey, D. T. (2013). Infant color vision and color preferences: a tribute to Davida Teller. Visual Neuroscience, 30, 18.CrossRefGoogle ScholarPubMed
Brown, A. M., Lindsey, D. T., McSweeney, E. M., and Walters, M. M. (1995). Infant luminance and chromatic contrast sensitivity: optokinetic nystagmus data on 3-month-olds. Vision Research, 35, 3145–60.CrossRefGoogle ScholarPubMed
Brown, A. M., and Teller, D. T. (1989). Color opponency in human infants. Vision Research, 29, 3745.CrossRefGoogle ScholarPubMed
Catherwood, D. (1994). Exploring the seminal phase in infant memory for color and shape. Infant Behavior and Development, 17, 235–43.CrossRefGoogle Scholar
Catherwood, D., Crassini, B., and Freiberg, K. (1987). The nature of infant memory for hue. British Journal of Developmental Psychology, 5(4), 385–94.CrossRefGoogle Scholar
Catherwood, D., Crassini, B., and Freiberg, K. (1989). Infant response to stimuli of similar hue and dissimilar shape: tracing origins of the categorization of objects by hue. Child Development, 60, 752–62.CrossRefGoogle ScholarPubMed
Catherwood, D., Crassini, B., and Freiberg, K. (1990). The course of infant memory for hue. Australian Journal of Psychology, 42(3), 277–85.CrossRefGoogle Scholar
Chase, W. P. (1937). Color vision in infants. Journal of Experimental Psychology, 20, 203–22.CrossRefGoogle Scholar
Chien, S. H. L., Bronson-Castain, K., Palmer, J., and Teller, D. Y. (2006). Lightness constancy in 4-month-old infants. Vision Research, 46(13), 2139–48.CrossRefGoogle ScholarPubMed
Chien, S. H. L., Palmer, J., and Teller, D. (2003). Infant lightness perception: do 4-month-old infants follow Wallach’s ratio rule? Psychological Science, 14(4), 291–5.CrossRefGoogle ScholarPubMed
Chien, S. H. L., Palmer, J., and Teller, D. (2005). Achromatic contrast effects in infants: adults and 4-month-old infants show similar deviations from Wallach’s ratio rule. Vision Research, 45(22), 2854–61.CrossRefGoogle ScholarPubMed
Chien, S. H. L., Teller, D. Y., and Palmer, J. (2000). The transition from scotopic to photopic vision in 3-month-old infants and adults: an evaluation of the rod dominance hypothesis. Vision Research, 40(28), 3853–71.CrossRefGoogle ScholarPubMed
Child, I. L., Hansen, J. A., and Hornbeck, F. W. (1968). Age and sex differences in children’s color preferences. Child Development, 39, 237–47.CrossRefGoogle ScholarPubMed
Clavadetscher, J. E., Brown, A. M., Ankrum, C., and Teller, D. Y. (1988). Spectral sensitivity and chromatic discriminations in 3- and 7-week-old infants. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(12), 20932105.CrossRefGoogle ScholarPubMed
Clifford, A., Franklin, A., Davies, I. R. L., and Holmes, A. (2009). Electrophysiological markers of categorical perception of color in 7-month-old infants. Brain and Cognition, 71, 165–72.CrossRefGoogle Scholar
Clifford, A., Franklin, A., Holmes, A., Drivonikou, V. G., Özgen, E., and Davies, I. R. (2012). Neural correlates of acquired color category effects. Brain and Cognition, 80(1), 126–43.CrossRefGoogle ScholarPubMed
Colby, M. G., and Robertson, J. B. (1942). Genetic studies in abstraction. Journal of Comparative Psychology, 33, 385401.CrossRefGoogle Scholar
Conrad, R. (1972). Form and color as short-term memory codes in preschool children. Psychonomic Science, 27, 225–6.CrossRefGoogle Scholar
Cook, R. S., Kay, P., and Regier, T. (2005). The World Color Survey database: history and use. In Cohen, H. and Lefebvre, C. (eds.), Handbook of Categorization in the Cognitive Sciences (pp. 223–42). Amsterdam: Elsevier.Google Scholar
Crognale, M. A., Kelly, J. P., Weiss, A., and Teller, D. Y. (1998). Development of the spatio-chromatic visual evoked potential (VEP): a longitudinal study. Vision Research, 38, 3283–92.CrossRefGoogle ScholarPubMed
Cruse, D. A. (1977). A note on the learning of color names. Journal of Child Language, 4, 305–11.CrossRefGoogle Scholar
Daehler, M., Bukatko, D., Benson, K., and Myers, N. (1976). The effects of size and color cues on the delayed response of very young children. Bulletin of the Psychonomic Society, 7, 65–8.CrossRefGoogle Scholar
Dain, S. J. (2004). Clinical color vision tests. Clinical and Experimental Optometry, 87, 276–93.CrossRefGoogle Scholar
Dannemiller, J. L. (1989). A test of color constancy in 9- and 20-week-old human infants following simulated illuminant changes. Developmental Psychology, 25, 171–84.CrossRefGoogle Scholar
Dannemiller, J. L., and Hanko, S. A. (1987). A test of color constancy in 4-month-old human infants. Journal of Experimental Child Psychology, 44, 255–67.CrossRefGoogle ScholarPubMed
Darwin, C. (1877). A biographical sketch of a young child. Kosmos, 1, 367–76.Google Scholar
De Valois, R. L., and De Valois, K. K. (1975). Neural coding of color. In Carterette, E. C. and Friedman, M. P. (eds.), Handbook of Perception (vol. V, pp. 117–66). New York: Academic Press.Google Scholar
Di, S., Neitz, J., and Jacobs, G. H. (1987). Early color deprivation and subsequent color vision in a dichromatic monkey. Vision Research, 27, 2009–13.CrossRefGoogle Scholar
Dobkins, K. R., and Anderson, C. M. (2002). Color-based motion processing is stronger in infants than in adults. Psychological Science, 13, 7680.CrossRefGoogle ScholarPubMed
Dobkins, K. R., Anderson, C. M., and Kelly, J. (2001). Development of psychophysically-derived detection contours in L- and M-cone contrast space. Vision Research, 41, 17911807.CrossRefGoogle Scholar
Dobkins, K. R., Bosworth, R. G., and McCleery, J. P. (2009). Effects of gestational length, gender, postnatal age, and birth order on visual contrast sensitivity in infants. Journal of Vision, 9, 121.CrossRefGoogle ScholarPubMed
Dobkins, K. R., Lia, B., and Teller, D. Y. (1997). Infant color vision: temporal contrast sensitivity functions for chromatic (red/green) stimuli in 3-month-olds. Vision Research, 37(19), 26992716.CrossRefGoogle ScholarPubMed
Dobson, V. (1976). Spectral sensitivity of the 2-month infant as measured by the visually evoked cortical potential. Vision Research, 15, 367–74.Google Scholar
Dorcus, R. M. (1926). Color preferences and color associations. Pedagogical Seminary and Journal of Genetic Psychology, 33, 399434.CrossRefGoogle Scholar
Elliot, A. J., and Maier, M. A. (2014). Color psychology: effects of perceiving color on psychological functioning in humans. Annual Review of Psychology, 65, 95120.CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1941). A critical and experimental study of color preferences. American Journal of Psychology, 54, 385–68.Google Scholar
Fagan, J. F. (1974). Infant color perception. Science, 183, 973–5.CrossRefGoogle ScholarPubMed
Farnham-Diggory, S., and Gregg, L. W. (1975). Color, form, and function as dimensions of natural classification: developmental changes in eye movements, reaction time, and response strategies. Child Development, 46, 101–14.CrossRefGoogle ScholarPubMed
Franklin, A., Bevis, L., Ling, Y., and Hurlbert, A. (2010). Biological components of colour preference in infancy. Developmental Science, 13(2), 346–54.CrossRefGoogle ScholarPubMed
Franklin, A., Clifford, A., Williamson, E., and Davies, I. R. L. (2005). Color term knowledge does not affect categorical perception of color in toddlers. Journal of Experimental Child Psychology, 90, 114–41.CrossRefGoogle Scholar
Franklin, A., and Davies, I. R. L. (2004). New evidence for infant colour categories. British Journal of Developmental Psychology, 22, 349–77.CrossRefGoogle Scholar
Franklin, A., Drivonikou, G. V., Bevis, L., Davies, I. R. L., Kay, P., and Regier, T. (2008). Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults. Proceedings of the National Academy of Sciences of the United States of America, 105, 3221–5.Google Scholar
Franklin, A., Pilling, M., and Davies, I. (2005). The nature of infant color categorization: evidence from eye movements on a target detection task. Journal of Experimental Child Psychology, 91, 227–48.CrossRefGoogle ScholarPubMed
Franklin, A., Pitchford, N., Hart, L., Davies, I. R. L., Clausse, S., and Jennings, S. (2008). Salience of primary and secondary colours in infancy. British Journal of Developmental Psychology, 26, 471–83.CrossRefGoogle Scholar
Franklin, A., Sowden, P., Burley, R., Norman, L., and Alder, E. (2008). Color perception in children with autism. Journal of Autism and Developmental Disorders, 38, 1837–47.CrossRefGoogle ScholarPubMed
Fushikida, W., Schloss, K., Yokosawa, K., and Palmer, S. (2009). Cross-cultural differences in color preference: Japan vs. the USA. Journal of Vision, 9, 336.CrossRefGoogle Scholar
Goethe, W. (1967/1810). Theory of Colours. London: Frank Cass.Google Scholar
Gregory, R. L. (1974). Patent specification for a heterochromatic photometer. In Concepts and Mechanisms of Perception (pp. 475–81). London: Duckworth.Google Scholar
Hamer, R. D., Alexander, K. R., and Teller, D. Y. (1982). Rayleigh discriminations in young human infants. Vision Research, 22, 575–87.CrossRefGoogle ScholarPubMed
Hardy, J. L., Frederick, C. M., Kay, P., and Werner, J. S. (2005). Color naming, lens aging, and grue: what the optics of the aging eye can teach us about color language. Psychological Science, 16(4), 321–7.CrossRefGoogle ScholarPubMed
Hendrickson, A. E. (1994). Primate foveal development: a microcosm of current questions in neurobiology. Investigative Opthalmology and Visual Science, 35, 3129–33.Google ScholarPubMed
