Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-03T15:40:45.259Z Has data issue: false hasContentIssue false

6 - Atmospheric Observations and Inverse Modeling Approaches for Identifying Geographical Sources and Sinks of Carbon

Published online by Cambridge University Press:  05 February 2013

Daniel G. Brown
Affiliation:
University of Michigan, Ann Arbor
Derek T. Robinson
Affiliation:
University of Waterloo, Ontario
Nancy H. F. French
Affiliation:
Michigan Technological University
Bradley C. Reed
Affiliation:
United States Geological Survey, California
Get access

Summary

Introduction

Identifying the geographic distribution of sources (i.e., emissions, efflux) and sinks (i.e., uptake, sequestration) of carbon (C), as well as the temporal variability in these C fluxes, is important for a variety of reasons. These include (1) improving the current understanding of the global C cycle and the processes controlling flux variability, (2) using this increased understanding to improve the ability to predict how the C cycle will evolve under future climate conditions, and (3) evaluating the effectiveness of C management strategies aimed at either reducing emissions or increasing C uptake.

A complicating factor in understanding the spatial and temporal distribution of C fluxes is the fact that these fluxes cannot be observed directly at scales beyond one or several square kilometers. C fluxes can be measured directly in the laboratory at very fine scales, and eddy covariance flux observations, such as those provided by the FLUXNET (e.g., Baldocchi et al. 2001) and AmeriFlux (e.g., Hargrove, Hoffman, and Law 2003) networks can be used to directly infer C fluxes with footprints of approximately 1 km2, depending on site characteristics (e.g., see Chapter 10). To understand C fluxes and their controlling processes at climate- and policy-relevant scales, however, estimates of flux ranging from ecoregion to global scales are needed.

