Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-08T14:28:07.789Z Has data issue: false hasContentIssue false

1 - The scientific basis of pediatric HIV care

Published online by Cambridge University Press:  23 December 2009

Steven L. Zeichner
Affiliation:
National Cancer Institute, Bethesda, Maryland
Jennifer S. Read
Affiliation:
National Institutes of Health, Bethesda, Maryland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goldblum, R., Hanson, L., Brandtzaeg, P. The mucosal defense system. In Steihm, E., ed. Immunologic Disorders in Infants and Children. Philadelphia: W. B Saunders; 1996: 159–200.Google Scholar
Neutra, M. R., , Pringault E., Kraehenbuhl, J. P.Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu. Rev. Immunol. 1996;14:275–300.CrossRefGoogle ScholarPubMed
Johnston, R. B. Jr.The complement system in host defense and inflammation: the cutting edges of a double edged sword. Pediatr. Infect. Dis. J. 1993;12(11):933–941.CrossRefGoogle ScholarPubMed
Johnston, R. B. Jr.Current concepts: immunology. Monocytes and macrophages. N. Engl. J. Med 1988;318(12):747–752.CrossRefGoogle ScholarPubMed
Gluckman, J. C., , Canque B., , Rosenzwajg M.Dendritic cells: a complex simplicity. Transplantation 2002;73(1 Suppl):S3–6.CrossRefGoogle ScholarPubMed
Ferlazzo, G., Wesa, A., Wei, W. Z. S., Galy, A.Dendritic cells generated either from cluster of differentiation34+ progenitor cells or from monocytes differ in their ability to activate antigen-specific cluster of differentiation8+ T cells. J. Immunol. 1999;163(7):3597–3604.Google Scholar
Banchereau, J., Pulendran, B., Steinman, R., Palucka, K.Will the making of plasmacytoid dendritic cells in vitro help unravel their mysteries?J. Exp. Med. 2000;192(12):F39–F44.CrossRefGoogle ScholarPubMed
Vasselon, T., Detmers, P. A.Toll receptors: a central element in innate immune responses. Infect. Immun. 2002;70(3):1033–1041.CrossRefGoogle ScholarPubMed
Williams, A. F., Barclay, A. N.The immunoglobulin superfamily – domains for cell surface recognition. Annu. Rev. Immunol. 1988;6:381–405.CrossRefGoogle ScholarPubMed
Berkower, I. The T cell, maestro of the immune system: receptor acquisition, major histocompatibility complex recognitiion, thymic selection and tolerance. In , Sell S., ed. Immunology, Immunopathology and Immunity. Stamford, Connecticut: Appleton & Lange; 1996: 168–187.Google Scholar
Bierer, B. E., Sleckman, B. P., Ratnofsky, S. E., Burakoff, S. J.The biological roles of cluster of differentiation2, cluster of differentiation4, and cluster of differentiation8 in T-cell activation. Annu. Rev. Immunol. 1989;7:579–599.CrossRefGoogle Scholar
Clement, L. Cellular interactions in the human immune response. In Stiehm, E. R., ed. Immunologic Disorders of Infants and Children. Philadelphia: W. B. Saunders; 1996: 75–93.Google Scholar
Sanders, M. E., Makgoba, M. W., Shaw, S.Human naïve and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol. Today 1988;9(7–8):195–199.CrossRefGoogle ScholarPubMed
Berkower, I. How T cells help B cells to make antibodies. In Sell, S., ed. Immunology, Immunopathology and Immunity. Stamford, Connecticut: Appleton & Lange; 1996.Google Scholar
Noelle, R. J., Ledbetter, J. A., Aruffo, A.cluster of differentiation40 and its ligand, an essential ligand-receptor pair for thymus-dependent B-cell activation. Immunol. Today 1992;13(11):431–433.CrossRefGoogle Scholar
Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., Coffman, R. L.Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 1986;136(7):2348–2357.Google ScholarPubMed
Gelfand, E. Finkel, T. The T-lymphocyte system. In Stiehm, E. R., ed. Immunologic Disorders of Infants and Children, 4th ed. Philadelphia: W. B. Saunders; 1996: 14–34.Google Scholar
Biddison, W. E., Sharrow, S. O., Shearer, G. M.T cell subpopulations required for the human cytotoxic T lymphocyte response to influenza virus: evidence for T cell help. J. Immunol. 1981;127(2):487–491.Google ScholarPubMed
Luster, A. D.Chemokines – chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 1998;338(7):436–445.CrossRefGoogle ScholarPubMed
Cooper, M. D.Current concepts. B lymphocytes. Normal development and function. N. Engl. J. Med. 1987;317(23):1452–1456.CrossRefGoogle ScholarPubMed
Reth, M., Hombach, J., Wienands, J., et al.The B-cell antigen receptor complex. Immunol. Today 1991;12(6):196–201.CrossRefGoogle ScholarPubMed
Wilson, C. Lewis, D. Penix, L. The physiologic immunodeficiency of immaturity. In Stiehm, E. R., ed. Immunologic Disorders in Infants and Children. 4th edn. Philadelphia: W. B. Saunders; 1996: 253–295.Google Scholar
Johnston, R. B. Jr.Function and cell biology of neutrophils and mononuclear phagocytes in the newborn infant. Vaccine 1998;16(14–15):1363–1368.CrossRefGoogle ScholarPubMed
Rao, S., Olesinski, R., Doshi, U., Vidyasagar, D.Brief clinical and laboratory observations. Granulocyte adherence in newborn infants. J. Pediatr. 1981;98(4):622–624.CrossRefGoogle ScholarPubMed
Petty, R. E., Hunt, D. W.Neonatal dendritic cells. Vaccine 1998;16(14–15):1378–1382.CrossRefGoogle ScholarPubMed
Haynes, B. F., Martin, M. E., Kay, H. H., Kurtzberg, J.Early events in human T cell ontogeny. Phenotypic characterization and immunohistologic localization of T cell precursors in early human fetal tissues. J. Exp. Med. 1988;168(3):1061–1080.CrossRefGoogle Scholar
Paoli, P., Battistin, S., Santini, G. F.Age-related changes in human lymphocyte subsets: progressive reduction of the cluster of differentiation4 cluster of differentiation45R (suppressor inducer) population. Clin. Immunol. Immunopathol. 1988;48(3):290–296.CrossRefGoogle Scholar
Denny, T., Yogev, R., Gelman, R.et al.Lymphocyte subsets in healthy children during the first 5 years of life. J. Am. Med. Assoc. 1992;267(11):1484–1488.CrossRefGoogle ScholarPubMed
European Collaborative Study. Age-related standards for T lymphocyte subsets based on uninfected children born to human immunodeficiency virus-1 infected women. Pediatr. Infect. Dis. J. 1992;11:1018–1026.CrossRef
Siegrist, C. A.Neonatal and early life vaccinology. Vaccine 2001;19(25–26):3331–3346.CrossRefGoogle ScholarPubMed
Ehlers, S., Smith, K. A.Differentiation of T cell lymphokine gene expression: the in vitro acquisition of T cell memory. J. Exp. Med. 1991;173(1):25–36.CrossRefGoogle ScholarPubMed
Delespesse, G., Yang, L. P., Ohshima, Y., et al.Maturation of human neonatal cluster of differentiation4+ and cluster of differentiation8+ T lymphocytes into Th1/Th2 effectors. Vaccine 1998;16(14–15):1415–1419.CrossRefGoogle Scholar
Nonoyama, S., Penix, L. A., Edwards, C. P.et al.Diminished expression of cluster of differentiation40 ligand by activated neonatal T cells. J. Clin. Invest. 1995;95(1):66–75.CrossRefGoogle Scholar
Kniker, W. T., Lesourd, B. M., McBryde, J. L., Corriel, R. N.Cell-mediated immunity assessed by Multitest CMI skin testing in infants and preschool children. Am. J. Dis. Child. 1985;139(8):840–845.Google ScholarPubMed
Burrows, P. D., Kearney, J. F., Schroeder, H. W. Jr., Cooper, M. D.Normal B lymphocyte differentiation. Baillieres. Clin. Haematol. 1993;6(4):785–806.CrossRefGoogle ScholarPubMed
Duchosal, M. A.B-cell development and differentiation. Semin. Hematol. 1997;34(1 Suppl 1):2–12.Google ScholarPubMed
Splawski, J. B., Lipsky, P. E.Cytokine regulation of immunoglobulin secretion by neonatal lymphocytes. J. Clin. Invest. 1991;88(3):967–977.CrossRefGoogle ScholarPubMed
Freed E., Martin M. human immunodeficiency viruss and their replication. In Roizman, B., ed. Fields Virology. Philadelphia: Lippincott Williams and Wilkins; 2001: 1971–2041.Google Scholar
Korber, B., Muldoon, M., Theiler, J.et al.Timing the ancestor of the human immunodeficiency virus-1 pandemic strains. Science 2000;288(5472):1789–1796.CrossRefGoogle ScholarPubMed
Arthur, L. O., Bess, J. W. J., Sowder, R. C. I.et al.Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science 1992;258:1935–1938.CrossRefGoogle ScholarPubMed
Eckert, D. M., Kim, P. S.Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 2001;70:777–810.CrossRefGoogle ScholarPubMed
Golding, H., Zaitseva, M., Rosny, E.et al.Dissection of human immunodeficiency virus type 1 entry with neutralizing antibodies to gp41 fusion intermediates. J. Virol. 2002;76(13):6780–6790.CrossRefGoogle ScholarPubMed
Wild, C. T., Shugars, D. C., Greenwell, T. K., McDanal, C. B., Matthews, T. J.Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. USA 1994;91(21):9770–9774.CrossRefGoogle ScholarPubMed
Novina, C. D., Murray, M. F., Dykxhoorn, D. M.et al.siribonucleic acid-directed inhibition of human immunodeficiency virus-1 infection. Nat. Med. 2002;8(7):681–686.CrossRefGoogle Scholar
Berger, E. A., Murphy, P. M., Farber, J. M.Chemokine receptors as human immunodeficiency virus-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 1999;17:657–700.CrossRefGoogle ScholarPubMed
Feng, Y., Broder, C. C., Kennedy, P. E., Berger, E. A.human immunodeficiency virus-1 entry cofactor: functional cdeoxyribonucleic acid cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996;272(5263):872–877.CrossRefGoogle ScholarPubMed