Hering, E. (1964/1878). Outlines of a Theory of the Light Sense, trans. Hurvich, L. M. and Jameson, D.. Cambridge, MA: Harvard University Press.Google Scholar
Hernandez-Reif, M., and Bahrick, L. E. (2001). The development of visual-tactual perception of objects: amodal relations provide the basis for learning arbitrary relations. Infancy, 2, 5172.CrossRefGoogle ScholarPubMed
Horiguchi, H., Winawer, J., Dougherty, R. F., and Wandell, B. A. (2012). Human trichromacy revisited. Proceedings of the National Academy of Sciences of the United States of America, 110, E260–9.Google ScholarPubMed
Hurlbert, A., and Ling, Y. (2007). Biological components of sex differences in color preference. Current Biology, 17, R623–5.CrossRefGoogle ScholarPubMed
Istomina, Z. M. (1963). Perception and naming of color in early childhood. Soviet Psychology and Psychiatry, 1, 3745.CrossRefGoogle Scholar
James, W. (1924). Some Problems of Philosophy. New York: Longmans, Green and Co.Google Scholar
Joh, A. S., and Spivey, L. A. (2012). Colorful success: preschoolers’ use of perceptual color cues to solve a spatial reasoning problem. Journal of Experimental Child Psychology, 113, 523–34.CrossRefGoogle ScholarPubMed
Jordan, G., and Mollon, J. D. (1998). Shifts in Rayleigh matches after adaptation to monochromatic light of various intensities. Vision Research, 38, 3253–7.CrossRefGoogle ScholarPubMed
Kaldy, Z., and Blaser, E. (2009). How to compare apples and oranges: infants’ object identification tested with equally salient shape, luminance, and color changes. Infancy, 14(2), 222–43.CrossRefGoogle ScholarPubMed
Kaldy, Z., Blaser, E., and Leslie, A. M. (2006). A new method for calibrating perceptual salience across dimensions in infants: the case of color vs. luminance. Developmental Science, 9, 482–9.CrossRefGoogle ScholarPubMed
Kessen, W., and Bornstein, M. H. (1978). Discriminability of brightness change for infants. Journal of Experimental Child Psychology, 25, 526–30.CrossRefGoogle ScholarPubMed
Kimura, A., Wada, Y., Yang, J., Otsuka, Y., Dan, I., Masuda, T., and Yamaguchi, M. (2010). Infants’ recognition of objects using canonical color. Journal of Experimental Psychology, 105, 256–63.Google ScholarPubMed
Knoblauch, K., Beiber, M. L., and Werner, J. S. (1998). M- and L-cones in early infancy. I. VEP responses to receptor-isolating stimuli at 4 and 8 weeks of age. Vision Research, 38, 1753–64.CrossRefGoogle ScholarPubMed
Knoblauch, K., Saunders, F., Kusuda, M., Hynes, R., Podgor, M., Higgins, K. E., and de Monasterio, F. M. (1987). Age and illuminance effects in the Farnsworth–Munsell 100-hue test. Applied Optics, 26, 1441–8.CrossRefGoogle ScholarPubMed
Knoblauch, K., Vital-Durand, F., and Barbur, J. L. (2001). Variation of chromatic sensitivity across the life span. Vision Research, 41, 2336.CrossRefGoogle ScholarPubMed
Koida, K., and Komatsu, H. (2007). Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex. Nature Neuroscience, 10, 108–16.CrossRefGoogle ScholarPubMed
Kowalski, K., and Zimiles, H. (2006). The relation between children’s conceptual functioning with color and color term acquisition. Journal of Experimental Child Psychology, 94(4), 301–21.CrossRefGoogle ScholarPubMed
Ladenheim, B., and Gordon, J. (1986). Heterochromatic flicker photometry in neonates. Investigative Ophthalmology and Vision Science Supplement, 27(3), 76.Google Scholar
Laeng, B., Brennen, T., Elden, Å., Gaare Paulsen, H., Banerjee, A., and Lipton, R. (2007). Latitude-of-birth and season-of-birth effects on human color vision in the Arctic. Vision Research, 47(12), 15951607.CrossRefGoogle ScholarPubMed
Lee, L. C. (1965). Concept utilization in preschool children. Child Development, 36, 221–8.CrossRefGoogle ScholarPubMed
Lindsey, D. T., and Brown, A. M. (2002). Color naming and the phototoxic effects of sunlight on the eye. Psychological Science, 13, 506–12,CrossRefGoogle ScholarPubMed
Ling, Y., Hurlbert, A., and Robinson, L. (2006). Sex differences in color preference. In Pitchford, N. J. and Biggam, C. P. (eds.), Progress in Color Studies, II: Cognition (pp. 173–88). Amsterdam: John Benjamins.Google Scholar
Linhares, J. M. M., Pinto, P. D., and Nascimento, S. M. C. (2008). The number of discernible colors in natural scenes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 25, 2918–24.CrossRefGoogle ScholarPubMed
Livingstone, M. S., and Hubel, D. H. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240, 740–9.CrossRefGoogle ScholarPubMed
Lythgoe, J. N. (1979). The Ecology of Vision. New York: Oxford University Press.Google Scholar
Marks, L. E., and Bornstein, M. H. (1973). Spectral sensitivity by constant CFF: effect of chromatic adaptation. Journal of the Optical Society of America, 63, 220–6.CrossRefGoogle ScholarPubMed
Marks, L. E., and Bornstein, M. H. (1974). Spectral sensitivity of the modulation-sensitive mechanism of vision. Vision Research, 14, 665–9.CrossRefGoogle ScholarPubMed
Maurer, D., Lewis, T., Cavanagh, P., and Anstis, S. (1989). A new test of luminous efficiency for babies. Investigative Ophthalmology and Visual Science, 30, 297303.Google ScholarPubMed
Melkman, R., Tversky, B., and Baratz, D. (1981). Developmental trends in the use of perceptual and conceptual attributes in grouping, clustering and retrieval. Journal of Experimental Child Psychology, 31, 470–86.CrossRefGoogle ScholarPubMed
Mercer, M. E., Courage, M. L., and Adams, R. J. (1991). Contrast/color card procedure: a new test of young infants’ color vision. Optometry and Vision Science, 68, 522–32.CrossRefGoogle ScholarPubMed
Mollon, J. D. (1989). “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate color vision. Journal of Experimental Biology, 146, 2138.CrossRefGoogle ScholarPubMed
Morrone, M. C., Burr, D. C., and Fiorentini, A. (1990). Development of contrast sensitivity and acuity of the infant color system. Proceedings of the Royal Society of London. Series B, Biological Sciences, 242, 134–9.Google Scholar
Moskowitz-Cook, A. (1979). The development of photopic spectral sensitivity in human infants. Vision Research, 19, 1133–42.CrossRefGoogle ScholarPubMed
Nagel, W. A. (1906). Observations on the color-sense of a child. Journal of Comparative Neurology and Psychology, 16, 217–30.CrossRefGoogle Scholar
Oakes, L. M., Ross-Sheehy, S., and Luck, S. L. (2006). Rapid development of feature binding in visual short-term memory. Psychological Science, 17, 781–7.CrossRefGoogle ScholarPubMed
Odom, R. D. (1972). Effects of perceptual salience on the recall of relevant and incidental dimensional values: a developmental study. Journal of Experimental Psychology, 92, 285–91.CrossRefGoogle ScholarPubMed
Offenbach, S. I. (1980). Children’s perception of Munsell colors. Journal of Psychology, 104, 4351.CrossRefGoogle ScholarPubMed
Oster, H. S. (1975). Color Perception in Human Infants. Doctoral dissertation, University of California, Berkeley (University Microfilms, no. 76–15, 330).Google Scholar
Ou, L.-C., Luo, M. R., Sun, P.-L., Hu, N.-C., and Chen, H.-S. (2012). Age effects on color emotion, preference, and harmony. Color Research & Application, 37, 92105.CrossRefGoogle Scholar
Packer, O., Hartmann, E. E., and Teller, D.Y. (1984). Infant color vision: the effect of test field size on Rayleigh discriminations. Vision Research, 24, 1247–60.CrossRefGoogle ScholarPubMed
Payne, M. C. (1964). Color as an independent variable in perceptual research. Psychological Bulletin, 61, 199208.CrossRefGoogle ScholarPubMed
Peeples, D. R., and Teller, D. Y. (1975). Color vision and brightness discrimination in two-month-old human infants. Science, 189, 1102–3.Google Scholar
Peeples, D. R., and Teller, D. Y. (1978). White-adapted photopic spectral sensitivity in human infants. Vision Research, 18, 3953.CrossRefGoogle ScholarPubMed
Pereverzeva, M., Chien, S. H. L., Palmer, J., and Teller, D. Y. (2002). Infant photometry: are mean adult isoluminance values a sufficient approximation to individual infant values? Vision Research, 42, 1639–49.CrossRefGoogle ScholarPubMed
Pereverzeva, M., and Teller, D. Y. (2004). Infant color vision: influence of surround chromaticity on spontaneous looking preferences. Visual Neuroscience, 21(3), 389–95.CrossRefGoogle ScholarPubMed
Pereverzeva, M., and Teller, D. Y. (2009). Simultaneous color contrast in 4-month-old infants. Perception, 38(1), 3043.CrossRefGoogle ScholarPubMed
Petry, H. M., and Kelly, J. P. (1991). Psychophysical measurement of spectral sensitivity and color vision in red-light-reared tree shrews (Tupaia belangeri). Vision Research, 31, 1749–57.CrossRefGoogle ScholarPubMed
Petzold, A., and Sharpe, L. T. (1998). Hue memory and discrimination in young children. Vision Research, 38, 3759–72.CrossRefGoogle ScholarPubMed
Pointer, M. R., and Attridge, G. G. (1998). The number of discernible colors. Color Research & Application, 23, 52–4.Google Scholar
Pompe, M. T., Kranjc, B. S., and Brecelj, J. (2006). Visual evoked potentials to red-green stimulation in schoolchildren. Visual Neuroscience, 23, 447–51.CrossRefGoogle ScholarPubMed
Powers, M. K., Schneck, M., and Teller, D. Y. (1981). Spectral sensitivity of human infants at absolute visual threshold. Vision Research, 21, 1005–16.CrossRefGoogle ScholarPubMed
Preyer, W. T. (1890). The Mind of the Child. New York: Appleton.Google Scholar