Type
Chapter
Information
Land Use and the Carbon Cycle
Advances in Integrated Science, Management, and Policy
, pp. 144 - 177
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andres, R.J., Fielding, D.J., Marland, G., Boden, T.A., Kumar, N., and Kearney, A.T. 1999. Carbon dioxide emissions from fossil-fuel use, 1751–1950. Tellus Series B: Chemical and Physical Meteorology, 51(4):759–765.CrossRefGoogle Scholar
Andres, R.J., Marland, G., Fung, I., and Matthews, E. 1996. A 1 degree x 1 degree distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Global Biogeochemical Cycles, 10(3):419–429.CrossRefGoogle Scholar
Bacastow, R.B. 1976. Modulation of atmospheric carbon-dioxide by southern oscillation. Nature, 261(5556):116–118.CrossRefGoogle Scholar
Baker, D.F., Bosch, H., Doney, S.C., O’Brien, D., and Schimel, D.S. 2010. Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory. Atmospheric Chemistry and Physics, 10(9):4145–4165.CrossRefGoogle Scholar
Baker, D.F., Doney, S.C., and Schimel, D.S. 2006a. Variational data assimilation for atmospheric CO2. Tellus Series B: Chemical and Physical Meteorology, 58(5):359–365.CrossRefGoogle Scholar
Baker, D.F., Law, R.M., Gurney, K.R., Rayner, P., Peylin, P., Denning, A.S.,…Zhu, Z. 2006b. TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003. Global Biogeochemical Cycles, 20(1):GB1002.CrossRefGoogle Scholar
Bakwin, P.S., Tans, P.P., Hurst, D.F., and Zhao, C.L. 1998. Measurements of carbon dioxide on very tall towers: Results of the NOAA/CMDL program. Tellus Series B: Chemical and Physical Meteorology, 50(5):401–415.CrossRefGoogle Scholar
Bakwin, P.S., Tans, P.P., Stephens, B.B., Wofsy, S.C., Gerbig, C., and Grainger, A. 2003. Strategies for measurement of atmospheric column means of carbon dioxide from aircraft using discrete sampling. Journal of Geophysical Research: Atmospheres, 108(D16):7.CrossRefGoogle Scholar
Bakwin, P.S., Tans, P.P., Zhao, C.L., Ussler, W., and Quesnell, E. 1995. Measurements of carbon-dioxide on a very tall tower. Tellus Series B: Chemical and Physical Meteorology, 47(5):535–545.CrossRefGoogle Scholar
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,…Wofsy, S. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82(11):2415–2434.2.3.CO;2>CrossRefGoogle Scholar
Bousquet, P., Ciais, P., Monfray, P., Balkanski, Y., Ramonet, M., and Tans, P. 1996. Influence of two atmospheric transport models on inferring sources and sinks of atmospheric CO2. Tellus Series B: Chemical and Physical Meteorology, 48(4):568–582.CrossRefGoogle Scholar
Bousquet, P., Ciais, P., Peylin, P., Ramonet, M., and Monfray, P. 1999a. Inverse modeling of annual atmospheric CO2 sources and sinks. 1. Method and control inversion. Journal of Geophysical Research: Atmospheres, 104(D21):26161–26178.CrossRefGoogle Scholar
Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P., and Tans, P.P. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290(5495):1342–1346.CrossRefGoogle ScholarPubMed
Bousquet, P., Peylin, P., Ciais, P., Ramonet, M., and Monfray, P. 1999b. Inverse modeling of annual atmospheric CO2 sources and sinks. 2. Sensitivity study. Journal of Geophysical Research: Atmospheres, 104(D21):26179–26193.CrossRefGoogle Scholar
Brenkert, L. 1998. Carbon dioxide emission estimates from fossil-fuel burning, hydraulic cement production, and gas flaring for 1995 on a one degree grid cell basis. Edited. .
Broecker, W.S., Takahashi, T., Simpson, H.J., and Peng, T.H. 1979. Fate of fossil-fuel carbon-dioxide and the global carbon budget. Science, 206(4417):409–418.CrossRefGoogle ScholarPubMed
Bruhwiler, L.M., Michalak, P.A.M., Peters, W., Baker, D.F., and Tans, P. 2005. An improved Kalman Smoother for atmospheric inversions, Atmospheric Chemistry and Physics, 5:2691–2702.CrossRefGoogle Scholar
Buchwitz, M., de Beek, R., Burrows, J.P., Bovensmann, H., Warneke, T., Notholt, J.,…Schulz, A. 2005a. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models. Atmospheric Chemistry and Physics, 5:941–962.CrossRefGoogle Scholar
Buchwitz, M., de Beek, R., Noel, S., Burrows, J.P., Bovensmann, H., Bremer, H.,…Heimann, M. 2005b. Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set. Atmospheric Chemistry and Physics, 5:3313–3329.CrossRefGoogle Scholar
Buchwitz, M., Schneising, O., Burrows, J.P., Bovensmann, H., Reuter, M., and Notholt, J. 2007. First direct observation of the atmospheric CO2 year-to-year increase from space. Atmospheric Chemistry and Physics, 7(16):4249–4256.CrossRefGoogle Scholar
Butler, M.P., Davis, K.J., Denning, A.S., and Kawa, S.R. 2010. Using continental observations in global atmospheric inversions of CO2: North American carbon sources and sinks. Tellus Series B: Chemical and Physical Meteorology, 62(5):550–572.CrossRefGoogle Scholar
Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I.,…Warneke, T. 2011. Toward accurate CO2 and CH4 observations from GOSAT. Geophysical Research Letters, 38:L14812, .CrossRefGoogle Scholar
Carouge, C., Bousquet, P., Peylin, P., Rayner, P.J., and Ciais, P. 2010. What can we learn from European continuous atmospheric CO2 measurements to quantify regional fluxes: Part 1: Potential of the 2001 network. Atmospheric Chemistry and Physics, 10(6):3107–3117.CrossRefGoogle Scholar