Strizki, J. M., Xu, S., Wagner, N. E.et al.SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of human immunodeficiency virus-1 infection in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2001;98(22):12718–12723.CrossRefGoogle Scholar
Kostrikis, L. G., Huang, Y., Moore, J. P.et al.A chemokine receptor CCR2 allele delays human immunodeficiency virus-1 disease progression and is associated with a CCR5 promoter mutation. Nat. Med. 1998;4(3):350–353.CrossRefGoogle ScholarPubMed
, Gotte M., , Li X., Wainberg, M. A.human immunodeficiency virus-1 reverse transcription: a brief overview focused on structure-function relationships among molecules involved in initiation of the reaction. Arch. Biochem. Biophys. 1999;365(2):199–210.Google Scholar
Farnet, C. M., Bushman, F. D.human immunodeficiency virus-1 cdeoxyribonucleic acid integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 1997;88(4):483–492.CrossRefGoogle Scholar
McDonald, D., Vodicka, M. A., Lucero, G., et al.Visualization of the intracellular behavior of human immunodeficiency virus in living cells. J. Cell Biol. 2002;159(3):441–452.CrossRefGoogle ScholarPubMed
Rouzic, E., Mousnier, A., Rustum, C.et al.Docking of human immunodeficiency virus-1 Vpr to the nuclear envelope is mediated by the interaction with the nucleoporin hCG1. J. Biol. Chem. 2002;277(47):45091–45098.CrossRefGoogle ScholarPubMed
Roth, M. J., Schwartzberg, P. L., Goff, S. P.Structure of the termini of deoxyribonucleic acid intermediates in the integration of retroviral deoxyribonucleic acid: dependence on IN function and terminal deoxyribonucleic acid sequence. Cell 1989;58(1):47–54.CrossRefGoogle Scholar
Englund, G., Theodore, T. S., Freed, E. O., Engleman, A., Martin, M. A.Integration is required for productive infection of monocyte-derived macrophages by human immunodeficiency virus type 1. J. Virol. 1995;69(5):3216–3219.Google ScholarPubMed
Condra, J. H., Miller, M. D., Hazuda, D. J., Emini, E. A.Potential new therapies for the treatment of human immunodeficiency virus-1 infection. Annu. Rev. Med. 2002;53:541–555.CrossRefGoogle Scholar
Laughlin, M., Zeichner, S., Kolson, D.et al.Sodium butryate treatment of cells latently infected with human immunodeficiency virus-1 results in the expression of unspliced viral ribonucleic acid. Virology 1993;196:496–505.CrossRefGoogle Scholar
Rothe, M., Sarma, V., Dixit, V. M., Goeddel, D. V.TRAF2-mediated activation of NF-kappa B by tumor necrosis factor receptor 2 and cluster of differentiation40. Science 1995;269(5229):1424–1427.CrossRefGoogle Scholar
Nabel, G., Baltimore, D.An inducible transcription factor activates expression of human immunodeficiency virus in T cells [published erratum appears in Nature 1990;344(6262):178]. Nature 1987;326(6114):711–713.CrossRefGoogle Scholar
Jones, K. A., Kadonaga, J. T., Luciw, P. A., Tjian, R.Activation of the acquired immune deficiency syndrome retrovirus promoter by the cellular transcription factor, Sp1. Science 1986;232(4751):755–759.CrossRefGoogle ScholarPubMed
Zeichner, S. L., Kim, J. Y., Alwine, J. C.Linker-scanning mutational analysis of the transcriptional activity of the human immunodeficiency virus type 1 long terminal repeat. J. Virol. 1991;65(5):2436–2444.Google ScholarPubMed
Kim, J., Gonzalez-Scarano, F., Zeichner, S., Alwine, J.Replication of type 1 human immunodeficiency viruses containing linker substitution mutations in the -201 to -130 region of the long terminal repeat. J. Virol. 1993;67:1658–1662.Google ScholarPubMed
Ross, E. K., Buckler-White, A. J., Rabson, A. B., Englund, G., Martin, M. A.Contribution of NF-kappa B and Sp1 binding motifs to the replicative capacity of human immunodeficiency virus type 1: distinct patterns of viral growth are determined by T-cell types. J. Virol. 1991;65(8):4350–4358.Google ScholarPubMed
Zeichner, S. L., Hirka, G., Andrews, P. W., Alwine, J. C.Differentiation-dependent human immunodeficiency virus long terminal repeat regulatory elements active in human teratocarcinoma cells. J. Virol. 1992;66(4):2268–2273.Google ScholarPubMed
He, G., Margolis, D. M.Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (human immunodeficiency virus-1) by the human immunodeficiency virus-1 repressor YY1 and human immunodeficiency virus-1 activator Tat. Mol. Cell. Biol. 2002;22(9):2965–2973.CrossRefGoogle ScholarPubMed
Sheridan, P. L., Mayall, T. P., Verdin, E., Jones, K. A.Histone acetyltransferases regulate human immunodeficiency virus-1 enhancer activity in vitro. Genes Dev. 1997;11(24):3327–3340.CrossRefGoogle ScholarPubMed
Berkhout, B., Silverman, R. H., Jeang, K. T.Tat trans-activates the human immunodeficiency virus through a nascent ribonucleic acid target. Cell 1989;59(2):273–282.CrossRefGoogle Scholar
Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H., Jones, K. A.A novel CDK9-associated C-type cyclin interacts directly with human immunodeficiency virus-1 Tat and mediates its high-affinity, loop-specific binding to transactivation responsive ribonucleic acid. Cell 1998;92(4):451–462.CrossRefGoogle Scholar
Parada, C. A., Roeder, R. G.Enhanced processivity of ribonucleic acid polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 1996;384(6607):375–378.CrossRefGoogle ScholarPubMed
Barillari, G., Sgadari, C., Fiorelli, V.et al.The Tat protein of human immunodeficiency virus type-1 promotes vascular cell growth and locomotion by engaging the alpha5beta1 and alphavbeta3 integrins and by mobilizing sequestered basic fibroblast growth factor. Blood 1999;94(2):663–672.Google ScholarPubMed
Mischiati, C., Jeang, K. T., Feriotto, G., et al.Aromatic polyamidines inhibiting the Tat-induced human immunodeficiency virus-1 transcription recognize structured transactivation responsive-ribonucleic acid. Antisense Nucl. Acid Drug Dev. 2001;11(4):209–217.CrossRefGoogle Scholar
Chao, S. H., Fujinaga, K., Marion, J. E.et al.Flavopiridol inhibits P-TEFb and blocks human immunodeficiency virus-1 replication. J. Biol. Chem. 2000;275(37):28345–28348.CrossRefGoogle Scholar
Pollard, V. W., Malim, M. H.The human immunodeficiency virus-1 Rev protein. Annu. Rev. Microbiol. 1998;52:491–532.CrossRefGoogle Scholar
Askjaer, P., Jensen, T. H., Nilsson, J., Englmeier, L., Kjems, J.The specificity of the CRM1-Rev nuclear export signal interaction is mediated by RanGTP. J. Biol. Chem. 1998;273(50):33414–33422.CrossRefGoogle ScholarPubMed
Gorlich, D., Mattaj, I. W.Nucleocytoplasmic transport. Science 1996;271(5255):1513–1518.CrossRefGoogle ScholarPubMed
Malim, M. H., Bohnlein, S., Hauber, J., Cullen, B. R.Functional dissection of the human immunodeficiency virus-1 Rev trans-activator-derivation of a trans-dominant repressor of Rev function. Cell 1989;58(1):205–214.CrossRefGoogle ScholarPubMed
Decroly, E., Wouters, S., Bello, Di C., Lazure, C., Ruysschaert, J. M., Seidah, N. G.Identification of the paired basic convertases implicated in human immunodeficiency virus gp160 processing based on in vitro assays and expression in cluster of differentiation4(+) cell lines [published erratum appears in J Biol Chem 1997 Mar 28;272(13):8836]. J. Biol. Chem. 1996;271(48):30442–30450.CrossRefGoogle Scholar
Ogert, R. A., Lee, M. K., Ross, W., , Buckler-White A., Martin, M. A., Cho, M. W.N-linked glycosylation sites adjacent to and within the V1/V2 and the V3 loops of dualtropic human immunodeficiency virus type 1 isolate DH12 gp120 affect coreceptor usage and cellular tropism. J. Virol. 2001;75(13):5998–6006.CrossRefGoogle ScholarPubMed
Mori, K., Yasutomi, Y., Ohgimoto, S.et al.Quintuple deglycosylation mutant of simian immunodeficiency virus simian immunodeficiency virusmac239 in rhesus macaques: robust primary replication, tightly contained chronic infection, and elicitation of potent immunity against the parental wild-type strain. J. Virol. 2001;75(9):4023–4028.CrossRefGoogle Scholar
Schubert, U., Anton, L. C., Bacik, I.et al.cluster of differentiation4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J. Virol. 1998;72(3):2280–2288.Google Scholar
Willey, R. L., Maldarelli, F., Martin, M. A., Strebel, K.Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of cluster of differentiation4. J. Virol. 1992;66(12):7193–7200.Google Scholar
Conte, M. R., Matthews, S.Retroviral matrix proteins: a structural perspective. Virology 1998;246(2):191–198.CrossRefGoogle ScholarPubMed
Ono, A., Freed, E. O.Plasma membrane rafts play a critical role in human immunodeficiency virus-1 assembly and release. Proc. Natl Acad. Sci. USA 2001;98(24):13925–13930.CrossRefGoogle Scholar
Zimmerman, C., Klein, K. C., Kiser, P. K.et al.Identification of a host protein essential for assembly of immature human immunodeficiency virus-1 capsids. Nature 2002;415(6867):88–92.CrossRefGoogle Scholar
Gamble, T. R., Yoo, S., Vajdos, F. F.et al.Structure of the carboxyl-terminal dimerization domain of the human immunodeficiency virus-1 capsid protein. Science 1997;278(5339):849–853.CrossRefGoogle Scholar