Pulos, E., Teller, D. Y., and Buck, S. L. (1980). Infant color vision: a search for short-wavelength-sensitive mechanisms by means of chromatic adaptation. Vision Research, 20, 485–93.CrossRefGoogle ScholarPubMed
Raskin, L., Maital, S., and Bornstein, M. H. (1983). Perceptual categorization of color: a life-span study. Psychological Research, 45, 135–45.CrossRefGoogle ScholarPubMed
Reardon, P., and Bushnell, E. W. (1988). Infants’ sensitivity to arbitrary pairings of color and taste. Infant Behavior and Development, 11, 245–50.CrossRefGoogle Scholar
Regier, T., Kay, P., and Cook, R. S. (2005). Focal colors are universal after all. Proceedings of the National Academy of Sciences of the United States of America, 102, 8386–91.Google Scholar
Reimchen, T. E. (1987). Human color vision deficiencies and atmospheric twilight. Social Biology, 34, 111.Google ScholarPubMed
Rosch, E. (1978). Human categorization. In Warren, N. (ed.), Studies in Cross-Cultural Psychology (vol. I, pp. 149). London: Academic Press.Google Scholar
Rose, D. H., and Slater, A. M. (1983). Infant recognition memory following brief stimulus exposure. British Journal of Developmental Psychology, 1, 221–30.CrossRefGoogle Scholar
Saito, M. (1996). A comparative study of color preference in Japan, China and Indonesia, with emphasis on the preference for white. Perception and Motor Skills, 83, 115–28.CrossRefGoogle ScholarPubMed
Sandell, J. H., Gross, C. G., and Bornstein, M. H. (1979). Color categories in macaques. Journal of Comparative and Physiological Psychology, 93, 626–35.Google ScholarPubMed
Schaller, M. J. (1975). Chromatic vision in human infants: conditioned operant fixation to “hues” of varying intensity. Bulletin of the Psychonomic Society, 6, 3942.CrossRefGoogle Scholar
Segall, M. H., Dasen, P. R., Berry, J. W., and Poortinga, Y. H. (1990). Human Behavior in Global Perspective: An Introduction to Cross-Cultural Psychology. Oxford: Pergamon Press.Google Scholar
Shevell, S. K., and Kingdom, F. A. (2008). Color in complex scenes. Annual Review of Psychology, 59, 143–66.CrossRefGoogle ScholarPubMed
Shi, D., Neitz, J., and Jacobs, G. H. (1987). Early color deprivation and subsequent color vision in a dichromatic monkey. Vision Research, 27, 2009–13.Google Scholar
Slater, A., Mattock, A., Brown, E., Burnham, D., and Young, A. (1991). Visual processing of stimulus compounds in newborn infants. Perception, 20, 2933.CrossRefGoogle ScholarPubMed
Soja, N. N. (1994). Young children’s concept of color and its relation to the acquisition of color words. Child Development, 65, 918–37.CrossRefGoogle Scholar
Sperling, H. G., Johnson, C., and Harwerth, R. S. (1980). Differential spectral photic damage to primate cones. Vision Research, 20(12), 1117–25.CrossRefGoogle ScholarPubMed
Sperling, H. G., Wright, A. A., and Mills, S. L. (1991). Color vision following intense green light exposure: data and a model. Vision Research, 31(10), 17971812.CrossRefGoogle ScholarPubMed
Staples, R. (1932). The responses of infants to color. Journal of Experimental Psychology, 15, 119–41.CrossRefGoogle Scholar
Stephen, I. D., Coetzee, V., Smith, M. L., and Perrett, D. I. (2009). Skin blood perfusion and oxygenation colour affect perceived human health. PLoS ONE, 4(4), e5083.CrossRefGoogle ScholarPubMed
Stephens, B. R., and Banks, M. S. (1987). Contrast discrimination in human infants. Journal of Experimental Psychology: Human Perception & Performance, 13, 558–65.Google ScholarPubMed
Sugita, Y. (2004). Experience in early infancy is indispensable for color perception. Current Biology, 14, 1267–71.CrossRefGoogle ScholarPubMed
Suttle, C. M., Anderson, S. J., and Harding, G. F. A. (1997). A longitudinal study of visual evoked responses to tritan stimuli in human infants. Optometry and Vision Science, 74, 717–25.CrossRefGoogle ScholarPubMed
Suttle, C. M., Banks, M. S., and Graf, E. W. (2002). FPL and sweep VEP to tritan stimuli in young human infants. Vision Research, 42, 2879–91.CrossRefGoogle ScholarPubMed
Taylor, C., Clifford, A., and Franklin, A. (2013). Color preferences are not universal. Journal of Experimental Psychology, 142(4), 1015–27.Google Scholar
Teller, D. Y. (1998). Spatial and temporal aspects of infant color vision. Vision Research, 38, 3275–82.CrossRefGoogle ScholarPubMed
Teller, D. Y., and Bornstein, M. H. (1985). Color vision and color perception in infancy. In Cohen, L. B. and Salapatek, P. (eds.), Handbook of Infant Perception (pp. 185236). New York: Academic Press.Google Scholar
Teller, D. Y., Civan, A., and Bronson-Castain, K. (2004). Infants’ spontaneous color preferences are not due to adult-like brightness variations. Visual Neuroscience, 21(3), 397401.CrossRefGoogle Scholar
Teller, D. Y., and Lindsey, D. T. (1989). Motion nulls for white versus isochromatic gratings in infants and adults. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 6, 1945–54.CrossRefGoogle ScholarPubMed
Teller, D. Y., and Palmer, J. (1996). Infant color vision: motion nulls for red/green vs. luminance-modulated stimuli in infants and adults. Vision Research, 36(7), 955–74.CrossRefGoogle ScholarPubMed
Teller, D. Y., Peeples, D. R., and Sekel, M. (1978). Discrimination of chromatic from white light by two-month-old human infants. Vision Research, 18, 41–8.CrossRefGoogle ScholarPubMed
Thomas, H. (1973). Unfolding the baby’s mind. Psychological Review, 80, 468–88.Google ScholarPubMed
Thomasson, M. A., and Teller, D. Y. (2000). Infant color vision: sharp chromatic edges are not required for chromatic discrimination in 4-month-olds. Vision Research, 40, 1051–7.CrossRefGoogle Scholar
Thornton, J. E., and Pugh, E. N. (1983). Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data. In Mollon, J. D. and Sharpe, L. T. (eds.), Colour Vision: Physiology and Psychophysics (pp. 361–73). London: Academic Press.Google Scholar
Valdez, P., and Mehrabian, A. (1994). Effects of color on emotions. Journal of Experimental Psychology: General, 123(4), 394409.CrossRefGoogle ScholarPubMed
Varner, D., Cook, J. E., Schneck, M. E., McDonald, M., and Teller, D. Y. (1985). Tritan discriminations by 1- and 2-month-old human infants. Vision Research, 25, 821–31.CrossRefGoogle ScholarPubMed
Vautin, R. G., and Dow, B. M. (1985). Color cell groups in foveal striate cortex of the behaving macaque. Journal of Neurophysiology, 54(2), 273–92.CrossRefGoogle ScholarPubMed
Verriest, G. (1963). Further studies on acquired deficiency of color discrimination. Journal of the Optical Society of America, 53, 185–95.CrossRefGoogle ScholarPubMed
Verriest, G., Laethem, J. V., and Uvijls, A. (1982). A new assessment of the normal ranges of the 100 hue total scores. In Verriest, G. and Junk, W. (eds.), Color Vision Deficiencies VI (pp. 199208). The Hague: Documenta Ophthalmologica Proceedings Series (vol. 33).Google Scholar
Volbrecht, V. J., and Werner, J. S. (1986). Isolation of short-wavelength-sensitive cone photoreceptors in 4–6-week-old human infants. Investigative Ophthalmology and Vision Science Supplement, 27(3), 264.Google Scholar
von Frisch, K. (1964). Bees: Their Vision, Chemical Senses, and Language. Ithaca, NY: Cornell University Press.Google Scholar
Webster, M. A., Webster, S. M., Bharadwaj, S., Verma, R., Jaikumar, J., Madan, G., and Vaithilingham, E. (2002). Variations in normal color vision. III. Unique hues in Indian and United States observers. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 19 (10), 1951–62.CrossRefGoogle ScholarPubMed
Werner, J. S. (1982). Development of scotopic sensitivity and the absorption spectrum of the human ocular media. Journal of the Optical Society of America, 72(2), 247–58.CrossRefGoogle ScholarPubMed
Wiesel, T. N., and Hubel, D. H. (1963). Single cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–17.CrossRefGoogle ScholarPubMed
Wilcox, T., Haslup, J. A., and Boas, D. A. (2010). Dissociation of processing of featural and spatiotemporal information in the infant cortex. NeuroImage, 53(4), 1256–63.CrossRefGoogle ScholarPubMed
Yang, J., Kanazawa, S., and Yamaguchi, M. K. (2010). Perception of Munker–White illusion in 4–8-month-old infants. Infant Behavior and Development, 33, 589–95.CrossRefGoogle ScholarPubMed
Yuodelis, C., and Hendrickson, A. (1986). A qualitative and quantitative analysis of the human fovea during development. Vision Research, 26, 847–55.CrossRefGoogle ScholarPubMed
Zeaman, D., and Hanley, P. (1983). Stimulus preferences as structural features. In Tighe, T. G. and Shepp, B. E. (eds.), Perception, Cognition and Development: Interactional Analyses (pp. 103238). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Zeki, S. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology, 236, 549–73.CrossRefGoogle ScholarPubMed
Zemach, I., Chang, S., and Teller, D. Y. (2007). Infant color vision: prediction of infants’ spontaneous color preferences. Vision Research, 47(10), 1368–81.Google ScholarPubMed
Zemach, I. K., and Teller, D. Y. (2004). Infants’ spontaneous hue preferences are not due solely to variations in perceived saturation. Journal of Vision, 4, 323.CrossRefGoogle Scholar
Zemach, I. K., and Teller, D. Y. (2007). Infant color vision: infants’ spontaneous color preferences are well behaved. Vision Research, 47(10), 1362–7.Google ScholarPubMed