Chahine, M., Barnet, C., Olsen, E.T., Chen, L., and Maddy, E. 2005. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophysical Research Letters, 32:L2803.CrossRefGoogle Scholar
Chahine, M.T., Chen, L., Dimotakis, P., Jiang, X., Li, Q.B., Olsen, E.T.,…Yung, Y.L. 2008. Satellite remote sounding of mid-tropospheric CO2. Geophysical Research Letters, 35:L17807.CrossRefGoogle Scholar
Chedin, A., Saunders, R., Hollingsworth, A., Scott, N., Matricardi, M., Etcheto, J.,…Crevoisier, C. 2003. The feasibility of monitoring CO2 from high-resolution infrared sounders. Journal of Geophysical Research: Atmospheres, 108:4064.CrossRefGoogle Scholar
Chevallier, F. 2007. Impact of correlated observation errors on inverted CO2 surface fluxes from OCO measurements. Geophysical Research Letters, 34:L24804.CrossRefGoogle Scholar
Chevallier, F., Breon, F.M., and Rayner, P.J. 2007. Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework. Journal of Geophysical Research: Atmospheres, 112:D09307.CrossRefGoogle Scholar
Chevallier, F., Ciais, P., Conway, T.J., Aalto, T., Anderson, B.E., Bousquet., P.,…Worthy, D. 2010. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. Journal of Geophysical Research: Atmospheres, 115:D21307.CrossRefGoogle Scholar
Chevallier, F., Engelen, R.J., Carouge, C., Conway, T.J., Peylin, P., Pickett-Heaps, C.,…Xueref-Remy, I. 2009a. AIRS-based versus flask-based estimation of carbon surface fluxes. Journal of Geophysical Research: Atmospheres, 114:D20303.CrossRefGoogle Scholar
Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Breon, F.M.,…Ciais, P. 2005. Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data. Journal of Geophysical Research: Atmospheres, 110:D24309.CrossRefGoogle Scholar
Chevallier, F., Maksyutov, S., Bousquet, P., Breon, F.M., Saito, R., Yoshida, Y., and Yokota, T. 2009b. On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations. Geophysical Research Letters, 36:L19807.CrossRefGoogle Scholar
Chevallier, F., Viovy, N., Reichstein, M., and Ciais, P. 2006. On the assignment of prior errors in Bayesian inversions of CO2 surface fluxes. Geophysical Research Letters, 33:L13802.CrossRefGoogle Scholar
Ciais, P., Canadell, J.G., Luyssaert, S., Chevallier, F., Shvidenko, A., Poussi, Z.,…Bréon, F.-M. 2010a. Can we reconcile atmospheric estimates of the northern terrestrial carbon sink with land-based accounting?Current Opinion in Environmental Sustainability, 2(4):225–230.CrossRefGoogle Scholar
Ciais, P., Rayner, P., Chevallier, F., Bousquet, P., Logan, M., Peylin, P., and Ramonet, M. 2010b. Atmospheric inversions for estimating CO2 fluxes: Methods and perspectives. Climatic Change, 103(1–2):69–92.CrossRefGoogle Scholar
Ciais, P., Tans, P.P., White, J.W.C., Trolier, M., Francey, R.J., Berry, J.A.,…Schimel, D.S. 1995. Partitioning of ocean and land uptake of CO2 as inferred by delta-C-13 measurements from the NOAA Climate Monitoring and Diagnostics Laboratory global air sampling network. Journal of Geophysical Research: Atmospheres, 100(D3):5051–5070.CrossRefGoogle Scholar
Conway, T.J., Lang, P.M., and Masarie, K.A. 2009. Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1968–2008, version: 2009–07-15, edited. .
Corbin, K.D., and Denning, A.S. 2006. Using continuous data to estimate clear-sky errors in inversions of satellite CO2 measurements. Geophysical Research Letters, 33:L12810.CrossRefGoogle Scholar
Corbin, K.D., Denning, A.S., and Parazoo, N.C. 2009. Assessing temporal clear-sky errors in assimilation of satellite CO2 retrievals using a global transport model. Atmospheric Chemistry and Physics, 9(9):3043–3048.CrossRefGoogle Scholar
Crevoisier, C., Chedin, A., Matsueda, H., Machida, T., Armante, R., and Scott, N.A. 2009. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations. Atmospheric Chemistry and Physics, 9(14):4797–4810.CrossRefGoogle Scholar
Crevoisier, C., Heilliette, S., Chedin, A., Serrar, S,. Armante, R., and Scott, N.A. 2004. Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics. Geophysical Research Letters, 31:L17106.CrossRefGoogle Scholar
Crisp, D., Atlas, R.M., Breon, F.-M., Brown, L.R., Burrows, J.P., Ciais, P.,…Schroll, S. 2004. The orbiting carbon observatory (OCO) mission. Advances in Space Research, 34:700–709.CrossRefGoogle Scholar
Crisp, D., Miller, C.E., and DeCola, P.L. 2008. NASA Orbiting Carbon Observatory: Measuring the column averaged carbon dioxide mole fraction from space. Journal of Applied Remote Sensing, 2:023508.CrossRefGoogle Scholar
Denning, A.S., Fung, I.Y., and Randall, D. 1995. Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature, 376(6537):240–243.CrossRefGoogle Scholar
Engelen, R.J., Andersson, E., Chevallier, F., Hollingsworth, A., Matricardi, M., McNally, A.P.,…Watts, P.D. 2004. Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: Methodology and first results. Journal of Geophysical Research: Atmospheres, 109:D19309.CrossRefGoogle Scholar
Engelen, R.J., Denning, A.S., and Gurney, K.R. 2002. On error estimation in atmospheric CO2 inversions. Journal of Geophysical Research: Atmospheres, 107:4635.CrossRefGoogle Scholar
Engelen, R.J., and McNally, A.P. 2005. Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational four-dimensional variational (4D-Var) data assimilation system: Results and validation. Journal of Geophysical Research: Atmospheres, 110:D18305.CrossRefGoogle Scholar