Franke, E. K., Yuan, H. E., Luban, J.Specific incorporation of cyclophilin A into human immunodeficiency virus-1 virions. Nature 1994;372(6504):359–362.CrossRefGoogle Scholar
Grattinger, M., Hohenberg, H., Thomas, D., Wilk, T., Muller, B., Krausslich, H. G.In vitro assembly properties of wild-type and cyclophilin-binding defective human immunodeficiency virus capsid proteins in the presence and absence of cyclophilin A. Virology 1999;257(1):247–260.CrossRefGoogle ScholarPubMed
Berkowitz, R., Fisher, J., Goff, S. P.ribonucleic acid packaging. Curr. Top. Microbiol. Immunol. 1996;214:177–218.Google Scholar
Basrur, V., Song, Y., Mazur, S. J.et al.Inactivation of human immunodeficiency virus-1 nucleocapsid protein P7 by pyridinioalkanoyl thioesters. Characterization of reaction products and proposed mechanism of action. J. Biol. Chem. 2000;275(20):14890–14897.CrossRefGoogle ScholarPubMed
Pornillos, O., Garrus, J. E., Sundquist, W. I.Mechanisms of enveloped ribonucleic acid virus budding. Trends Cell. Biol. 2002;12(12):569–579.CrossRefGoogle ScholarPubMed
Demirov, D. G., Ono, A., Orenstein, J. M., Freed, E. O.Overexpression of the N-terminal domain of TSG101 inhibits human immunodeficiency virus-1 budding by blocking late domain function. Proc. Natl Acad. Sci. USA 2002;99(2):955–960.CrossRefGoogle ScholarPubMed
Freed, E. O., Martin, M. A.Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J. Virol. 1995;70:341–351.Google Scholar
Bour, S., Geleziunas, R., Wainberg, M. A.The human immunodeficiency virus type 1 (human immunodeficiency virus-1) cluster of differentiation4 receptor and its central role in promotion of human immunodeficiency virus-1 infection. Microbiol. Rev. 1995;59(1):63–93.Google Scholar
Geraghty, R. J., Panganiban, A. T.Human immunodeficiency virus type 1 Vpu has a cluster of differentiation4- and an envelope glycoprotein-independent function. J. Virol. 1993;67(7):4190–4194.Google Scholar
Khan, M. A., Aberham, C., Kao, S.et al.Human immunodeficiency virus type 1 virion infectivity factor protein is packaged into the nucleoprotein complex through an interaction with viral genomic ribonucleic acid. J. Virol. 2001;75(16):7252–7265.CrossRefGoogle Scholar
Sheehy, A. M., Gaddis, N. C., Choi, J. D., Malim, M. H.Isolation of a human gene that inhibits human immunodeficiency virus-1 infection and is suppressed by the viral virion infectivity factor protein. Nature 2002;418(6898):646–650.CrossRefGoogle Scholar
Cohen, E. A., Dehni, G., Sodroski, J. G., Haseltine, W. A.Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J. Virol. 1990;64(6):3097–3099.Google ScholarPubMed
Felzien, L. K., Woffendin, C., Hottiger, M. O., Subbramanian, R. A., Cohen, E. A., Nabel, G. J.human immunodeficiency virus transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc. Natl Acad. Sci. USA 1998;95(9):5281–5286.CrossRefGoogle ScholarPubMed
He, J., Choe, S., Walker, R., Marzio, Di P., Morgan, D. O., Landau, N. R.Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J. Virol. 1995;69(11):6705–6711.Google ScholarPubMed
Garcia, J. V., Miller, A. D.Serine phosphorylation-independent downregulation of cell-surface cluster of differentiation4 by nef. Nature 1991;350(6318):508–511.CrossRefGoogle Scholar
Piguet, V., Gu, F., Foti, M.et al.Nef-induced cluster of differentiation4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Cell 1999;97(1):63–73.CrossRefGoogle Scholar
Collette, Y., Dutartre, H., Benziane, A.et al.Physical and functional interaction of Nef with Lck. human immunodeficiency virus-1 Nef-induced T-cell signaling defects. J. Biol. Chem. 1996;271(11):6333–6341.CrossRefGoogle ScholarPubMed
Schwartz, O., Marechal, V., Gall, S., Lemonnier, F., Heard, J. M.Endocytosis of major histocompatibility complex class I molecules is induced by the human immunodeficiency virus-1 Nef protein. Nat. Med. 1996;2(3):338–342.CrossRefGoogle Scholar
Spira, A. I., Marx, P. A., Patterson, B. K.et al.Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J. Exp. Med. 1996;183(1):215–225.CrossRefGoogle ScholarPubMed
McMichael, A. J., Rowland-Jones, S. L.Cellular immune responses to human immunodeficiency virus. Nature 2001;410(6831):980–987.CrossRefGoogle Scholar
Schmitz, J. E., Kuroda, M. J., Santra, S., et al.Control of viremia in simian immunodeficiency virus infection by cluster of differentiation8+ lymphocytes. Science 1999;283(5403):857–860.CrossRefGoogle Scholar
Barker, E., Bossart, K. N., Levy, J. A.Primary cluster of differentiation8+ cells from human immunodeficiency virus-infected individuals can suppress productive infection of macrophages independent of beta-chemokines. Proc. Natl Acad. Sci. USA 1998;95(4):1725–1729.CrossRefGoogle Scholar
Zhang, L., Yu, W., He, T.et al.Contribution of human alpha-defensin 1, 2, and 3 to the anti-human immunodeficiency virus-1 activity of cluster of differentiation8 antiviral factor. Science 2002;298(5595):995–1000.CrossRefGoogle Scholar
Shearer, W. T., Quinn, T. C., LaRussa, P.et al.Viral load and disease progression in infants infected with human immunodeficiency virus type 1. Women and Infants Transmission Study Group. N. Engl. J. Med. 1997;336(19):1337–1342.CrossRefGoogle ScholarPubMed
Luzuriaga, K., Holmes, D., Hereema, A., Wong, J., Panicali, D. L., Sullivan, J. L.human immunodeficiency virus-1-specific cytotoxic T lymphocyte responses in the first year of life. J. Immunol. 1995;154(1):433–443.Google Scholar
McFarland, E. J., Harding, P. A., Luckey, D., Conway, B., Young, R. K., Kuritzkes, D. R.High frequency of Gag- and envelope-specific cytotoxic T lymphocyte precursors in children with vertically acquired human immunodeficiency virus type 1 infection. J. Infect. Dis. 1994;170(4):766–774.CrossRefGoogle ScholarPubMed
Pugatch, D., Sullivan, J. L., Pikora, C. A., Luzuriaga, K.Delayed generation of antibodies mediating human immunodeficiency virus type 1-specific antibody-dependent cellular cytotoxicity in vertically infected infants. Women and Infants Transmission Study Study Group. Women and Infants Transmission Study. J. Infect. Dis. 1997;176(3):643–648.CrossRefGoogle ScholarPubMed
Pollack, H., Zhan, M. X., Safrit, J. T.et al.cluster of differentiation8+ T-cell-mediated suppression of human immunodeficiency virus replication in the first year of life: association with lower viral load and favorable early survival. acquired immune deficiency syndrome 1997;11(1):F9–F13.Google Scholar
Goulder, P. J., Brander, C., Tang, Y., et al.Evolution and transmission of stable cytotoxic T-lymphocytes also cytotoxic memory T-cells escape mutations in human immunodeficiency virus infection. Nature 2001;412(6844):334–338.CrossRefGoogle Scholar
Ganeshan, S., Dickover, R. E., Korber, B. T., Bryson, Y. J., Wolinsky, S. M.Human immunodeficiency virus type 1 genetic evolution in children with different rates of development of disease. J. Virol. 1997;71(1):663–677.Google Scholar
Haase, A. T.Population biology of human immunodeficiency virus-1 infection: viral and cluster of differentiation4+ T cell demographics and dynamics in lymphatic tissues. Annu. Rev. Immunol. 1999;17:625–656.CrossRefGoogle Scholar
Douek, D. C., Brenchley, J. M., Betts, M. R.et al.human immunodeficiency virus preferentially infects human immunodeficiency virus-specific cluster of differentiation4+ T cells. Nature 2002;417(6884):95–98.CrossRefGoogle Scholar
Appay, V., Nixon, D. F., Donahoe, S. M.et al.human immunodeficiency virus-specific cluster of differentiation8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med. 2000;192(1):63–75.CrossRefGoogle Scholar
Champagne, P., Ogg, G. S., King, A. S.et al.Skewed maturation of memory human immunodeficiency virus-specific cluster of differentiation8 T lymphocytes. Nature 2001;410(6824):106–111.CrossRefGoogle Scholar
Migueles, S. A., Laborico, A. C., Shupert, W. L.et al.human immunodeficiency virus-specific cluster of differentiation8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 2002;3(11):1061–1068.CrossRefGoogle Scholar
Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D., Baltimore, D.human immunodeficiency virus-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 1998;391(6665):397–401.CrossRefGoogle ScholarPubMed
Letvin, N. L., Barouch, D. H., Montefiori, D. C.Prospects for vaccine protection against human immunodeficiency virus-1 infection and acquired immune deficiency syndrome. Annu. Rev. Immunol. 2002;20:73–99.CrossRefGoogle Scholar
Hogan, C. M., Hammer, S. M.Host determinants in human immunodeficiency virus infection and disease. Part 2: genetic factors and implications for antiretroviral therapeutics. Ann. Intern. Med. 2001;134(10):978–996.CrossRefGoogle ScholarPubMed
Rosenberg, E. S., Altfeld, M., Poon, S. H.et al.Immune control of human immunodeficiency virus-1 after early treatment of acute infection. Nature 2000;407(6803):523–526.Google ScholarPubMed
Luzuriaga, K., McManus, M., Catalina, M.et al.Early therapy of vertical human immunodeficiency virus type 1 (human immunodeficiency virus-1) infection: control of viral replication and absence of persistent human immunodeficiency virus-1-specific immune responses. J. Virol. 2000;74(15):6984–6991.CrossRefGoogle Scholar