Zentner, M. R. (2001). Preferences for colors and color – emotion combinations in early childhood. Developmental Science, 4, 389–98.CrossRefGoogle Scholar

References

Balazsi, A. G., Rootman, J., Drance, S. M., Schulzer, M., and Douglas, G. R. (1984). The effect of age on the nerve fiber population of the human optic nerve. American Journal of Ophthalmology, 97, 760–6.CrossRefGoogle ScholarPubMed
Barbur, J. L., Harlow, J. A., and Williams, C. (1997). Light scattered in the eye and its effect on the measurement of the colour constancy index. In Cavonius, C. R. (ed.), Colour Vision Deficiencies XIII (pp. 439–48). Dordrecht: Kluwer Academic.Google Scholar
Barbur, J. L., Konstantakopoulou, E., Rodriguez-Carmona, M., Harlow, J. A. Robson, A. G., and Moreland, J. D. (2010). The Macular Assessment Profile Test – a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity. Ophthalmic and Physiological Optics, 30, 470–83.CrossRefGoogle Scholar
Barbur, J. L., and Rodriguez-Carmona, M. (2012). Variability in normal and defective colour vision: consequences for occupational environments. In Best, J. (ed.), Colour Design (pp. 2482). Cambridge: Woodhead.CrossRefGoogle Scholar
Barbur, J. L., Rodriguez-Carmona, M., and Harlow, J. A. (2006). Establishing the statistical limits of “normal” chromatic sensitivity. Ottawa: CIE Publication x030:2006.Google Scholar
Barbur, J. L., Rodriguez-Carmona, M., and Morgan, M. J. (2002). “Double-blindsight” in human vision. Investigative Ophthalmology and Visual Science, 43, E-abstract 3909.Google Scholar
Birch, J. (2008). Performance of colour-deficient people on the Holmes–Wright lantern (type A): consistency of occupational colour vision standards in aviation. Ophthalmic and Physiological Optics, 28, 253–8.CrossRefGoogle ScholarPubMed
Birch, J., Barbur, J. L., and Harlow, J. A. (1992). New method based on random luminance masking for measuring isochromatic zones using high resolution colour displays. Ophthalmic and Physiological Optics, 12, 133–6.CrossRefGoogle ScholarPubMed
Bronson-Castain, K. W., Bearse, M. A. Jr., Neuville, J., et al. (2012). Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina, 32, 92102.CrossRefGoogle ScholarPubMed
Calkins, D. J. (2013). Age-related changes in the visual pathways: blame it on the axon. Investigative Ophthalmology and Visual Science, 54, ORSF3741.CrossRefGoogle ScholarPubMed
Chaparro, A., Stromeyer, C. F. III, Huang, E. P., Kronauer, R. E., and Eskew, R. T. (1993). Colour is what the eye sees best. Nature, 361, 348–50.CrossRefGoogle ScholarPubMed
Chylack, L. T. Jr., Wolfe, J. K., and Friend, J., et al. (1993). Quantitating cataract and nuclear brunescence, the Harvard and LOCS systems. Optometry and Vision Science, 70, 886–95.CrossRefGoogle ScholarPubMed
Cranwell, M. B., Pearce, B., Loveridge, C., and Hurlbert, A. (2013). Performance on the Farnsworth–Munsell 100-hue test is significantly related to non-verbal IQ. Poster presented at the 23rd Symposium of the International Colour Vision Society, 14–17 July, Winchester, UK.Google Scholar
Curcio, C. A., and Drucker, D. N. (1993). Retinal ganglion cells in Alzheimer’s disease and aging. Annals of Neurology, 33, 248–57.CrossRefGoogle ScholarPubMed
Curcio, C. A., Millican, C. L., Allen, K. A., and Kalina, R. E. (1993). Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Investigative Ophthalmology and Visual Science, 34, 3278–96.Google ScholarPubMed
Enoch, J. M., and Werner, J. S., Haegerstrom-Portnoy, G., Lakshminarayanan, V., Rynders, M. (1999). Forever young: visual functions not affected or minimally affected by aging: a review. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 54, B336–51.CrossRefGoogle ScholarPubMed
Feitosa-Santana, C., Paramei, G. V., Nishi, M., Gualtieri, M., Costa, M. F., and Ventura, D. F. (2010). Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test. Ophthalmic and Physiological Optics, 30, 717–23.CrossRefGoogle ScholarPubMed
Graven, S. N. (2004). Early neurosensory visual development of the fetus and newborn. Clinics in Perinatology, 31, 199216.CrossRefGoogle ScholarPubMed
Haegerstrom-Portnoy, G., Schneck, M. E., and Brabyn, J. A. (1999). Seeing into old age: vision function beyond acuity. Optometry and Vision Science, 76, 141–58.CrossRefGoogle ScholarPubMed
Harrison, W. W., Chang, A., and Cardenas, M. G., et al. (2012). Blood pressure, vessel caliber, and retinal thickness in diabetes. Optometry and Vision Science, 89, 1715–20.CrossRefGoogle ScholarPubMed
Haug, H., Kuhl, S., Mecke, E., Sass, N. L., and Wasner, K. (1984). The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. Journal für Hirnforschung, 25, 353–74.Google ScholarPubMed
Hirata, Y., and Nishiwaki, H. (2006). The choroidal circulation assessed by laser-targeted angiography. Progress in Retinal and Eye Research, 25, 129–47.CrossRefGoogle ScholarPubMed
Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D. R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience, 25, 9669–79.CrossRefGoogle ScholarPubMed
Hurlbert, A., Loveridge, C., Ling, Y., Kourkoulou, A., and Leekam, S. (2011). Color discrimination and preference in autism spectrum disorder. Journal of Vision, 11, 429.CrossRefGoogle Scholar
Johnson, B. M., Miao, M., and Sadun, A. A. (1989). Age-related decline of human optic nerve axon populations. Age, 10, 59.CrossRefGoogle Scholar
Jonas, J. B., Muller-Bergh, J. A., Schlotzer-Schrehardt, U. M., and Naumann, G. O. (1990). Histomorphometry of the human optic nerve. Investigative Ophthalmology and Visual Science, 31, 736–44.Google ScholarPubMed
Jonas, J. B., Schmidt, A. M., Muller-Bergh, J. A., Schlotzer-Schrehardt, U. M., and Naumann, G. O. (1992). Human optic nerve fiber count and optic disc size. Investigative Ophthalmology and Visual Science, 33, 2012–18.Google ScholarPubMed
Kinnear, P. R. (1970). Proposals for scoring and assessing the 100-hue test. Vision Research, 10, 423–33.CrossRefGoogle Scholar
Kinnear, P. R., and Sahraie, A. (2002). New Farnsworth–Munsell 100-hue test norms of normal observers for each year of age 5–22 and for age decades 30–70. British Journal of Ophthalmology, 86, 1408–11.CrossRefGoogle Scholar
Knoblauch, K., Barbur, J. L., and Vital-Durand, F. (1995). Development and aging of chromatic sensitivity. Investigative Ophthalmology and Visual Science, 36(4), S910.Google Scholar
Knoblauch, K., Saunders, F., and Kusuda, M., et al. (1987). Age and illuminance effects in the Farnsworth–Munsell 100-hue test. Applied Optics, 26, 1441–8.CrossRefGoogle ScholarPubMed
Knoblauch, K., Vital-Durand, F., and Barbur, J. L. (2001). Variation of chromatic sensitivity across the life span. Vision Research, 41, 2336.CrossRefGoogle ScholarPubMed
Koenker, R. (1981). A note on studentizing a test for heteroscedasticity. Journal of Econometrics, 17(1), 107–12.CrossRefGoogle Scholar
Marvasti, A. H., Tatham, A. J., and Zangwill, L. M., et al. (2013). The relationship between visual field index and estimated number of retinal ganglion cells in glaucoma. PLoS ONE, 8, e76590.CrossRefGoogle ScholarPubMed
Neitz, M., Carroll, J., Renner, A., Knau, H., Werner, J. S., and Neitz, J. (2004). Variety of genotypes in males diagnosed as dichromatic on a conventional clinical anomaloscope. Vision Neuroscience, 21, 205–16.CrossRefGoogle ScholarPubMed
Neitz, J., and Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research, 51, 633–51.CrossRefGoogle ScholarPubMed
Neufeld, A. H., and Gachie, E. N. (2003). The inherent, age-dependent loss of retinal ganglion cells is related to the lifespan of the species. Neurobiology of Aging, 24, 167–72.CrossRefGoogle Scholar
Owsley, C. (2011). Aging and vision. Vision Research, 51, 1610–22.CrossRefGoogle ScholarPubMed
Panda-Jonas, S., Jonas, J. B., and Jakobczyk-Zmija, M. (1996). Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. American Journal of Ophthalmology, 121, 181–9.CrossRefGoogle ScholarPubMed
Paramei, G. V., and Oakley, B. (2014). Variation of color discrimination across the life span. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, A37584.CrossRefGoogle ScholarPubMed
Peters, A., Moss, M. B., and Sethares, C. (2000). Effects of aging on myelinated nerve fibers in monkey primary visual cortex. Journal of Comparative Neurolology, 419, 364–76.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Peters, A., Moss, M. B., and Sethares, C. (2001). The effects of aging on layer 1 of primary visual cortex in the rhesus monkey. Cerebral Cortex, 11, 93103.CrossRefGoogle ScholarPubMed
Peters, A., Sethares, C., and Moss, M. B. (2010). How the primate fornix is affected by age. Journal of Comparative Neurolology, 518, 3962–80.CrossRefGoogle ScholarPubMed
Rauscher, F. G., Chisholm, C. M., Edgar, D. F., and Barbur, J. L. (2013). Assessment of novel binocular colour, motion and contrast tests in glaucoma. Cell and Tissue Research, 353, 297310.CrossRefGoogle ScholarPubMed
Regan, B. C., Reffin, J. P., and Mollon, J. D. (1994). Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Research, 34, 1279–99.CrossRefGoogle ScholarPubMed
Repka, M. X., and Quigley, H. A. (1989). The effect of age on normal human optic nerve fiber number and diameter. Ophthalmology, 96, 2632.CrossRefGoogle ScholarPubMed
Rodriguez-Carmona, M., Harlow, J. A., Walker, G., and Barbur, J. L. (2005). The variability of normal trichromatic vision and the establishment of the “normal” range. Proceedings of 10th Congress of the International Colour Association (Granada), pp. 979–82.Google Scholar
