Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-13T02:28:34.137Z Has data issue: false hasContentIssue false

47 - HHV-6A, 6B, and 7: molecular basis of latency and reactivation

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7

Published online by Cambridge University Press:  24 December 2009

Kazuhiro Kondo
Affiliation:
Department of Microbiology, The Jikei University School of Medicine, Tokyo, Japan
Koichi Yamanishi
Affiliation:
Department of Microbiology, Osaka University Graduate School of Medicine, Japan
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

The human β-herpesvirus subfamily consists of human cytomegalovirus (HCMV), human herpesvirus 6 (HHV-6), and human herpesvirus 7 (HHV-7). HHV-6 and HHV-7 belong to the Roseolovirus genus of the β-herpesviruses, and the HHV-6 species are divided into two variants: HHV-6A and HHV-6B. These viruses establish a lifelong infection of their host, reactivate frequently, and reactivated viruses are shed into the saliva (Jordan, 1983; Krueger et al., 1990). Some evidence suggests that the molecular mechanisms of viral latency and reactivation are shared among these viruses. HHV-6B is reactivated from latency after coinfection with HHV-7 (Katsafanas et al., 1996), and HCMV disease is frequently associated with concurrent HHV-6 and HHV-7 reactivation in transplant patients (Lautenschlager et al., 2000; Mendez et al., 2001)

The sites of these viruses during latency are not completely defined. For HHV-6B, viral DNA is detected predominantly in the peripheral blood monocytes/macrophages of seropositive healthy adults (Kondo et al., 1991). Furthermore, primary cultured macrophages support latent HHV-6B infection, and viral reactivation is induced in them by treatment with 12-0-tetradecanoylphorbol-13-acetate (TPA) (Kondo et al., 1991). HHV-6B also establishes latency in myeloid cell lines (Yasukawa et al., 1999), and that HHV-6B is detectable in CD34 (+) peripheral blood progenitor cells (Luppi et al., 1999). Therefore, HHV-6B appears to establish latency in hematopoietic progenitor cells.