Hainaut, M., Peltier, C. A., Gerard, M., Marissens, D., Zissis, G., Levy, J.Effectiveness of antiretroviral therapy initiated before the age of 2 months in infants vertically infected with human immunodeficiency virus type 1. Eur. J. Pediatr. 2000;159(10):778–782.CrossRefGoogle ScholarPubMed
Borkowsky, W., Rigaud, M., Krasinski, K., Moore, T., Lawrence, R., Pollack, H.Cell-mediated and humoral immune responses in children infected with human immunodeficiency virus during the first four years of life. J. Pediatr. 1992;120(3):371–375.CrossRefGoogle ScholarPubMed
Roilides, E., Clerici, M., DePalma, L., Rubin, M., Pizzo, P. A., Shearer, G. M.Helper T-cell responses in children infected with human immunodeficiency virus type 1. J. Pediatr. 1991;118(5):724–730.CrossRefGoogle ScholarPubMed
Breen, E. C.Pro-and anti-inflammatory cytokines in human immunodeficiency virus infection and acquired immunodeficiency syndrome. Pharmacol. Ther. 2002;95(3):295–304.CrossRefGoogle ScholarPubMed
Raszka, W. V., Moriarty, R. A., Ottolini, M. G.et al.Delayed-type hypersensitivity skin testing in human immunodeficiency virus-infected pediatric patients. J. Pediatr. 1996;129(2):245–250.CrossRefGoogle ScholarPubMed
Ibegbu, C., Spira, T. J., Nesheim, S.et al.Subpopulations of T and B cells in perinatally human immunodeficiency virus-infected and noninfected age-matched children compared with those in adults. Clin. Immunol. Immunopathol. 1994;71(1):27–32.CrossRefGoogle Scholar
Pantaleo, G., Demarest, J. F., Schacker, T.et al.The qualitative nature of the primary immune response to human immunodeficiency virus infection is a prognosticator of disease progression independent of the initial level of plasma viremia. Proc. Natl Acad. Sci. USA 1997;94(1):254–258.CrossRefGoogle ScholarPubMed
McFarland, E. J., Harding, P. A., Striebich, C. C., MaWhinney, S., Kuritzkes, D. R., Kotzin, B. L.Clonal cluster of differentiation8+ T cell expansions in peripheral blood from human immunodeficiency virus type 1-infected children. J. Infect. Dis. 2002;186(4):477–485.CrossRefGoogle Scholar
Gallagher, K., Gorre, M., Harawa, N.et al.Timing of lymphocyte activation in neonates infected with human immunodeficiency virus. Clin. Diagn. Lab. Immunol. 1997;4(6):742–747.Google ScholarPubMed
Vigano, A., Pinti, M., Nasi, M.et al.Markers of cell death-activation in lymphocytes of vertically human immunodeficiency virus-infected children naive to highly active antiretroviral therapy: the role of age. J. Allergy Clin. Immunol. 2001;108(3):439–445.CrossRefGoogle Scholar
Bohler, T., Wintergerst, U., Linde, R., Belohradsky, B. H., Debatin, K. M.cluster of differentiation95 (APO-1/Fas) expression on naive cluster of differentiation4(+) T cells increases with disease progression in human immunodeficiency virus-infected children and adolescents: effect of highly active antiretroviral therapy (highly active antiretroviral therapy). Pediatr. Res. 2001;49(1):101–110.CrossRefGoogle Scholar
Bruunsgaard, H., Pedersen, C., Skinhoj, P., Pedersen, B. K.Clinical progression of human immunodeficiency virus infection: role of natural killer cells. Scand. J. Immunol. 1997;46(1):91–95.CrossRefGoogle Scholar
Douglas, S. D., Durako, S. J., Tustin, N. B.et al.Natural killer cell enumeration and function in human immunodeficiency virus-infected and high-risk uninfected adolescents. acquired immune deficiency syndrome Res. Hum. Retroviruses 2001;17(6):543–552.Google Scholar
Lin, S. J., Roberts, R. L., Ank, B. J., Nguyen, Q. H., Thomas, E. K., Stiehm, E. R.Human immunodeficiency virus (human immunodeficiency virus) type-1 GP120-specific cell-mediated cytotoxicity (CMC) and natural killer (natural killer) activity in human immunodeficiency virus-infected (human immunodeficiency virus+) subjects: enhancement with interleukin-2(interleukin-2), interleukin-12, and interleukin-15. Clin. Immunol. Immunopathol. 1997;82(2):163–173.CrossRefGoogle Scholar
Geijtenbeek, T. B., Kwon, D. S., Torensma, R.et al.dendritic cell-specific intercellular adhesion molecule-grabbing non-integrin, a dendritic cell-specific human immunodeficiency virus-1-binding protein that enhances trans-infection of T cells. Cell 2000;100(5):587–597.CrossRefGoogle Scholar
Donaghy, H., Pozniak, A., Gazzard, B.et al.Loss of blood cluster of differentiation11c(+) myeloid and cluster of differentiation11c(−) plasmacytoid dendritic cells in patients with human immunodeficiency virus-1 infection correlates with human immunodeficiency virus-1 ribonucleic acid virus load. Blood 2001;98(8):2574–2576.CrossRefGoogle Scholar
Knight, S. C.Dendritic cells and human immunodeficiency virus infection; immunity with viral transmission versus compromised cellular immunity?Immunobiology 2001;204(5):614–621.CrossRefGoogle ScholarPubMed
Ma, X., Montaner, L. J.Proinflammatory response and interleukin-12 expression in human immunodeficiency virus-1 infection. J. Leukoc. Biol. 2000;68(3):383–390.Google Scholar
Chougnet, C., Thomas, E., Landay, A. L.et al.cluster of differentiation40 ligand and interferon-gamma synergistically restore interleukin-12 production in human immunodeficiency virus-infected patients. Eur. J. Immunol. 1998;28(2):646–656.3.0.CO;2-6>CrossRefGoogle Scholar
McFarland, E. J., Harding, P. A., MaWhinney, S., Schooley, R. T., Kuritzkes, D. R.In vitro effects of interleukin-12 on human immunodeficiency virus-1-specific cytotoxic T-lymphocytes also cytotoxic memory T-cells lines from human immunodeficiency virus-1-infected children. J. Immunol. 1998;161(1):513–519.Google Scholar
Feldman, S., Stein, D., Amrute, S.et al.Decreased interferon-alpha production in human immunodeficiency virus-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin. Immunol. 2001;101(2):201–210.CrossRefGoogle Scholar
Bornemann, M. A., Verhoef, J., Peterson, P. K.Macrophages, cytokines, and human immunodeficiency virus. J. Lab. Clin. Med. 1997;129(1):10–16.CrossRefGoogle Scholar
Noel, G. J.Host defense abnormalities associated with human immunodeficiency virus infection. Pediatr. Clin. North Am. 1991;38(1):37–43.CrossRefGoogle Scholar
Mastroianni, C. M., Lichtner, M., Mengoni, F.et al.Improvement in neutrophil and monocyte function during highly active antiretroviral treatment of human immunodeficiency virus-1-infected patients. acquired immune deficiency syndrome 1999;13(8):883–890.Google Scholar
Maloney, M. J., Guill, M. F., Wray, B. B., Lobel, S. A., Ebbeling, W.Pediatric acquired immune deficiency syndrome with panhypogammaglobulinemia. J. Pediatr. 1987;110(2):266–267.CrossRefGoogle ScholarPubMed
Pahwa, S., Fikrig, S., Menez, R., Pahwa, R.Pediatric acquired immunodeficiency syndrome: demonstration of B lymphocyte defects in vitro. Diagn. Immunol. 1986;4(1):24–30.Google ScholarPubMed
Martino, M., Tovo, P. A., Galli, L.et al.Prognostic significance of immunologic changes in 675 infants perinatally exposed to human immunodeficiency virus. The Italian Register for Human Immunodeficiency Virus Infection in Children. J. Pediatr. 1991;119(5):702–709.CrossRefGoogle ScholarPubMed
Muller, S., Kohler, H.B cell superantigens in human immunodeficiency virus-1 infection. Int. Rev. Immunol. 1997;14(4):339–349.CrossRefGoogle Scholar
Rutstein, R. M., Rudy, B., Codispoti, C., Watson, B.Response to hepatitis B immunization by infants exposed to human immunodeficiency virus. acquired immune deficiency syndrome 1994;8(9):1281–1284.Google Scholar
Arpadi, S. M., Markowitz, L. E., Baughman, A. L.et al.Measles antibody in vaccinated human immunodeficiency virus type 1-infected children. Pediatrics 1996;97(5):653–657.Google ScholarPubMed
Gibb, D., Spoulou, V., Giacomelli, A.et al.Antibody responses to Haemophilus influenzae type b and Streptococcus pneumoniae vaccines in children with human immunodeficiency virus infection. Pediatr. Infect. Dis. J. 1995;14(2):129–135.CrossRefGoogle ScholarPubMed
Lyall, E. G., Charlett, A., Watkins, P., Zambon, M.Response to influenza virus vaccination in vertical human immunodeficiency virus infection. Arch. Dis. Child. 1997;76(3):215–218.CrossRefGoogle Scholar
Moir, S., Malaspina, A., Ogwaro, K. M.et al.human immunodeficiency virus-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proc. Natl Acad. Sci. USA 2001;98(18):10362–10367.CrossRefGoogle ScholarPubMed
Rodriguez, C., Thomas, J. K., O'Rourke, S., Stiehm, E. R., Plaeger, S.human immunodeficiency virus disease in children is associated with a selective decrease in cluster of differentiation23+ and cluster of differentiation62L+ B cells. Clin. Immunol. Immunopathol. 1996;81(2):191–199.CrossRefGoogle Scholar
Chirmule, N., Oyaizu, N., Kalyanaraman, V. S., Pahwa, S.Inhibition of normal B-cell function by human immunodeficiency virus envelope glycoprotein, gp120. Blood 1992;79(5):1245–1254.Google ScholarPubMed
1997 revised guidelines for performing cluster of differentiation4+ T-cell determinations in persons infected with human immunodeficiency virus (human immunodeficiency virus). Centers for Disease Control and Prevention. Morb. Mortal. Wkly Rep. Rec. Rep. 1997;46(relative risk-2):1–29.