Rodriguez-Carmona, M., Kvansakul, J., Harlow, J. A., Kopcke, W., Schalch, W., and Barbur, J. L. (2006). The effects of supplementation with lutein and/or zeaxanthin on human macular pigment density and colour vision. Ophthalmic and Physiological Optics, 26, 137–47.CrossRefGoogle ScholarPubMed
Rodriguez-Carmona, M., O’Neill-Biba, M., and Barbur, J. L. (2012). Assessing the severity of color vision loss with implications for aviation and other occupational environments. Aviation, Space and Environmental Medicine, 83, 1929.CrossRefGoogle ScholarPubMed
Roorda, A., and Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397, 520–2.CrossRefGoogle ScholarPubMed
Squire, T. J., Rodriguez-Carmona, M., Evans, A. D., and Barbur, J. L. (2005). Color vision tests for aviation: comparison of the anomaloscope and three lantern types. Aviation, Space and Environmental Medicine, 76, 421–9.Google ScholarPubMed
Tam, J., Dhamdhere, K. P., Tiruveedhula, P., et al. (2012). Subclinical capillary changes in non-proliferative diabetic retinopathy. Optometry and Vision Science, 89, E692703.CrossRefGoogle ScholarPubMed
Tatham, A. J., Meira-Freitas, D., Weinreb, R. N., Marvasti, A. H., Zangwill, L. M., and Medeiros, F. A. (2014). Estimation of retinal ganglion cell loss in glaucomatous eyes with a relative afferent pupillary defect. Investigative Ophthalmology and Visual Science, 55, 513–22.Google ScholarPubMed
Tucker, T. R., and Fitzpatrick, D. (2004). Contributions of vertical and horizontal circuits to the response properties of neurons in primary visual cortex. In Chalupa, L. M. and Wertheim, A. H. (eds.), The Visual Neurosciences (pp. 733–46). Cambridge, MA: MIT Press.Google Scholar
Verriest, G. (1963). Further studies on acquired deficiency of color discrimination. Journal of the Optical Society of America, 53, 185–95.CrossRefGoogle ScholarPubMed
Vincent, S. L., Peters, A., and Tigges, J. (1989). Effects of aging on the neurons within area 17 of rhesus monkey cerebral cortex. Anatomical Record, 223, 329–41.CrossRefGoogle ScholarPubMed
Vital-Durand, F. (1996). An acuity cards cookbook. Strabismus, 4, 8997.CrossRefGoogle ScholarPubMed
Werner, J. S., Delahunt, P. B., and Hardy, J. L. (2004). Chromatic-spatial vision of the aging eye. Optical Review, 11, 226–34.CrossRefGoogle ScholarPubMed
Werner, J. S., Peterzell, D. H., and Scheetz, A. J. (1990). Light, vision, and aging. Optometry and Vision Science, 67, 214–29.CrossRefGoogle ScholarPubMed
Werner, J. S., and Steele, V. G. (1988). Sensitivity of human foveal color mechanisms throughout the life span. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5, 2122–30.CrossRefGoogle ScholarPubMed
Wong, R., Khan, J., Adewoyin, T., Sivaprasad, S., Arden, G. B., and Chong, V. (2008). The ChromaTest, a digital color contrast sensitivity analyzer, for diabetic maculopathy: a pilot study. BMC Ophthalmology, 8(15).CrossRefGoogle ScholarPubMed

References

Abramov, I., Gordon, J., Feldman, O., and Chavarga, A. (2012). Sex and vision. II. Color appearance of monochromatic lights. Biology of Sex Differences, 3(1), 21.CrossRefGoogle ScholarPubMed
Banks, M. S., and Bennett, P. J. (1988). Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(12), 2059–79.CrossRefGoogle ScholarPubMed
Beer, D., Wortman, J., Horwitz, G., and MacLeod, D. (2005). Compensation of white for macular filtering [Abstract]. Journal of Vision, 5(8), 282a.CrossRefGoogle Scholar
Beer, R. D., Dinca, A., and MacLeod, D. I. A. (2006). Ideal white can be yellowish or bluish, but not reddish or greenish. Journal of Vision, 6(6), 417.CrossRefGoogle Scholar
Belmore, S. C., and Shevell, S. K. (2008). Very-long-term chromatic adaptation: test of gain theory and a new method. Visual Neuroscience, 25(3), 411–14.CrossRefGoogle ScholarPubMed
Bimler, D., and Kirkland, J. (2004). Twins and odd-ones-out: a twin study of genetic contributions to variability in personal colour space. Clinical and Experimental Optometry, 87(4–5), 313–21.Google ScholarPubMed
Bimler, D., and Kirkland, J. (2009). Colour-space distortion in women who are heterozygous for colour deficiency. Vision Research, 49(5), 536–43.CrossRefGoogle ScholarPubMed
Bimler, D. L., Kirkland, J., and Jameson, K. A. (2004). Quantifying variations in personal color spaces: are there sex differences in color vision? Color Research & Application, 29(2), 128–34.CrossRefGoogle Scholar
Bompas, A., Powell, G., and Sumner, P. (2013). Systematic biases in adult color perception persist despite lifelong information sufficient to calibrate them. Journal of Vision, 13(1).CrossRefGoogle Scholar
Bosten, J. M., Bargary, G., Goodbourn, P. T., Hogg, R. E., Lawrance-Owen, A. J., and Mollon, J. D. (2014). Individual differences provide psychophysical evidence for separate on- and off-pathways deriving from short-wave cones. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(4), A4754.CrossRefGoogle ScholarPubMed
Bosten, J. M., and Lawrance-Owen, A. J. (2014). No difference in variability of unique hue selections and binary hue selections. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, A357–64.CrossRefGoogle ScholarPubMed
Boynton, R. M., and Kaiser, P. K. (1968). Vision: the additivity law made to work for heterochromatic photometry with bipartite fields. Science, 161(839), 366–8.CrossRefGoogle ScholarPubMed
Brainard, D. H., Roorda, A., Yamauchi, Y., Calderone, J. B., Metha, A., Neitz, M., and Jacobs, G. H. (2000). Functional consequences of the relative numbers of L and M cones. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(3), 607–14.Google ScholarPubMed
Brainard, D. H., and Wandell, B. A. (1992). Asymmetric color matching: how color appearance depends on the illuminant. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 9(9), 1433–48.CrossRefGoogle ScholarPubMed
Brown, A. M., and Lindsey, D. T. (2004). Color and language: worldwide distribution of Daltonism and distinct words for “blue”. Visual Neuroscience, 21(3), 409–12.CrossRefGoogle ScholarPubMed
Cavanagh, P., MacLeod, D. I., and Anstis, S. M. (1987). Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 4(8), 1428–38.CrossRefGoogle ScholarPubMed
Chauhan, T., Perales, E., Xiao, K., Hird, E., Karatzas, D., and Wuerger, S. (2014). The achromatic locus: effect of navigation direction in color space. Journal of Vision, 14 :1:25, 111.CrossRefGoogle ScholarPubMed
Cicerone, C. M. (1987). Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis. Farbe, 34, 5966.Google Scholar
Davies, N. P., and Morland, A. B. (2004). Macular pigments: their characteristics and putative role. Progress in Retinal and Eye Research, 23(5), 533–59.CrossRefGoogle ScholarPubMed
Delahunt, P. B., Webster, M. A., Ma, L., and Werner, J. S. (2004). Long-term renormalization of chromatic mechanisms following cataract surgery. Visual Neuroscience, 21(3), 301–7.CrossRefGoogle ScholarPubMed
Derrington, A. M., Krauskopf, J., and Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 241–65.CrossRefGoogle ScholarPubMed
De Valois, R. L., and De Valois, K. K. (1993). A multi-stage color model. Vision Research, 33(8), 1053–65.CrossRefGoogle ScholarPubMed
de Vries, H. (1949). The heredity of the relative numbers of the red and green receptors in the human eye. Genetica, 24, 199212.CrossRefGoogle Scholar
Dobkins, K. R., Gunther, K. L., and Peterzell, D. H. (2000). What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity? Vision Research, 40(6), 613–28.CrossRefGoogle ScholarPubMed
Elliott, S. L., Werner, J. S., and Webster, M. A. (2012). Individual and age-related variation in chromatic contrast adaptation. Journal of Vision, 12(8), 11.CrossRefGoogle ScholarPubMed
Granzier, J. J. M., and Valsecchi, M. (2014). Variations in daylight as a contextual cue for estimating season, time of day, and weather conditions. Journal of Vision, 14 .1:22, 123.CrossRefGoogle ScholarPubMed
Gunther, K. L., and Dobkins, K. R. (2002). Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye. Vision Research, 42(11), 1367–78.CrossRefGoogle ScholarPubMed
Gunther, K. L., and Dobkins, K. R. (2003). Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis. Vision Research, 43(6), 683–96.CrossRefGoogle ScholarPubMed
Hammond, B. R. Jr., Wooten, B. R., and Snodderly, D. M. (1997). Individual variations in the spatial profile of human macular pigment. Journal of the Optical Society of America. A, Optics, Image Science, and Vision,, 14(6), 1187–96.CrossRefGoogle ScholarPubMed
Hansen, T., Olkkonen, M., Walter, S., and Gegenfurtner, K. R. (2006). Memory modulates color appearance. Nature Neuroscience, 9(11), 1367–8.CrossRefGoogle ScholarPubMed
Hardy, J. L., Frederick, C. M., Kay, P., and Werner, J. S. (2005). Color naming, lens aging, and grue: what the optics of the aging eye can teach us about color language. Psychological Science, 16(4), 321–7.CrossRefGoogle ScholarPubMed
Hinks, D., Cardenas, L. M., Kuehni, R. G., and Shamey, R. (2007). Unique-hue stimulus selection using Munsell color chips. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 24(10), 3371–8.CrossRefGoogle ScholarPubMed
Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D. R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience, 25(42), 9669–79.CrossRefGoogle ScholarPubMed
Jameson, K. A., Highnote, S. M., and Wasserman, L. M. (2001). Richer color experience in observers with multiple photopigment opsin genes. Psychonomic Bulletin & Review, 8(2), 244–61.CrossRefGoogle ScholarPubMed