HHV-6A is detectable in the peripheral blood of seropositive adults (Drobyski et al., 1993); however, a cell population that might harbor latent HHV-6A has not been identified.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 843 - 849
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caserta, M. T., Hall, C. B., Schnabel, K.et al. (1994). Neuroinvasion and persistence of human herpesvirus 6 in children. J. Infect. Dis., 170, 1586–1589.CrossRefGoogle ScholarPubMed
Challoner, P. B., Smith, K. T., Parker, J. D.et al. (1995). Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc. Natl, Acad. Sci. USA, 92, 7440–7444.CrossRefGoogle Scholar
Chee, M. S., Bankier, A. T., Beck, S.et al. (1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol., 154, 125–169.Google ScholarPubMed
Daibata, M., Taguchi, T., Sawada, T., Taguchi, H., and Miyoshi, I. (1998). Chromosomal transmission of human herpesvirus 6 DNA in acute lymphoblastic leukaemia. Lancet, 12, 543–544.CrossRefGoogle Scholar
DesJardin, J. A., Gibbons, L., Cho, E.et al. (1998). Human herpesvirus 6 reactivation is associated with cytomegalovirus infection and syndromes in kidney transplant recipients at risk for primary cytomegalovirus infection. J. Infect. Dis., 178, 1783–1786.CrossRefGoogle ScholarPubMed
Drobyski, W. R., Eberle, M., Majewski, D., and Baxter-Lowe, L. A. (1993). Prevalence of human herpesvirus 6 variant A and B infections in bone marrow transplant recipients as determined by polymerase chain reaction and sequence-specific oligonucleotide probe hybridization. J. Clin. Microbiol., 31, 1515–1520.Google Scholar
Frenkel, N., Schirmer, E. C., Wyatt, L. S.et al. (1990). Isolation of a new herpesvirus from human CD4+ T cells. Proc. Natl Acad. Sci. USA, 278, 748–752.CrossRefGoogle Scholar
Gompels, U. A., Nicholas, J., Lawrence, G.et al. (1995). The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology, 209, 29–51.CrossRefGoogle ScholarPubMed
Hall, C. B., Long, C. E., Schnabel, K. C.et al. (1994). Human herpesvirus-6 infection in children. A prospective study of complications and reactivation. N. Engl. J. Med., 331, 432–438.CrossRefGoogle ScholarPubMed
Hoffmann, B., Valerius, O., Andermann, M., and Braus, G. H. (2001). Transcriptional autoregulation and inhibition of mRNA translation of amino acid regulator gene cpcA of filamentous fungus Aspergillus nidulans. Mol. Biol. Cell, 12, 2846–2857.CrossRefGoogle ScholarPubMed
Honess, R. W., Gompels, U. A., Barrell, B. G.et al. (1989). Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. J. Gen. Virol., 70, 837–855.CrossRefGoogle ScholarPubMed
Humar, A., Malkan, G., Moussa, G., Greig, P. Levy, G., and Mazzulli, T. (2000). Human herpesvirus-6 is associated with cytomegalovirus reactivation in liver transplant recipients. J. Infect. Dis., 181, 1450–1453.CrossRefGoogle ScholarPubMed
Hummel, M., Zhang, Z., Yan, S.et al. (2001). Allogeneic transplantation induces expression of cytomegalovirus immediate-early genes in vivo: a model for reactivation from latency. J. Virol., 75, 4814–4822.CrossRefGoogle ScholarPubMed
Jordan, M. C. (1983). Latent infection and the elusive cytomegalovirus. Rev. Infect. Dis., 5, 205–215.CrossRefGoogle ScholarPubMed
Katsafanas, G. C., Schirmer, E. C., Wyatt, L. S., and Frenkel, N. (1996). In vitro activation of human herpesviruses 6 and 7 from latency. Proc. Natl Acad. Sci. USA, 93, 9788–9792.CrossRefGoogle ScholarPubMed
Kempf, W., Adams, V., Mirandola, P.et al. (1997a). Persistence of human herpesvirus 7 in normal tissues detected by expression of a structural antigen. J. Infect. Dis., 71, 841–845.Google Scholar
Kempf, W., Adams, V., Wey, N.et al. (1997b). CD68+ cells of monocyte/macrophage lineage in the environment of AIDS-associated and classic-sporadic Kaposi sarcoma are singly or doubly infected with human herpesviruses 7 and 6B. Proc. Natl Acad. Sci. USA, 94, 7600–7605.CrossRefGoogle Scholar
Kimberlin, D. W. and Whitley, R. J. (1998). Human herpesvirus-6: neurologic implications of a newly-described viral pathogen. J. Neurovirol., 4, 474–485.CrossRefGoogle ScholarPubMed
Kondo, K. and Mocarski, E. S. (1995). Cytomegalovirus latency and latency-specific transcription in hematopoietic progenitors. Scand. J. Infect. Dis. Suppl 99, 63–67.Google ScholarPubMed
Kondo, K., Kondo, T., Okuno, T., Takahashi, M., and Yamanishi, K. (1991). Latent human herpesvirus 6 infection of human monocytes/macrophages. J. Gen. Virol., 72, 1401–1408.CrossRefGoogle ScholarPubMed
Kondo, K., Nagafuji, H., Hata, A., Tomomori, C., and Yamanishi, K. (1993). Association of human herpesvirus 6 infection of the central nervous system with recurrence of febrile convulsions. J. Infect. Dis., 167, 1197–1200.CrossRefGoogle ScholarPubMed