Mandy, F. F., Nicholson, J. K., McDougal, J. S.Guidelines for performing single-platform absolute cluster of differentiation4+ T-cell determinations with cluster of differentiation45 gating for persons infected with human immunodeficiency virus. Centers for Disease Control and Prevention. Morb. Mortal. Wkly Rep. Rec. Rep. 2003;52(relative risk-2):1–13.Google Scholar
Malone, J. L., Simms, T. E., Gray, G. C., Wagner, K. F., Burge, J. R., Burke, D. S.Sources of variability in repeated T-helper lymphocyte counts from human immunodeficiency virus type 1-infected patients: total lymphocyte count fluctuations and diurnal cycle are important. J. Acquir. Immune Defic. Syndr. 1990;3(2):144–151.Google ScholarPubMed
Hughes, M. D., Stein, D. S., Gundacker, H. M., Valentine, F. T., Phair, J. P., Volberding, P. A.Within-subject variation in cluster of differentiation4 lymphocyte count in asymptomatic human immunodeficiency virus infection: implications for patient monitoring. J. Infect. Dis. 1994;169(1):28–36.CrossRefGoogle Scholar
Raszka, W. V. Jr., Meyer, G. A., Waecker, N. J.et al.Variability of serial absolute and percent cluster of differentiation4+ lymphocyte counts in healthy children born to human immunodeficiency virus 1-infected parents. Military Pediatric human immunodeficiency virus Consortium. Pediatr. Infect. Dis. J. 1994;13(1):70–72.Google Scholar
Shearer, W. T., Rosenblatt, H. M., Schluchter, M. D., Mofenson, L. M., Denny, T. N.Immunologic targets of human immunodeficiency virus infection: T cells. National Institute of Child Health and Human Development intravenous immunoglobulin Clinical Trial Group, and the NHLBI P2C2 Pediatric Pulmonary and Cardiac Complications of human immunodeficiency virus Infection Study Group. Ann. N. Y. Acad. Sci. 1993;693:35–51.CrossRefGoogle Scholar
Autran, B., Carcelain, G., Debre, P.Immune reconstitution after highly active anti-retroviral treatment of human immunodeficiency virus infection. Adv. Exp. Med. Biol. 2001;495:205–212.CrossRefGoogle Scholar
Sleasman, J. W., Nelson, R. P., Goodenow, M. M.et al.Immunoreconstitution after ritonavir therapy in children with human immunodeficiency virus infection involves multiple lymphocyte lineages. J. Pediatr. 1999;134(5):597–606.CrossRefGoogle ScholarPubMed
Essajee, S. M., Kim, M., Gonzalez, C.et al.Immunologic and virologic responses to highly active antiretroviral therapy in severely immunocompromised human immunodeficiency virus-1-infected children. acquired immune deficiency syndrome 1999;13(18):2523–2532.Google Scholar
Lederman, M. M.Immune restoration and cluster of differentiation4+ T-cell function with antiretroviral therapies. acquired immune deficiency syndrome 2001;15 Suppl 2:S11–S15.Google Scholar
Hainaut, M., Ducarme, M., Schandene, L.et al.Age-related immune reconstitution during highly active antiretroviral therapy in human immunodeficiency virus type 1-infected children. Pediatr. Infect. Dis. J. 2003;22(1):62–69.CrossRefGoogle ScholarPubMed
Gibb, D. M., Newberry, A., Klein, N., Rossi, A., Grosch-Woerner, I., Babiker, A.Immune repopulation after highly active antiretroviral therapy in previously untreated human immunodeficiency virus-1-infected children. Paediatric European Network for Treatment of acquired immune deficiency syndrome (The Pediatric European Network for the Treatment of acquired immune deficiency syndrome) Steering Committee. Lancet 2000;355(9212):1331–1332.CrossRefGoogle Scholar
Ometto, L., Forni, D., Patiri, F.et al.Immune reconstitution in human immunodeficiency virus-1-infected children on antiretroviral therapy: role of thymic output and viral fitness. acquired immune deficiency syndrome 2002;16(6):839–849.Google Scholar
Douek, D. C., Koup, R. A., McFarland, R. D., Sullivan, J. L., Luzuriaga, K.Effect of human immunodeficiency virus on thymic function before and after antiretroviral therapy in children. J. Infect. Dis. 2000;181(4):1479–1482.CrossRefGoogle ScholarPubMed
Vigano, A., Dally, L., Bricalli, D.et al.Clinical and immuno-virologic characterization of the efficacy of stavudine, lamivudine, and indinavir in human immunodeficiency virus infection. J. Pediatr. 1999;135(6):675–682.CrossRefGoogle ScholarPubMed
Havlir, D. V., Schrier, R. D., Torriani, F. J., Chervenak, K., Hwang, J. Y., Boom, W. H.Effect of potent antiretroviral therapy on immune responses to Mycobacterium avium in human immunodeficiency virus-infected subjects. J. Infect. Dis. 2000;182(6):1658–1663.CrossRefGoogle ScholarPubMed
Berkelhamer, S., Borock, E., Elsen, C., Englund, J., Johnson, D.Effect of highly active antiretroviral therapy on the serological response to additional measles vaccinations in human immunodeficiency virus-infected children. Clin. Infect. Dis. 2001;32(7):1090–1094.CrossRefGoogle ScholarPubMed
Notermans, D. W., Jong, J. J., Goudsmit, J.et al.Potent antiretroviral therapy initiates normalization of hypergammaglobulinemia and a decline in human immunodeficiency virus type 1-specific antibody responses. acquired immune deficiency syndrome Res. Hum. Retroviruses 2001;17(11):1003–1008.Google Scholar
Jacobson, M. A., , Khayam-Bashi H., Martin, J. N., Black, D., Ng, V.Effect of long-term highly active antiretroviral therapy in restoring human immunodeficiency virus-induced abnormal B-lymphocyte function. J. Acquir. Immune Defic. Syndr. 2002;31(5):472–477.CrossRefGoogle Scholar
Borkowsky, W., Stanley, K., Douglas, S. D.et al.Immunologic response to combination nucleoside analogue plus protease inhibitor therapy in stable antiretroviral therapy-experienced human immunodeficiency virus-infected children. J. Infect. Dis. 2000;182(1):96–103.CrossRefGoogle ScholarPubMed
Chavan, S., Bennuri, B., Kharbanda, M., Chandrasekaran, A., Bakshi, S., Pahwa, S.Evaluation of T cell receptor gene rearrangement excision circles after antiretroviral therapy in children infected with human immunodeficiency virus. J. Infect. Dis. 2001;183(10):1445–1454.CrossRefGoogle ScholarPubMed
Jankelevich, S., Mueller, B. U., Mackall, C. L.et al.Long-term virologic and immunologic responses in human immunodeficiency virus type 1-infected children treated with indinavir, zidovudine, and lamivudine. J. Infect. Dis. 2001;183(7):1116–1120.CrossRefGoogle ScholarPubMed
Piketty, C., Weiss, L., Thomas, F., Mohamed, A. S., Belec, L., Kazatchkine, M. D.Long-term clinical outcome of human immunodeficiency virus-infected patients with discordant immunologic and virologic responses to a protease inhibitor-containing regimen. J. Infect. Dis. 2001;183(9):1328–1335.CrossRefGoogle ScholarPubMed
Kharbanda, M., Than, S., Chitnis, V.et al.Patterns of cluster of differentiation8 T cell clonal dominance in response to change in antiretroviral therapy in human immunodeficiency virus-infected children. acquired immune deficiency syndrome 2000;14(15):2229–2238.Google Scholar
Chougnet, C., Jankelevich, S., Fowke, K.et al.Long-term protease inhibitor-containing therapy results in limited improvement in T cell function but not restoration of interleukin-12 production in pediatric patients with acquired immune deficiency syndrome. J. Infect. Dis. 2001;184(2):201–205.CrossRefGoogle Scholar
Graham, B. S.Clinical trials of human immunodeficiency virus vaccines. Annu. Rev. Med. 2002;53:207–221.CrossRefGoogle Scholar
Kalyanaraman, V. S., Cabradilla, C. D., Getchell, J. P.et al.Antibodies to the core protein of lymphadenopathy-associated virus (LAV) in patients with acquired immune deficiency syndrome. Science 1984;225(4659):321–323.CrossRefGoogle Scholar
Sarngadharan, M. G., Popovic, M., Bruch, L., Schupbach, J., Gallo, R. C.Antibodies reactive with human T-lymphotropic retroviruses (HTLV-III) in the serum of patients with acquired immune deficiency syndrome. Science 1984;224(4648):506–508.CrossRefGoogle Scholar
Interpretation and use of the western blot assay for serodiagnosis of human immunodeficiency virus type 1 infections. Morb. Mortal. Wkly Rep. 1989;38(Suppl 7):1–7.
Interpretive criteria used to report western blot results for human immunodeficiency virus-1-antibody testing–United States. Morb. Mortal. Wkly. Rep. 1991;40(40):692–695.
Constantine, N. T.Serologic tests for the retroviruses: approaching a decade of evolution. acquired immune deficiency syndrome 1993;7(1):1–13.Google Scholar
human immunodeficiency virus counseling and testing using rapid tests. Morb Mortal. Wkly Rep. 1998;47(11):211–215.