Jordan, G., Deeb, S. S., Bosten, J. M., and Mollon, J. D. (2010). The dimensionality of color vision in carriers of anomalous trichromacy. Journal of Vision, 10(8), 12.CrossRefGoogle ScholarPubMed
Jordan, G., and Mollon, J. D. (1993). A study of women heterozygous for colour deficiencies. Vision Research, 33(11), 14951508.CrossRefGoogle ScholarPubMed
Jordan, G., and Mollon, J. D. (1995). Rayleigh matches and unique green. Vision Research, 35(5), 613–20.CrossRefGoogle ScholarPubMed
Juricevic, I., and Webster, M. A. (2009). Variations in normal color vision. V. Simulations of adaptation to natural color environments. Visual Neuroscience, 26(1), 133–45.CrossRefGoogle ScholarPubMed
Kaiser, P. K. (1988). Sensation luminance: a new name to distinguish CIE luminance from luminance dependent on an individual’s spectral sensitivity. Vision Research, 28(3), 455–6.CrossRefGoogle Scholar
Kay, P., Berlin, B., Maffi, L., Merrifield, W. R., and Cook, R. (2009). The World Color Survey. Stanford, CA: CSLI.Google Scholar
Komarova, N. L., and Jameson, K. A. (2008). Population heterogeneity and color stimulus heterogeneity in agent-based color categorization. Journal of Theoretical Biology, 253(4), 680700.CrossRefGoogle ScholarPubMed
Kuehni, R. G. (2001). Determination of unique hues using Munsell color chips. Color Research & Application, 26, 61–6.3.0.CO;2-P>CrossRefGoogle Scholar
Kuehni, R. G. (2004). Variability in unique hue selection: a surprising phenomenon. Color Research & Application, 29, 158–62.Google Scholar
Lennie, P., Pokorny, J., and Smith, V. C. (1993). Luminance. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(6), 1283–93.CrossRefGoogle ScholarPubMed
Lindsey, D. T., and Brown, A. M. (2002). Color naming and the phototoxic effects of sunlight on the eye. Psychological Science, 13(6), 506–12.CrossRefGoogle ScholarPubMed
Lindsey, D. T., and Brown, A. M. (2009). World Color Survey color naming reveals universal motifs and their within-language diversity. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 19785–90.Google ScholarPubMed
Lindsey, D. T., and Teller, D. Y. (1990). Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings. Vision Research, 30(11), 1751–61.CrossRefGoogle ScholarPubMed
Livingstone, M., and Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740–9.CrossRefGoogle ScholarPubMed
MacLeod, D. I., and Boynton, R. M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69(8), 1183–6.CrossRefGoogle ScholarPubMed
MacLeod, D. I., and Webster, M. A. (1988). Direct psychophysical estimates of the cone-pigment absorption spectra. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(10), 1736–43.CrossRefGoogle ScholarPubMed
Malkoc, G., Kay, P., and Webster, M. A. (2005). Variations in normal color vision. IV. Binary hues and hue scaling. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 22(10), 2154–68.CrossRefGoogle ScholarPubMed
Miyahara, E. (2003). Focal colors and unique hues. Perceptual and Motor Skills, 97(3 Pt 2), 1038–42.CrossRefGoogle ScholarPubMed
Miyahara, E., Pokorny, J., Smith, V. C., Baron, R., and Baron, E. (1998). Color vision in two observers with highly biased LWS/MWS cone ratios. Vision Research, 38(4), 601–12.CrossRefGoogle ScholarPubMed
Miyahara, E., Szewczyk, E., and McMartin, J. (2004). Individual differences in unique hue loci and their relation to color preferences. Color Research & Application, 29, 285–91.CrossRefGoogle Scholar
Mizokami, Y., Werner, J. S., Crognale, M. A., and Webster, M. A. (2006). Nonlinearities in color coding: compensating color appearance for the eye’s spectral sensitivity. Journal of Vision, 6(9), 9961007.CrossRefGoogle ScholarPubMed
Mollon, J. D. (1992). Worlds of difference. Nature, 356, 378–9.CrossRefGoogle ScholarPubMed
Mollon, J. D. (2006). Monge (the Verriest Lecture). Visual Neuroscience, 23, 297309.CrossRefGoogle ScholarPubMed
Mollon, J. D. (2009). A neural basis for unique hues? Current Biology, 19(11), R441–2; author reply R442–3.CrossRefGoogle ScholarPubMed
Mollon, J. D., Bowmaker, J. K., and Jacobs, G. H. (1984). Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London. Series B, Biological Sciences, 222(1228), 373–99.Google Scholar
Mollon, J. D., and Jordan, G. (1997). On the nature of unique hues. In Dickenson, C., Murray, I., and Carden, D. (eds.), John Dalton’s Colour Vision Legacy (pp. 381–97). London: Taylor and Francis.Google Scholar
Mullen, K. T. (1985). The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. Journal of Physiology, 359, 381400.CrossRefGoogle ScholarPubMed
Murray, I. J., Parry, N. R., McKeefry, D. J., and Panorgias, A. (2012). Sex-related differences in peripheral human color vision: a color matching study. Journal of Vision, 12(1).CrossRefGoogle ScholarPubMed
Nagy, A. L., MacLeod, D. I., Heyneman, N. E., and Eisner, A. (1981). Four cone pigments in women heterozygous for color deficiency. Journal of the Optical Society of America, 71(6), 719–22.CrossRefGoogle ScholarPubMed
Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M., and Williams, D. R. (2002). Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron, 35(4), 783–92.CrossRefGoogle ScholarPubMed
Neitz, J., and Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research, 51(7), 633–51.CrossRefGoogle ScholarPubMed
Neitz, J., Neitz, M., He, J. C., and Shevell, S. K. (1999). Trichromatic color vision with only two spectrally distinct photopigments. Nature Neuroscience, 2(10), 884–8.CrossRefGoogle ScholarPubMed
O’Neil, S. F., and Webster, M. A. (2014). Filling in, filling out, or filtering out: processes stabilizing color appearance near the center of gaze. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(4), A140–7.CrossRefGoogle ScholarPubMed
Owsley, C. (2011). Aging and vision. Vision Research, 51(13), 1610–22.CrossRefGoogle ScholarPubMed
Panorgias, A., Kulikowski, J. J., Parry, N. R., McKeefry, D. J., and Murray, I. J. (2012). Phases of daylight and the stability of color perception in the near peripheral human retina. Journal of Vision, 12(3).CrossRefGoogle ScholarPubMed
Paramei, G. V., Bimler, D. L., and Mislavskaia, N. O. (2004). Colour perception in twins: individual variation beyond common genetic inheritance. Clinical and Experimental Optometry, 87(4–5), 305–12.CrossRefGoogle ScholarPubMed
Peterzell, D. H., and Teller, D. Y. (2000). Spatial frequency tuned covariance channels for red-green and luminance-modulated gratings: psychophysical data from human adults. Vision Research, 40(4), 417–30.Google ScholarPubMed
Pokorny, J., and Smith, V. C. (1977). Evaluation of single-pigment shift model of anomalous trichromacy. Journal of the Optical Society of America, 67(9), 11961209.CrossRefGoogle ScholarPubMed
Pokorny, J., and Smith, V. C. (1987). L/M cone ratios and the null point of the perceptual red/green opponent system. Farbe, 34, 53–7.Google Scholar
Pokorny, J., Smith, V. C., and Lutze, M. (1987). Aging of the human lens. Applied Optics, 26, 1437–40.CrossRefGoogle ScholarPubMed
Richards, W. (1967). Differences among color normals: classes I and II. Journal of the Optical Society of America, 57(8), 1047–55.CrossRefGoogle ScholarPubMed
Roorda, A., and Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397(6719), 520–2.CrossRefGoogle ScholarPubMed
Schefrin, B. E., and Werner, J. S. (1990). Loci of spectral unique hues throughout the life span. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 7(2), 305–11.CrossRefGoogle ScholarPubMed
Schmidt, B. P., Neitz, M., and Neitz, J. (2014). Neurobiological hypothesis of color appearance and hue perception. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, A195–207.CrossRefGoogle ScholarPubMed
Schmolesky, M. T., Wang, Y., Pu, M., and Leventhal, A. G. (2000). Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nature Neuroscience, 3(4), 384–90.CrossRefGoogle ScholarPubMed
Shepard, R. N. (1962). The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika, 27, 219–46.Google Scholar
Smithson, H. E., Sumner, P., and Mollon, J. D. (2003). How to find a tritan line. In Mollon, J. D., Pokorny, J., and Knoblauch, K.(ed.), Normal and Defective Colour Vision (pp. 279–87). Oxford University Press.Google Scholar
Snodderly, D. M., Auran, J. D., and Delori, F. C. (1984). The macular pigment. II. Spatial distribution in primate retinas. Investigative Ophthalmology and Vision Science, 25(6), 674–85.Google ScholarPubMed
Stoughton, C. M., and Conway, B. R. (2008). Neural basis for unique hues. Current Biology, 18(16), R698–9.CrossRefGoogle ScholarPubMed
Switkes, E. (2008). Contrast salience across three-dimensional chromoluminance space. Vision Research, 48(17), 1812–19.CrossRefGoogle ScholarPubMed
Switkes, E., Bradley, A., and De Valois, K. K. (1988). Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(7), 1149–62.CrossRefGoogle ScholarPubMed
Tansley, B. W., and Boynton, R. M. (1976). A line, not a space, represents visual distinctness of borders formed by different colors. Science, 191(4230), 954–7.CrossRefGoogle Scholar
van Norren, D., and Vos, J. J. (1974). Spectral transmission of the human ocular media. Vision Research, 14, 1237–44.Google Scholar
Volbrecht, V. J., Nerger, J. L., and Harlow, C. E. (1997). The bimodality of unique green revisited. Vision Research, 37(4), 407–16.CrossRefGoogle ScholarPubMed