Kondo, K., Kaneshima, H., and Mocarski, E. S. (1994). Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc. Natl Acad. Sci. USA, 91, 11879–11883.CrossRefGoogle ScholarPubMed
Kondo, K., Xu, J., and Mocarski, E. S. (1996). Human cytomegalovirus latent gene expression in granulocyte-macrophage progenitors in culture and in seropositive individuals. Proc. Natl Acad. Sci. USA, 93, 11137–11142.CrossRefGoogle ScholarPubMed
Kondo, K., Shimada, K., Sashihara, J., Tanaka-Taya, K., and Yamanishi, K. (2002). Identification of human herpesvirus 6 latency-associated transcripts. J. Virol., 76, 4145–4151.CrossRefGoogle ScholarPubMed
Kondo, K., Nozaki, H., Shimada, K., and Yamanishi, K. (2003a). Detection of a gene cluster that is dispensable for human herpesvirus 6 replication and latency. J. Virol., 162, 10719–10724.CrossRefGoogle Scholar
Kondo, K., Sashihara, J., and Shimada, K. (2003b). Recognition of a novel stage of beta-herpesvirus latency in human herpesvirus 6. J. Virol., 77, 2258–2264.CrossRefGoogle Scholar
Krueger, G. R., Wassermann, K., Clerck, L. S.et al. (1990). Latent herpesvirus-6 in salivary and bronchial glands [letter; comment]. Lancet, 336, 1255–1256.CrossRefGoogle Scholar
Lautenschlager, I., Lappalainen, M., Linnavuori, K., Suni, J., and Hockerstedt, K. (2000). CMV infection is usually associated with concurrent HHV-6 and HHV-7 antigenemia in liver transplant patients. J. Clin. Virol., 13 Suppl 1, S57-S61.Google Scholar
Luppi, M., Marasca, R., Barozzi, P.et al. (1993). Three cases of human herpesvirus-6 latent infection: integration of viral genome in peripheral blood mononuclear cell DNA. J. Med Virol., 40, 44–52.CrossRefGoogle ScholarPubMed
Luppi, M., Barozzi, P., Morris, C.et al. (1999). Human herpesvirus 6 latently infects early bone marrow progenitors in vivo. J. Virol., 73, 754–759.Google ScholarPubMed
Megaw, A. G., Rapaport, D., Avidor, B., Frenkel, N., and Davison, A. J. (1998). The DNA sequence of the RK strain of human herpesvirus 7. Virology, 244, 119–132.CrossRefGoogle ScholarPubMed
Mendez, J. C., Dockrell, D. H., Espy, M. J.et al. (2001). Human beta-herpesvirus interactions in solid organ transplant recipients. J. Infect. Dis., 183, 179–184.CrossRefGoogle ScholarPubMed
Mirandola, P., Menegazzi, P., Merighi, S., Ravaioli, T., Cassai, E., and Luca, D. (1998). Temporal mapping of transcripts in herpesvirus 6 variants. J. Virol., 72, 3837–3844.Google ScholarPubMed
Nicholas, J. (1996). Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J. Virol., 70, 5975–5989.Google Scholar
Nomura, A., Iwasaki, Y., Saito, M.et al. (2001). Involvement of upstream open reading frames in regulation of rat V(1b) vasopressin receptor expression. Am. J. Physiol. Endocrinol. Metab., 280, E780–E787.CrossRefGoogle Scholar
Rapp, J. C., Krug, L. T., Inoue, N., Dambaugh, T. R., and Pellett, P. E. (2000). U94, the human herpesvirus 6 homolog of the parvovirus nonstructural gene, is highly conserved among isolates and is expressed at low mRNA levels as a spliced transcript. Virology, 268, 504–516.CrossRefGoogle ScholarPubMed
Rotola, A., Ravaioli, T., Gonelli, A., Dewhurst, S., Cassai, E., and Luca, D. (1998). U94 of human herpesvirus 6 is expressed in latently infected peripheral blood mononuclear cells and blocks viral gene expression in transformed lymphocytes in culture. Proc. Natl Acad. Sci. USA, 95, 13911–13916.CrossRefGoogle ScholarPubMed
Schiewe, U., Neipel, F., Schreiner, D., and Fleckenstein, B. (1994). Structure and transcription of an immediate-early region in the human herpesvirus 6 genome. J. Virol., 68, 2978–2985.Google ScholarPubMed
Soderberg-Naucler, C., Streblow, D. N., Fish, K. N., Allan-Yorke, J., Smith, P. P., and Nelson, J. A. (2001). Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J. Virol., 75, 7543–7554.CrossRefGoogle ScholarPubMed
Sola, P., Merelli, E., Marasca, R.et al. (1993). Human herpesvirus 6 and multiple sclerosis: survey of anti-HHV-6 antibodies by immunofluorescence analysis and of viral sequences by polymerase chain reaction. J. Neurol. Neurosurg. Psychiatry, 56, 917–919.CrossRefGoogle ScholarPubMed
Taylor-Wiedeman, J., Sissons, J. G., Borysiewicz, L. K., and Sinclair, J. H. (1991). Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J. Gen. Virol., 72, 2059–2064.CrossRefGoogle ScholarPubMed
Thomson, B. J., Efstathiou, S., and Honess, R. W. (1991). Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature, 351, 78–80.CrossRefGoogle ScholarPubMed
Yasukawa, M., Ohminami, H., Sada, E.et al. (1999). Latent infection and reactivation of human herpesvirus 6 in two novel myeloid cell lines. Blood, 93, 991–999.Google ScholarPubMed
Yoshikawa, T., Asano, Y., and Ihira, M. (2002). Human herpesvirus 6 viremia in bone marrow transplant recipients: clinical features and risk factors. J. Infect. Dis., 66, 847–853.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×