Stetler, H. C., Granade, T. C., Nunez, C. A.et al.Field evaluation of rapid human immunodeficiency virus serologic tests for screening and confirming human immunodeficiency virus-1 infection in Honduras. acquired immune deficiency syndrome 1997;11(3):369–375.Google ScholarPubMed
Nishanian, P., Huskins, K. R., Stehn, S., Detels, R., Fahey, J. L.A simple method for improved assay demonstrates that human immunodeficiency virus p24 antigen is present as immune complexes in most sera from human immunodeficiency virus-infected individuals. J. Infect. Dis. 1990;162(1):21–28.CrossRefGoogle Scholar
Quinn, T. C., Kline, R., Moss, M. W., Livingston, R. A., Hutton, N.Acid dissociation of immune complexes improves diagnostic utility of p24 antigen detection in perinatally acquired human immunodeficiency virus infection. J. Infect. Dis. 1993;167(5):1193–1196.CrossRefGoogle ScholarPubMed
Schupbach, J., Boni, J., Tomasik, Z., Jendis, J., Seger, R., Kind, C.Sensitive detection and early prognostic significance of p24 antigen in heat-denatured plasma of human immunodeficiency virus type 1-infected infants. Swiss Neonatal human immunodeficiency virus Study Group. J. Infect. Dis. 1994;170(2):318–324.CrossRefGoogle Scholar
Schupbach, J., Flepp, M., Pontelli, D., Tomasik, Z., Luthy, R., Boni, J.Heat-mediated immune complex dissociation and enzyme-linked immunosorbent assay signal amplification render p24 antigen detection in plasma as sensitive as human immunodeficiency virus-1 ribonucleic acid detection by polymerase chain reaction. acquired immune deficiency syndrome 1996;10(10):1085–1090.Google Scholar
Boni, J., Opravil, M., Tomasik, Z.et al.Simple monitoring of antiretroviral therapy with a signal-amplification- boosted human immunodeficiency virus-1 p24 antigen assay with heat-denatured plasma. acquired immune deficiency syndrome 1997;11(6):F47–F52.Google ScholarPubMed
Jackson, J. B., Drew, J., Lin, H. J.et al.Establishment of a quality assurance program for human immunodeficiency virus type 1 deoxyribonucleic acid polymerase chain reaction assays by the acquired immune deficiency syndrome Clinical Trials Group. acquired immune deficiency syndrome Clinical Trals Group polymerase chain reaction Working Group, and the acquired immune deficiency syndrome Clinical Trals Group polymerase chain reaction Virology Laboratories. J. Clin. Microbiol. 1993;31(12):3123–3128.Google Scholar
Cassol, S., Salas, T., Gill, M. J.et al.Stability of dried blood spot specimens for detection of human immunodeficiency virus deoxyribonucleic acid by polymerase chain reaction. J. Clin. Microbiol. 1992;30:3039–3042.Google ScholarPubMed
Comeau, A. M., Su, X., Muchinsky, G., Pan, D., Gerstel, J., Grady, G. F. Quality-controlled pooling strategies for nucleic-acid based human immunodeficiency virus screening: using polymerase chain reaction as a primary screen on dried blood spot specimens in population studies. In 5th Conference on Retroviruses and Opportunistic Infections; Chicago, interleukin; 1998.
Bremer, J. W., Lew, J. F., Cooper, E., et al.Diagnosis of infection with human immunodeficiency virus type 1 by a deoxyribonucleic acid polymerase chain reaction assay among infants enrolled in the Women and Infants' Transmission Study [see comments]. J. Pediatr. 1996;129(2):198–207.CrossRefGoogle Scholar
Owens, D. K., Holodniy, M., McDonald, T. W., Scott, J., Sonnad, S.A meta-analytic evaluation of the polymerase chain reaction for the diagnosis of human immunodeficiency virus infection in infants [see comments] [published erratum appears in J. Am. Med. Assoc. 1996 Oct 23–30;276(16):1302]. J Am Med Assoc 1996;275(17):1342–1348.CrossRefGoogle Scholar
MoH-I. Guidelines for the Use of Antiretroviral Agents in Pediatric human immunodeficiency virus Infection. 2001.
Stanley, S., Ostrowski, M. A., Justement, J. S.et al.Effect of immunization with a common recall antigen on viral expression in patients infected with human immunodeficiency virus type 1. N. Engl. J. Med. 1996;334(19):1222–1230.CrossRefGoogle ScholarPubMed
Staprans, S. I., Hamilton, B. L., Follansbee, S. E.et al.Activation of virus replication after vaccination of human immunodeficiency virus-1-infected individuals. J. Exp. Med. 1995;182(6):1727–1737.CrossRefGoogle Scholar
Brichacek, B., Swindells, S., Janoff, E. N., Pirruccello, S., Stevenson, M.Increased plasma human immunodeficiency virus type 1 burden following antigenic challenge with pneumococcal vaccine. J. Infect. Dis. 1996;174(6):1191–1199.CrossRefGoogle ScholarPubMed
Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., Markowitz, M.Rapid turnover of plasma virions and cluster of differentiation4 lymphocytes in human immunodeficiency virus-1 infection. Nature 1995;373(6510):123–126.CrossRefGoogle Scholar
Wei, X., Ghosh, S. K., Taylor, M. E.et al.Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995;373(6510):117–122.CrossRefGoogle ScholarPubMed
Wong, J. K., Hezareh, M., Gunthard, H. F.et al.Recovery of replication-competent human immunodeficiency virus despite prolonged suppression of plasma viremia. Science 1997;278:1291–1295.CrossRefGoogle ScholarPubMed
Finzi, D., Hermankova, M., Pierson, T.et al.Identification of a reservoir for human immunodeficiency virus-1 in patients on highly active antiretroviral therapy. Science 1997;278:1295–1300.CrossRefGoogle ScholarPubMed
Chun, T., Stuyver, L., Mizell, S. B.et al.Presence of an inducible human immunodeficiency virus-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 1997;94:13193–13197.CrossRefGoogle ScholarPubMed
Chun, T. W., Carruth, L., Finzi, D.et al.Quantification of latent tissue reservoirs and total body viral load in human immunodeficiency virus-1 infection [see comments]. Nature 1997;387(6629):183–188.CrossRefGoogle Scholar
Persaud, D., Pierson, T., Ruff, C.et al.A stable latent reservoir for human immunodeficiency virus-1 in resting cluster of differentiation4(+) T lymphocytes in infected children. J. Clin. Invest. 2000;105(7):995–1003.CrossRefGoogle Scholar
Palumbo, P. E., Kwok, S., Waters, S.et al.Viral measurement by polymerase chain reaction-based assays in human immunodeficiency virus-infected infants. J. Pediatr. 1995;126(4):592–595.CrossRefGoogle ScholarPubMed
Steketee, R. W., Abrams, E. J., Thea, D. M.et al.Early detection of perinatal human immunodeficiency virus (human immunodeficiency virus) type 1 infection using human immunodeficiency virus ribonucleic acid amplification and detection. New York City Perinatal human immunodeficiency virus Transmission Collaborative Study. J. Infect. Dis. 1997;175(3):707–711.CrossRefGoogle ScholarPubMed
Delamare, C., Burgard, M., Mayaux, M. J.et al.human immunodeficiency virus-1 ribonucleic acid detection in plasma for the diagnosis of infection in neonates. The French Pediatric human immunodeficiency virus Infection Study Group. J. Acquir. Immune. Defic. Syndr. Hum. Retrovirol. 1997;15(2):121–125.CrossRefGoogle Scholar
Munoz, A., Wang, M. C., Bass, S.et al.Acquired immunodeficiency syndrome (acquired immune deficiency syndrome)–free time after human immunodeficiency virus type 1 (human immunodeficiency virus-1) seroconversion in homosexual men. Multicenter acquired immune deficiency syndrome Cohort Study Group. Am. J. Epidemiol. 1989;130(3):530–539.CrossRefGoogle ScholarPubMed
Munoz, A., Kirby, A. J., He, Y. D.et al.Long-term survivors with human immunodeficiency virus-1 infection: incubation period and longitudinal patterns of cluster of differentiation4+ lymphocytes. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1995;8(5):496–505.Google Scholar
Veugelers, P. J., Kaldor, J. M., Strathdee, S. A.et al.Incidence and prognostic significance of symptomatic primary human immunodeficiency virus type 1 infection in homosexual men. J. Infect. Dis. 1997;176(1):112–117.CrossRefGoogle ScholarPubMed
Lyles, R. H., Munoz, A., Yamashita, T. E.et al.Natural history of human immunodeficiency virus type 1 viremia after seroconversion and proximal to acquired immune deficiency syndrome in a large cohort of homosexual men. Multicenter acquired immune deficiency syndrome Cohort Study. J. Infect. Dis. 2000;181(3):872–880.CrossRefGoogle Scholar
Vanhems, P., Hirschel, B., Phillips, A. N.et al.Incubation time of acute human immunodeficiency virus (human immunodeficiency virus) infection and duration of acute human immunodeficiency virus infection are independent prognostic factors of progression to acquired immune deficiency syndrome. J. Infect. Dis. 2000;182(1):334–337.CrossRefGoogle Scholar
Daar, E. S., Moudgil, T., Meyer, R. D., Ho, D. D.Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N. Engl. J. Med. 1991;324(14):961–964.CrossRefGoogle ScholarPubMed
Clark, S. J., Saag, M. S., Decker, W. D.et al.High titers of cytopathic virus in plasma of patients with symptomatic primary human immunodeficiency virus-1 infection. N. Engl. J. Med. 1991;324(14):954–960.CrossRefGoogle Scholar
Rosenberg, E. S., Billingsley, J. M., Caliendo, A. M.et al.Vigorous human immunodeficiency virus-1-specific cluster of differentiation4+ T cell responses associated with control of viremia. Science 1997;278(5342):1447–1450.CrossRefGoogle Scholar
Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., Ho, D. D.human immunodeficiency virus-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996;271(5255):1582–1586.CrossRefGoogle ScholarPubMed
Haase, A. T., Henry, K., Zupancic, M.et al.Quantitative image analysis of human immunodeficiency virus-1 infection in lymphoid tissue. Science 1996;274(5289):985–989.CrossRefGoogle ScholarPubMed