Webster, M. A. (1992). Reanalysis of lambda max variations in the Stiles–Burch 10 degrees color-matching functions. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 9(8), 1419–21.CrossRefGoogle ScholarPubMed
Webster, M. A. (1996). Human colour perception and its adaptation. Network: Computation in Neural Systems, 7, 587634.CrossRefGoogle Scholar
Webster, M. A. (2011). Adaptation and visual coding. Journal of Vision, 11(5), 123.CrossRefGoogle ScholarPubMed
Webster, M. A., Halen, K., Meyers, A. J., Winkler, P., and Werner, J. S. (2010). Colour appearance and compensation in the near periphery. Proceedings of the Royal Society of London. Series B, Biological Sciences, 277(1689), 1817–25.Google ScholarPubMed
Webster, M. A., Juricevic, I., and McDermott, K. C. (2010). Simulations of adaptation and color appearance in observers with varying spectral sensitivity. Ophthalmic and Physiological Optics, 30(5), 602–10.CrossRefGoogle ScholarPubMed
Webster, M. A., and Kay, P. (2007). Individual and population differences in focal colors. In MacLaury, R. E., Paramei, G. V., and Dedrick, D. (eds.), Anthropology of Color (pp. 2953). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Webster, M. A., and Leonard, D. (2008). Adaptation and perceptual norms in color vision. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 25(11), 2817–25.CrossRefGoogle ScholarPubMed
Webster, M. A., and MacLeod, D. I. (1988). Factors underlying individual differences in the color matches of normal observers. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(10), 1722–35.CrossRefGoogle ScholarPubMed
Webster, M. A., Miyahara, E., Malkoc, G., and Raker, V. E. (2000a). Variations in normal color vision. I. Cone-opponent axes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(9), 1535–44.Google ScholarPubMed
Webster, M. A., Miyahara, E., Malkoc, G., and Raker, V. E. (2000b). Variations in normal color vision. II. Unique hues. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(9), 1545–55.Google ScholarPubMed
Webster, M. A., Mizokami, Y., and Webster, S. M. (2007). Seasonal variations in the color statistics of natural images. Network, 18(3), 213–33.Google ScholarPubMed
Webster, M. A., and Mollon, J. D. (1994). The influence of contrast adaptation on color appearance. Vision Research, 34(15), 19932020.CrossRefGoogle ScholarPubMed
Webster, M. A. (1997). Adaptation and the color statistics of natural images. Vision Research, 37(23), 3283–98.CrossRefGoogle ScholarPubMed
Webster, M. A., Webster, S. M., Bharadwaj, S., Verma, R., Jaikumar, J., Madan, G., and Vaithilingham, E. (2002). Variations in normal color vision. III. Unique hues in Indian and United States observers. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 19(10), 1951–62.CrossRefGoogle ScholarPubMed
Webster, M. A., Werner, J. S., and Field, D. J. (2005). Adaptation and the phenomenology of perception. In Clifford, C. and Rhodes, G. (eds.), Fitting the Mind to the World: Adaptation and Aftereffects in High-Level Vision. Advances in Visual Cognition Series, vol. II (pp. 241–77). Oxford University Press.Google Scholar
Webster, M. A., Yasuda, M., Haber, S., Ballardini, N., and Leonard, D. (2007). Adaptation and perceptual norms. In Rogowitz, B. E. and Pappas, T. N. (eds.), Human Vision and Electronic Imaging, Proceedings of SPIE, 6492, pp 111).CrossRefGoogle Scholar
Welbourne, L. E., Thompson, P. G., Wade, A. R., and Morland, A. B. (2013). The distribution of unique green wavelengths and its relationship to macular pigment density. Journal of Vision, 13(8).CrossRefGoogle ScholarPubMed
Werner, J. S. (1996). Visual problems of the retina during ageing: compensation mechanisms and colour constancy across the life span. Progress in Retinal and Eye Research, 15(2), 621–45.CrossRefGoogle Scholar
Werner, J. S., Peterzell, D. H., and Scheetz, A. J. (1990). Light, vision, and aging. Optometry and Visual Science, 67(3), 214–29.CrossRefGoogle ScholarPubMed
Werner, J. S., and Schefrin, B. E. (1993). Loci of achromatic points throughout the life span. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(7), 1509–16.CrossRefGoogle ScholarPubMed
Wilmer, J. B. (2008). How to use individual differences to isolate functional organization, biology, and utility of visual functions; with illustrative proposals for stereopsis. Spatial Vision, 21(6), 561–79.CrossRefGoogle ScholarPubMed
Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Williams, M., Loken, E., and Duchaine, B. (2010). Human face recognition ability is specific and highly heritable. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 5238–41.Google ScholarPubMed
Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A. G., and Deeb, S. S. (1992). Polymorphism in red photopigment underlies variation in colour matching. Nature, 356(6368), 431–3.CrossRefGoogle ScholarPubMed
Wooten, B. R., and Hammond, B. R. Jr. (2005). Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry. Optometry and Visual Science, 82(5), 378–86.CrossRefGoogle ScholarPubMed
Wuerger, S., Xiao, K., Fu, C., and Karatzas, D. (2010). Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes. Ophthalmic and Physiological Optics, 30(5), 653–9.CrossRefGoogle Scholar
Wuerger, S. M. (2013). Colour constancy across the life span: evidence for compensatory mechanisms. PLoS ONE, 8(5), e63921.CrossRefGoogle ScholarPubMed
Wuerger, S. M., Atkinson, P., and Cropper, S. (2005). The cone inputs to the unique-hue mechanisms. Vision Research, 45(25–6), 3210–23.CrossRefGoogle Scholar
Wyszecki, G., and Stiles, W. S. (1980). High-level trichromatic color matching and the pigment-bleaching hypothesis. Vision Research, 20(1), 2337.CrossRefGoogle ScholarPubMed
Wyszecki, G., and Stiles, W. S. (1982). Color Science, 2nd edn. New York: Wiley.Google Scholar
Yendrikhovskij, S. N. (2001). Computing color categories from the statistics of natural images. Journal of Imaging Science and Technology, 45, 409–17.CrossRefGoogle Scholar

References

Asada, K. (2013). Chromatic Vision Simulator (http://asada.tukusi.ne.jp/cvsimulator/e).Google Scholar
Baraas, R. C., Carroll, J., Gunther, K. L., Chung, M., Williams, D. R., Foster, D. H., and Neitz, M. (2007). Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color vision deficiency. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 24(5), 1438–47.CrossRefGoogle ScholarPubMed
Beauchamp, M. S., Haxby, J. V., Jennings, J. E., and DeYoe, E. A. (1999). An fMRI version of the Farnsworth–Munsell 100-hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cerebral Cortex, 9(3), 257–63.CrossRefGoogle ScholarPubMed
Birch, J. (1973). Dichromatic convergence points obtained by subtractive colour matching. Vision Research, 13, 1755–65.CrossRefGoogle ScholarPubMed
Birch, J. (2001). Diagnosis of Defective Colour Vision, 2nd edn. Oxford: Butterworth Heinemann.Google Scholar
Birch, J. (2012). Worldwide prevalence of red-green color deficiency. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 29(3), 313–20.CrossRefGoogle ScholarPubMed
Bouvier, S. E., and Engel, S. A. (2006). Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cerebral Cortex, 16, 183–91.CrossRefGoogle ScholarPubMed
Bowmaker, J. K., and Dartnall, H. J. A. (1980). Visual pigments of rods and cones in a human retina. Journal of Physiology (London), 298, 501–11.CrossRefGoogle Scholar
Brettel, H., Vienot, F., and Mollon, J. D. (1997). Computerized simulation of color appearance for dichromats. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 14(10), 2647–55.CrossRefGoogle ScholarPubMed
Cavalleri, A., and Gobba, F. (1998). Reversible color vision loss in occupational exposure to metallic mercury. Environmental Research, 77(2), 173–7.CrossRefGoogle ScholarPubMed
Civil Aviation Authority (2014). Colour vision guidance (www.caa.co.uk).Google Scholar
Cole, B. L. (1972). The handicap of abnormal colour vision. Australian Journal of Optometry, 55, 304–10.CrossRefGoogle Scholar
Cole, B. L. (2002). Protan colour vision deficiency and road accidents. Clinical and Experimental Optometry, 85(4), 246–53.CrossRefGoogle ScholarPubMed
Cole, B. L., Henry, G. H., and Nathan, J. (1966). Phenotypical variations of tritanopia. Vision Research, 6, 301–13.CrossRefGoogle Scholar
Costa, T. L., Barboni, M. T. S., Moura, A., Bonci, D. M. O., Gualtieri, M., Silveira, L. C., and Ventura, D. F. (2012). Long-term occupational exposure to organic solvents affects color vision, contrast sensitivity and visual fields. PLoS ONE, 7(8), e42961.CrossRefGoogle ScholarPubMed
Cumberland, P., Rahi, J. S., and Peckham, C. S. (2005). Impact of congenital colour vision defects on occupation. Archives of Disease in Childhood, 90, 906–8.CrossRefGoogle ScholarPubMed
Dain, S. J. (2003). Evaluation of “Colour Vision Testing Made Easy”. In Mollon, J. D., Pokorny, J., and Knoblauch, K. (eds.), Normal and Defective Colour Vision (pp. 340–6). Oxford University Press.Google Scholar
Dain, S. J. (2004). Clinical colour vision tests. Clinical and Experimental Optometry, 87(4–5), 276–93.CrossRefGoogle ScholarPubMed
Dalton, J. (1798). Extraordinary facts relating to the vision of colours: with observations. Memoirs of the Manchester Literary and Philosophical Society, 5, 2845.Google Scholar
Deeb, S. S. (2005). The molecular basis of variation in human color vision. Clinical Genetics 67, 369–77.CrossRefGoogle ScholarPubMed