Cavert, W., Notermans, D. W., Staskus, K.et al.Kinetics of response in lymphoid tissues to antiretroviral therapy of human immunodeficiency virus-1 infection. Science 1997;276(5314):960–964.CrossRefGoogle Scholar
Delwart, E. L., Mullins, J. I., Gupta, P.et al.Human immunodeficiency virus type 1 populations in blood and semen. J. Virol. 1998;72(1):617–623.Google ScholarPubMed
Poss, M., Rodrigo, A. G., Gosink, J. J.et al.Evolution of envelope sequences from the genital tract and peripheral blood of women infected with clade A human immunodeficiency virus type 1. J. Virol. 1998;72(10):8240–8251.Google ScholarPubMed
Mellors, J. W., Kingsley, L. A., Rinaldo, C. R. Jr.et al.Quantitation of human immunodeficiency virus-1 ribonucleic acid in plasma predicts outcome after seroconversion. Ann. Intern. Med. 1995;122(8):573–579.CrossRefGoogle ScholarPubMed
Mellors, J. W., Rinaldo, C. R. Jr., Gupta, P., White, R. M., Todd, J. A., Kingsley, L. A.Prognosis in human immunodeficiency virus-1 infection predicted by the quantity of virus in plasma. Science 1996;272(5265):1167–1170.CrossRefGoogle ScholarPubMed
O'Brien, W. A., Hartigan, P. M., Daar, E. S., Simberkoff, M. S., Hamilton, J. D.Changes in plasma human immunodeficiency virus ribonucleic acid levels and cluster of differentiation4+ lymphocyte counts predict both response to antiretroviral therapy and therapeutic failure. VA Cooperative Study Group on acquired immune deficiency syndrome. Ann. Intern. Med. 1997;126(12):939–945.CrossRefGoogle Scholar
Hughes, M. D., Johnson, V. A., Hirsch, M. S.et al.Monitoring plasma human immunodeficiency virus-1 ribonucleic acid levels in addition to cluster of differentiation4+ lymphocyte count improves assessment of antiretroviral therapeutic response. acquired immune deficiency syndrome Clinical Trals Group 241 Protocol Virology Substudy Team. Ann. Intern. Med. 1997;126(12):929–938.CrossRefGoogle Scholar
Finzi, D., Siliciano, R. F.Taking aim at human immunodeficiency virus replication. Nat. Med. 2000;6(7):735–736.CrossRefGoogle Scholar
Carrington, M., Nelson, G. W., Martin, M. P.et al.human leukocyte antigen and human immunodeficiency virus-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 1999;283(5408):1748–1752.CrossRefGoogle ScholarPubMed
Kaslow, R. A., Carrington, M., Apple, R., et al.Influence of combinations of human major histocompatibility complex genes on the course of human immunodeficiency virus-1 infection. Nat. Med. 1996;2(4):405–411.CrossRefGoogle Scholar
O'Brien, S. J., Gao, X., Carrington, M.human leukocyte antigen and acquired immune deficiency syndrome: a cautionary tale. Trends Mol. Med. 2001;7(9):379–381.CrossRefGoogle ScholarPubMed
Dean, M., Carrington, M., O'Brien, S. J.Balanced polymorphism selected by genetic versus infectious human disease. Annu. Rev. Genom. Hum. Genet. 2002;3:263–292.CrossRefGoogle ScholarPubMed
Fauci, A. S., Pantaleo, G., Stanley, S., Weissman, D.Immunopathogenic mechanisms of human immunodeficiency virus infection. Ann. Intern. Med. 1996;124(7):654–663.CrossRefGoogle Scholar
Bush, C. E., Donovan, R. M., Markowitz, N. P., Kvale, P., Saravolatz, L. D.A study of human immunodeficiency virus ribonucleic acid viral load in acquired immune deficiency syndrome patients with bacterial pneumonia. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1996;13(1):23–26.CrossRefGoogle ScholarPubMed
Donovan, R. M., Bush, C. E., Markowitz, N. P., Baxa, D. M., Saravolatz, L. D.Changes in virus load markers during acquired immune deficiency syndrome-associated opportunistic diseases in human immunodeficiency virus-infected persons. J. Infect. Dis. 1996;174(2):401–403.CrossRefGoogle Scholar
Whalen, C., Horsburgh, C. R., Hom, D., Lahart, C., Simberkoff, M., Ellner, J.Accelerated course of human immunodeficiency virus infection after tuberculosis. Am. J. Respir. Crit. Care Med. 1995;151(1):129–135.CrossRefGoogle ScholarPubMed
O'Brien, W. A., , Grovit-Ferbas K., Namazi, A.et al.Human immunodeficiency virus-type 1 replication can be increased in peripheral blood of seropositive patients after influenza vaccination. Blood 1995;86(3):1082–1089.Google ScholarPubMed
Fowke, K. R., D'Amico, R., Chernoff, D. N.et al.Immunologic and virologic evaluation after influenza vaccination of human immunodeficiency virus-1-infected patients. acquired immune deficiency syndrome 1997;11(8):1013–1021.Google Scholar
Premack, B. A., Schall, T. J.Chemokine receptors: gateways to inflammation and infection. Nat. Med. 1996;2(11):1174–1178.CrossRefGoogle ScholarPubMed
Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S., Landau, N. R.Change in coreceptor use correlates with disease progression in human immunodeficiency virus-1-infected individuals. J. Exp. Med. 1997;185(4):621–628.CrossRefGoogle Scholar
Koot, M., Wout, van't A. B., Kootstra, N. A., Goede, R. E., Tersmette, M., Schuitemaker, H.Relation between changes in cellular load, evolution of viral phenotype, and the clonal composition of virus populations in the course of human immunodeficiency virus type 1 infection. J. Infect. Dis. 1996;173(2):349–354.CrossRefGoogle ScholarPubMed
1994 revised classification system for human immundeficiency virus infection in children less than 13 years. Morb. Mortal. Wkly Rep. 1994;43:1–19.
1995 revised guidelines for prophylaxis against Pneumocystis carinii pneumonia for children infected with or perinatally exposed to human immunodeficiency virus. National Pediatric and Family human immunodeficiency virus Resource Center and National Center for Infectious Diseases, Centers for Disease Control and Prevention. Morb. Mortal. Wkly. Rep. 1995;44(relative risk-4):1–11.
Frederick, T., Mascola, L., Eller, A., O'Neil, L., Byers, B.Progression of human immunodeficiency virus disease among infants and children infected perinatally with human immunodeficiency virus or through neonatal blood transfusion. Los Angeles County Pediatric acquired immune deficiency syndrome Consortium and the Los Angeles County-University of Southern California Medical Center and the University of Southern California School of Medicine [see comments]. Pediatr. Infect. Dis. J. 1994;13(12):1091–1097.CrossRefGoogle ScholarPubMed
Jones, D. S., Byers, R. H., Bush, T. J., Oxtoby, M. J., Rogers, M. F.Epidemiology of transfusion-associated acquired immunodeficiency syndrome in children in the United States, 1981 through 1989. Pediatrics 1992;89(1):123–127.Google ScholarPubMed
Auger, I., Thomas, P., DeGruttola, V.et al.Incubation periods for pedatric acquired immune deficiency syndrome patients. Nature 1988;336:575–577.CrossRefGoogle Scholar
Mayaux, M. J., Burgard, M., Teglas, J. P.et al.Neonatal characteristics in rapidly progressive perinatally acquired human immunodeficiency virus-1 disease. The French Pediatric human immunodeficiency virus Infection Study Group. J. Am. Med. Assoc. 1996;275(8):606–610.CrossRefGoogle Scholar
Duliege, A. M., Messiah, A., Blanche, S., Tardieu, M., Griscelli, C., Spira, A.Natural history of human immunodeficiency virus type 1 infection in children: prognostic value of laboratory tests on the bimodal progression of the disease. Pediatr. Infect. Dis. J. 1992;11(8):630–635.Google ScholarPubMed
Scott, G. B., Hutto, C., Makuch, R. W.et al.Survival in children with perinatally acquired human immunodeficiency virus type 1 infection. N. Engl. J. Med. 1989;321(26):1791–1796.CrossRefGoogle ScholarPubMed
Barnhart, H. X., Caldwell, M. B., Thomas, P.et al.Natural history of human immunodeficiency virus disease in perinatally infected children: an analysis from the Pediatric Spectrum of Disease Project. Pediatrics 1996;97(5):710–716.Google ScholarPubMed
Blanche, S., Newell, M. L., Mayaux, M. J.et al.Morbidity and mortality in European children vertically infected by human immunodeficiency virus- 1. The French Pediatric human immunodeficiency virus Infection Study Group and European Collaborative Study. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1997;14(5):442–450.CrossRefGoogle Scholar
Plaeger-Marshall, S., Isacescu, V., O'Rourke, S., Bertolli, J., Bryson, Y. J., Stiehm, E. R.T-cell activation in pediatric acquired immune deficiency syndrome pathogenesis: three-color immunophenotyping. Clin. Immunol. Immunopathol. 1994;71(1):19–26.CrossRefGoogle ScholarPubMed
Pollack, H., Zhan, M. X., Ilmet-Moore, T., Ajuang-Simbiri, K., Krasinski, K., Borkowsky, W.Ontogeny of anti-human immunodeficiency virus (human immunodeficiency virus) antibody production in human immunodeficiency virus-1-infected infants. Proc. Natl Acad. Sci. USA 1993;90(6):2340–2344.CrossRefGoogle Scholar
Bryson, Y. J., Luzuriaga, K., Sullivan, J. L., Wara, D. W.Proposed definitions for in utero versus intrapartum transmission of human immunodeficiency virus-1. N. Engl. J. Med. 1992;327(17):1246–1247.Google Scholar
Dickover, R. E., Dillon, M., Gillette, S. G.et al.Rapid increases in load of human immunodeficiency virus correlate with early disease progression and loss of cluster of differentiation4 cells in vertically infected infants. J. Infect. Dis. 1994;170(5):1279–1284.CrossRefGoogle Scholar
Rossi, A., Masiero, S., Giaquinto, C.et al.Dynamics of viral replication in infants with vertically acquired human immunodeficiency virus type 1 infection. J. Clin. Invest. 1996;97(2):323–330.CrossRefGoogle ScholarPubMed
McIntosh, K., Shevitz, A., Zaknun, D.et al.Age- and time-related changes in extracellular viral load in children vertically infected by human immunodeficiency virus. Pediatr. Infect. Dis. J. 1996;15(12):1087–1091.CrossRefGoogle ScholarPubMed
UNAIDS/World Health Organization. acquired immune deficiency syndrome Epidemic Update–December 2002. Geneva: acquired immune deficiency syndrome/World Health Organization; 2002.
Cohen, J.Is acquired immune deficiency syndrome in Africa a distinct disease?Science 2000;288(5474):2153–2155.CrossRefGoogle Scholar
Morgan, D., Whitworth, J.The natural history of human immunodeficiency virus-1 infection in Africa. Nat. Med. 2001;7(2):143–145.CrossRefGoogle ScholarPubMed
Morgan, D., Mahe, C., Mayanja, B., Whitworth, J. A.Progression to symptomatic disease in people infected with human immunodeficiency virus-1 in rural Uganda: prospective cohort study. B. Med. J. 2002;324(7331):193–196.CrossRefGoogle ScholarPubMed
Gortmaker, S. L., Hughes, M., Cervia, J., et al.Effect of combination therapy including protease inhibitors on mortality among children and adolescents infected with human immunodeficiency virus-1. N. Engl. J. Med. 2001;345(21):1522–1528.CrossRefGoogle Scholar
Martino, M., Tovo, P. A., Balducci, M., et al.Reduction in mortality with availability of antiretroviral therapy for children with perinatal human immunodeficiency virus-1 infection. Italian Register for human immunodeficiency virus Infection in Children and the Italian National acquired immune deficiency syndrome Registry. J. Am. Med. Assoc. 2000;284(2):190–197.CrossRefGoogle Scholar
Resino, S., Bellon, J. M., Sanchez-Ramon, S., et al.Impact of antiretroviral protocols on dynamics of acquired immune deficiency syndrome progression markers. Arch. Dis. Child. 2002;86(2):119–124.CrossRefGoogle ScholarPubMed
Holland, C. A., Ma, Y., Moscicki, B., Durako, S. J., Levin, L., Wilson, C. M.Seroprevalence and risk factors of hepatitis B, hepatitis C, and human cytomegalovirus among human immunodeficiency virus-infected and high-risk uninfected adolescents: findings of the reaching for excellence in adolescent care and health Study. Adolescent Medicine human immunodeficiency virus/acquired immune deficiency syndrome Research Network. Sex. Transm. Dis. 2000;27(5):296–303.CrossRefGoogle Scholar
Wilson, C. M., Ellenberg, J. H., Sawyer, M. K.et al.Serologic response to hepatitis B vaccine in human immunodeficiency virus infected and high-risk human immunodeficiency virus uninfected adolescents in the reaching for excellence in adolescent care and health cohort. Reaching for Excellence in Adolescent Care and Health. J. Adolesc. Health 2001;29(3 Suppl):123–129.CrossRefGoogle ScholarPubMed
Palumbo, P. E., Raskino, C., Fiscus, S.et al.Predictive value of quantitative plasma human immunodeficiency virus ribonucleic acid and cluster of differentiation4+ lymphocyte count in human immunodeficiency virus-infected infants and children. J. Am. Med. Assoc. 1998;279(10):756–761.CrossRefGoogle Scholar
Mofenson, L. M., Korelitz, J., Meyer, W. A. 3rdet al.The relationship between serum human immunodeficiency virus type 1 (human immunodeficiency virus-1) ribonucleic acid level, cluster of differentiation4 lymphocyte percent, and long-term mortality risk in human immunodeficiency virus-1-infected children. National Institute of Child Health and Human Development Intravenous Immunoglobulin Clinical Trial Study Group. J. Infect. Dis. 1997;175(5):1029–1038.CrossRefGoogle Scholar
Abrams, E. J., Weedon, J., Steketee, R. W.et al.Association of human immunodeficiency virus (human immunodeficiency virus) load early in life with disease progression among human immunodeficiency virus-infected infants. New York City Perinatal human immunodeficiency virus Transmission Collaborative Study Group. J. Infect. Dis. 1998;178(1):101–108.CrossRefGoogle Scholar
Balotta, C., Vigano, A., Riva, C.et al.human immunodeficiency virus type 1 phenotype correlates with the stage of infection in vertically infected children. acquired immune deficiency syndrome Res. Hum. Retroviruses 1996;12(13):1247–1253.Google ScholarPubMed
Spencer, L. T., Ogino, M. T., Dankner, W. M., Spector, S. A.Clinical significance of human immunodeficiency virus type 1 phenotypes in infected children. J. Infect. Dis. 1994;169(3):491–495.CrossRefGoogle ScholarPubMed
Ometto, L., Zanotto, C., Maccabruni, A.et al.Viral phenotype and host-cell susceptibility to human immunodeficiency virus-1 infection as risk factors for mother-to-child human immunodeficiency virus-1 transmission. acquired immune deficiency syndrome 1995;9(5):427–434.Google Scholar
Just, J. J., Casabona, J., Bertran, J., et al.major histocompatibility complex class II alleles associated with clinical and immunological manifestations of human immunodeficiency virus-1 infection among children in Catalonia, Spain. Tissue Antigens 1996;47(4):313–318.CrossRefGoogle ScholarPubMed
Kostrikis, L. G., Neumann, A. U., Thomson, B.et al.A polymorphism in the regulatory region of the CC-chemokine receptor 5 gene influences perinatal transmission of human immunodeficiency virus type 1 to African-American infants. J. Virol. 1999;73(12):10264–10271.Google ScholarPubMed
Goedert, J. J., Kessler, C. M., Aledort, L. M.et al.A prospective study of human immunodeficiency virus type 1 infection and the development of acquired immune deficiency syndrome in subjects with hemophilia. N. Engl. J. Med. 1989;321(17):1141–1148.CrossRefGoogle ScholarPubMed
Morris, C. R., , Araba-Owoyele L., Spector, S. A., Maldonado, Y. A.Disease patterns and survival after acquired immunodeficiency syndrome diagnosis in human immunodeficiency virus-infected children. Pediatr. Infect. Dis. J. 1996;15(4):321–328.CrossRefGoogle ScholarPubMed
Blanche, S., Mayaux, M. J., Rouzioux, C., et al.Relation of the course of human immunodeficiency virus infection in children to the severity of the disease in their mothers at delivery. N. Engl. J. Med. 1994;330(5):308–312.CrossRefGoogle ScholarPubMed
Tovo, P. A., Martino, M., Gabiano, C., et al.acquired immune deficiency syndrome appearance in children is associated with the velocity of disease progression in their mothers. J. Infect. Dis. 1994;170(4):1000–1002.CrossRefGoogle ScholarPubMed
Lambert, G., Thea, D. M., Pliner, V., et al.Effect of maternal cluster of differentiation4+ cell count, acquired immunodeficiency syndrome, and viral load on disease progression in infants with perinatally acquired human immunodeficiency virus type 1 infection. New York City Perinatal human immunodeficiency virus Transmission Collaborative Study Group. J. Pediatr. 1997;130(6):890–897.CrossRefGoogle Scholar
Krasinski, K., Borkowsky, W., Holzman, R. S.Prognosis of human immunodeficiency virus infection in children and adolescents. Pediatr. Infect. Dis. J. 1989;8(4):216–220.Google ScholarPubMed
Bamji, M., Thea, D. M., Weedon, J.et al.Prospective study of human immunodeficiency virus 1-related disease among 512 infants born to infected women in New York City. The New York City Perinatal human immunodeficiency virus Transmission Collaborative Study Group. Pediatr. Infect. Dis. J. 1996;15(10):891–898.CrossRefGoogle ScholarPubMed
Blanche, S., Tardieu, M., Duliege, A.et al.Longitudinal study of 94 symptomatic infants with perinatally acquired human immunodeficiency virus infection. Evidence for a bimodal expression of clinical and biological symptoms. Am. J. Dis. Child. 1990;144(11):1210–1215.CrossRefGoogle ScholarPubMed
McKinney, R. E. Jr., Wilfert, C.Growth as a prognostic indicator in children with human immunodeficiency virus infection treated with zidovudine. acquired immune deficiency syndrome Clinical Trials Group Protocol 043 Study Group. J. Pediatr. 1994;125(5 Pt 1):728–733.CrossRefGoogle Scholar
Pollack, H., Glasberg, H., Lee, E.et al.Impaired early growth of infants perinatally infected with human immunodeficiency virus: correlation with viral load. J. Pediatr. 1997;130(6):915–922.CrossRefGoogle ScholarPubMed
Nielsen, K., Ammann, A., Bryson, Y. et al. A descriptive survey of pediatric human immunodeficiency virus-infected long term survivors. In 3rd Conf Retro and Opportun Infect; Jan 28–Feb 1, 1996. p. 150.
Bryson, Y. J., Pang, S., Wei, L. S., Dickover, R., Diagne, A., Chen, I. S.Clearance of human immunodeficiency virus infection in a perinatally infected infant. N. Engl. J. Med. 1995;332(13):833–838.CrossRefGoogle Scholar
Newell, M. L., Dunn, D., Maria, A., et al.Detection of virus in vertically exposed human immunodeficiency virus-antibody-negative children. Lancet 1996;347(8996):213–215.CrossRefGoogle Scholar
Roques, P. A., Gras, G., Parnet-Mathieu, F.et al.Clearance of human immunodeficiency virus infection in 12 perinatally infected children: clinical, virological and immunological data. acquired immune deficiency syndrome 1995;9(12):F19–F26.Google ScholarPubMed
Bakshi, S. S., Tetali, S., Abrams, E. J., Paul, M. O., Pahwa, S. G.Repeatedly positive human immunodeficiency virus type 1 deoxyribonucleic acid polymerase chain reaction in human immunodeficiency virus-exposed seroreverting infants. Pediatr. Infect. Dis. J. 1995;14(8):658–662.CrossRefGoogle Scholar
Kuhn, L., , Meddows-Taylor S., Gray, G., Tiemessen, C.Human immunodeficiency virus (human immunodeficiency virus)-specific cellular immune responses in newborns exposed to human immunodeficiency virus in utero. Clin. Infect. Dis. 2002;34(2):267–276.CrossRefGoogle ScholarPubMed
Miller, C. J., Marthas, M., Torten, J.et al.Intravaginal inoculation of rhesus macaques with cell-free simian immunodeficiency virus results in persistent or transient viremia. J. Virol. 1994;68(10):6391–6400.Google ScholarPubMed
Frenkel, L. M., Mullins, J. I., Learn, G. H.et al.Genetic evaluation of suspected cases of transient human immunodeficiency virus-1 infection of infants. Science 1998;280(5366):1073–1077.CrossRefGoogle ScholarPubMed
Stiehm, E. R., Fudenberg, H. H.Serum levels of immune globulins in health and disease: a survey. Pediatrics 1966;37(5):715–727.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×