Deeb, S. S. (2006). Genetics of variation in human color vision and the retinal cone mosaic. Current Opinion in Genetics & Development, 16, 301–7.CrossRefGoogle ScholarPubMed
Farnsworth, D. (1943). The Farnsworth–Munsell 100-hue and dichotomous tests for color vision. Journal of the Optical Society of America, 33(10), 568–78.CrossRefGoogle Scholar
Feitosa-Santana, C., Barboni, M. T., Oiwa, N. N., Paramei, G. V., Simões, A. L., Da Costa, M. F., Silveira, L. C., et al. (2008). Irreversible color vision losses in patients with chronic mercury vapor intoxication. Visual Neuroscience, 25(3), 487–91.CrossRefGoogle ScholarPubMed
Fraunfelder, F. T., and Fraunfelder, F. W. (2001). Drug-Induced Ocular Side Effects, 5th edn. Boston, MA: Butterworth-Heinemann.Google Scholar
Health and Safety Executive (2005a). Colour Vision Examination: A Guide for Employers (www.hse.gov.uk/pubns/web03.pdf).Google Scholar
Health and Safety Executive (2005b). Guidance note MS7; Colour Vision Examination: A Guide for Occupational Health Providers (www.hse.gov.uk/pubns/ms7.pdf).Google Scholar
Henderson, A. (2005). Screening for colour vision defects is important (response to Cumberland et al.). Archives of Disease in Childhood, 90, 906–8.Google Scholar
Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D. R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience, 25(42), 9669–79.CrossRefGoogle ScholarPubMed
Hunt, D. M., Dulai, K., Bowmaker, J. K., and Mollon, J. D. (1995). The chemistry of John Dalton’s color blindness. Science, 267, 984–8.CrossRefGoogle ScholarPubMed
Iregren, A., Andersson, M., and Nylen, P. (2001). Color vision and occupational chemical exposures. I. An overview of tests and effects. NeuroToxicology, 23, 719–33.Google Scholar
Jordan, G., Deeb, S. S., Bosten, J. M., and Mollon, J. D. (2010). The dimensionality of color vision in carriers of anomalous trichromacy. Journal of Vision, 10(8:12), 119.CrossRefGoogle ScholarPubMed
Judd, D. B. (1943). Facts of colorblindness. Journal of the Optical Society of America, 33(6), 294307.CrossRefGoogle Scholar
Knight, R., and Buck, S. L. (2001). Rod influences on hue perception: effect of background light level. Color Research & Application, 26, S60–4.3.0.CO;2-G>CrossRefGoogle Scholar
Köllner, H. (1912). Die Störungen des Farbensinnes: Ihre klinische Bedeutung und ihre Diagnose. Berlin: Karger.Google Scholar
Kurtenbach, A., Schiefer, U., Neu, A., and Zrenner, E. (1999). Preretinopic changes in the colour vision of juvenile diabetics. British Journal of Ophthalmology, 83, 43–6.CrossRefGoogle ScholarPubMed
Lee, B. B., Martin, P. R., and Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. Journal of Physiology (London), 404, 323–47.CrossRefGoogle ScholarPubMed
Lerman, S. (1980). Radiant Energy and the Eye. New York: Macmillan.Google Scholar
MacAdam, D. L. (1942). Visual sensitivities to color difference in daylight. Journal of the Optical Society of America, 32, 247–74.CrossRefGoogle Scholar
Mancuso, K., Hauswirth, W. W., Li, Q., Connor, T. B., Kuchenbecker, J. A., Mauck, M. C., Neitz, J., et al. (2009). Gene therapy for red-green colourblindness in adult primates. Nature, 461, 784–7.CrossRefGoogle ScholarPubMed
Mäntyjärvi, M., and Tuppurainen, K. (1992). Color vision in Stargardt’s disease. International Ophthalmology, 16(6), 423–8.CrossRefGoogle ScholarPubMed
Marmor, M. F., and Ravin, J. G. (2009). The Artist’s Eyes: Vision and the History of Art New York: Abrams.Google Scholar
Marré, M. (1973). The investigation of acquired colour deficiencies. In Judd, D. B. (ed.), Colour 73 (pp. 99135). London: Wiley.Google Scholar
McKeefry, D. J., Burton, M., Vakrou, C., Barrett, B. T., and Morland, A. B. (2008). Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A. Journal of Neuroscience, 28(27), 6848–57.CrossRefGoogle ScholarPubMed
McKeefry, D. J., and Zeki, S. (1997). The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain, 120, 2229–42.CrossRefGoogle ScholarPubMed
Michaelides, M., Hardcastle, A. J., Hunt, D. M., and Moore, A. T. (2006). Progressive cone and cone–rod dystrophies: phenotypes and underlying molecular genetic basis. Survey of Ophthalmology, 51(3), 232–58.CrossRefGoogle ScholarPubMed
Mollon, J. D. (1989). “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate color vision. Journal of Experimental Biology, 146, 2138.CrossRefGoogle Scholar
Mollon, J. D., Astell, S., and Reffin, J. P. (1991). A minimalist test of colour vision. In Drum, B., Moreland, J. D., and Serra, A. (eds.), Colour Vision Deficiencies X (pp. 5968). Dordrecht: Kluwer.CrossRefGoogle Scholar
Mollon, J. D., and Cavonius, L. R. (2012). The Lagerlunda collision and the introduction of color vision testing. Survey of Ophthalmology, 57(2), 178–94.CrossRefGoogle ScholarPubMed
Mollon, J. D., Dulai, K. S., and Hunt, D. M. (1997). Dalton’s colour blindness: an essay in molecular biography. In Dickinson, C. M., Murray, I. J., and Carden, D. (eds.), John Dalton’s Colour Vision Legacy (pp. 1533). London: Taylor and Francis.Google Scholar
Munsell, A. H. (1912). A pigment color system and notation. American Journal of Psychology, 23(2), 236–44.Google Scholar
Murphey, D. K., Yoshor, D., and Beauchamp, M. S. (2008). Perception matches selectivity in the human anterior color center. Current Biology, 18, 216–20.CrossRefGoogle ScholarPubMed
Nathans, J., Davenport, C. M., Maumenee, I. H., Lewis, R. A., Hejmancik, J. F., Litt, M., Lovrien, E., et al. (1989). Molecular genetics of human blue-cone monochromacy. Science, 245, 831–8.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D., and Hogness, D. S. (1986). Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science, 232, 193202.CrossRefGoogle ScholarPubMed
Neitz, M., Kraft, T. W., and Neitz, J. (1998). Expression of L cone pigment gene subtypes in females. Vision Research, 38, 3221–5.CrossRefGoogle ScholarPubMed
Neitz, M., Mancuso, K., and Neitz, J. (2011). Color vision defects. In Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Neitz, M., and Neitz, J. (1995). Numbers and ratios of visual pigment genes for normal red-green color vision. Science, 267, 1013–16.CrossRefGoogle ScholarPubMed
Neitz, M., and Neitz, J. (2000). Moleular genetics of color vision and color vision defects. Archives of Ophthalmology, 118, 691700.CrossRefGoogle Scholar
Neitz, M., and Neitz, J. (2001). A new mass screening test for color vision deficiencies in children. Color Research & Application, 26, S239–49.3.0.CO;2-L>CrossRefGoogle Scholar
Paramei, G. V., Meyer-Baron, M., and Seeber, A. (2004). Impairments of colour vision induced by organic solvents: a meta-analysis study. NeuroToxicology, 25, 803–16.CrossRefGoogle ScholarPubMed
Pokorny, J., Collins, W., Howett, G., Lakowski, R., Lewis, M., Moreland, J. D., Paulson, H., et al. (1981). Procedures for Testing Color Vision: Report of Working Group 41. Washington, DC: National Academy Press.Google Scholar
Rabin, J., Gooch, J., and Ivan, D. (2011). Rapid quantification of color vision: the cone contrast test. Investigative Ophthalmology and Vision Science, 52, 816–20.Google ScholarPubMed
Rail Safety and Standards Board (2007). Good Practice Guide on Colour Vision Requirements for Rail Workers. London: RSSB.Google Scholar
Rietbrock, N., Alken, R. G., and Verriest, G. (1983). Color vision deficiencies: a common sign of intoxication in chronically digoxin-treated patients. In Verriest, G. (ed.), Colour Vision Deficiencies V (pp. 5965). Bristol: Adam Hilger.Google Scholar
Rigden, C. (1999). ‘The eye of the beholder’ – designing for colour-blind users. British Telecommunications Engineering, 17.Google Scholar
Royal College of Ophthalmologists (2009). Hydroxychloroquine and Ocular Toxicity. Recommendations on Screening. London: Royal College of Ophthalmologists.Google Scholar
Rushton, W. A. H. (1972). Pigments and signals in colour vision. Journal of Physiology (London), 220(3), 131.CrossRefGoogle ScholarPubMed
Sharpe, L. T., Stockman, A., Jaegle, H., and Nathans, J. (1999). Opsin genes, cone photopigments, color vision, and color blindness. In Gegenfurtner, K. R. and Sharpe, L. T. (eds.), Color Vision: From Genes to Perception (pp. 352). Cambridge University Press.Google Scholar
Turkish Ministry of Education (2006). (http://mevzuat.meb.gov.tr/html/26301_0.html).Google Scholar
Van Beveren, T. (2014). We are colorblind (http://wearecolorblind.com/).Google Scholar
Verriest, G., Neubauer, O., Marré, M., and Uvijls, A. (1980). New investigations concerning the relationships between congenital colour vision defects and road traffic security. International Ophthalmology, 2, 8799.CrossRefGoogle Scholar
Walsh, V., Carden, D., Butler, S. R., and Kulikowski, J. J. (1993). The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behavioural Brain Research, 53, 5162.CrossRefGoogle ScholarPubMed
Werner, J. S. (1996). Visual problems of the retina during ageing: compensation mechanisms and colour constancy across the life span. Progress in Retinal and Eye Research, 15(2), 621–45.CrossRefGoogle Scholar
Wild, H. M., Butler, S. R., Carden, D., and Kulikowski, J. J. (1985). Primate cortical area V4 important for colour constancy but not wavelength discrimination. Nature, 313, 133–5.CrossRefGoogle Scholar
Zeki, S. (1980). The representation of colours in the cerebral cortex. Nature, 284, 412–18.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×