Engelen, R.J., and Stephens, G.L. 2004. Information content of infrared satellite sounding measurements with respect to CO2. Journal of Applied Meteorology, 43(2):373–378.2.0.CO;2>CrossRefGoogle Scholar
Enting, I.G. 2002. Inverse problems in atmospheric constituent transport. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Enting, I.G., and Mansbridge, J.V. 1989. Seasonal sources and sinks of atmospheric CO2 direct inversion of filtered data. Tellus Series B: Chemical and Physical Meteorology, 41(2):111–126.CrossRefGoogle Scholar
Geels, C., Gloor, M., Ciais, P., Bousquet, P., Peylin, P., Vermeulen, A.T.,…Santaguida, R. 2007. Comparing atmospheric transport models for future regional inversions over Europe – Part 1: Mapping the atmospheric CO2 signals. Atmospheric Chemistry and Physics, 7(13):3461–3475.CrossRefGoogle Scholar
Gerbig, C., Korner, S., and Lin, J.C. 2008. Vertical mixing in atmospheric tracer transport models: Error characterization and propagation. Atmospheric Chemistry and Physics, 8(3):591–602.CrossRefGoogle Scholar
Gerbig, C., Lin, J.C., Wofsy, S.C., Daube, B.C., Andrews, A.E., Stephens, B.B.,…Grainger, C.A. 2003a. Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms. Journal of Geophysical Research: Atmospheres, 108(D24):4756.Google Scholar
Gerbig, C., Lin, J.C., Wofsy, S.C., Daube, B.C., Andrews, A.E., Stephens, B.B.,…Grainger, C.A. 2003b. Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework. Journal of Geophysical Research: Atmospheres, 108(D24):4757.Google Scholar
Gloor, M., Fan, S.M., Pacala, S., Sarmiento, J., and Ramonet, M. 1999. A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale. Journal of Geophysical Research: Atmospheres, 104(D12):14245–14260.CrossRefGoogle Scholar
Gourdji, S.M., Mueller, K.L., Schaefer, K., and Michalak, A.M. 2008. Global monthly averaged CO2 fluxes recovered using a geostatistical inverse modeling approach: 2. Results including auxiliary environmental data. Journal of Geophysical Research: Atmospheres, 113:D21115.CrossRefGoogle Scholar
Gourdji, S.M., Mueller, K.L., Yadav, V., Huntzinger, D.N., Andrews, A.E., Trudeau, M.,…Michalak, A.M. 2012. North American CO2 exchange: Inter-comparison of modeled estimates with results from a fine-scale atmospheric inversion. Biogeosciences, 9:457–475, .CrossRefGoogle Scholar
Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., and Eder, B. 2005. Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37):6957–6975.CrossRefGoogle Scholar
Gurney, K.R., Baker, D., Rayner, P., and Denning, S. 2008. Interannual variations in continental-scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO2 inversions for the period 1980 to 2005. Global Biogeochemical Cycles, 22:GB3025.CrossRefGoogle Scholar
Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Baker, D., Bousquet, P.,…Yuen, C.-W. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415(6872):626–630.CrossRefGoogle ScholarPubMed
Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Baker, D., Bousquet, P.,…Yuen, C.-W. 2003. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus Series B: Chemical and Physical Meteorology, 55(2):555–579.CrossRefGoogle Scholar
Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Pak, B.C., Baker, D.,…Taguchi, S. 2004. Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochemical Cycles, 18:GB1010.CrossRefGoogle Scholar
Guyon, P., Frank, G.P., Welling, M., Chand, D., Artaxo, P., Rizzo, L.,…Andreae, M.O. 2005. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia. Atmospheric Chemistry and Physics, 5:2989–3002.CrossRefGoogle Scholar
Hamazaki, T., Kaneko, Y., Kuze, A., and Kondo, K. 2005. Fourier transform spectrometer for Greenhouse Gases Observing Satellite (GOSAT). In Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing, ed. Komar, G.J., Wang, J., and Kimura, T.. Bellingham, WA: Society for Photo-Optical Instrumentation Engineers, pp. 73–80.CrossRefGoogle Scholar
Hargrove, W.W., Hoffman, F.M., and Law, B.E. 2003. New analysis reveals representativeness of AmeriFlux Network. Earth Observing System Transactions, American Geophysical Union, 84(48):529.CrossRefGoogle Scholar
Hourdin, F., Musat, I, Bony, S., Braconnot, P., Codron, F., Dufresne, J.L.,…Lott, F. 2006. The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dynamics, 27(7–8):787–813.CrossRefGoogle Scholar
Houweling, S., Hartmann, W., Aben, I., Schrijver, H., Skidmore, J., Roelofs, G.J., and Breon, F.M. 2005. Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols. Atmospheric Chemistry and Physics, 5:3003–3013.CrossRefGoogle Scholar
Huntzinger, D.N., Post, W.M., Wei, Y.Michalak, A.M., West, T.O., Jacobson, A.R.,…Cook, R.Northern American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison. Ecological Modelling, 232:144–157.CrossRef
Jiang, X., Chahine, M.T., Olsen, E.T., Chen, L.L., and Yung, Y.L. 2010. Interannual variability of mid-tropospheric CO2 from Atmospheric Infrared Sounder. Geophysical Research Letters, 37:L13801, .CrossRefGoogle Scholar
Jones, C.D., and Cox, P.M. 2001. Modeling the volcanic signal in the atmospheric CO2 record. Global Biogeochemical Cycles, 15(2):453–465.CrossRefGoogle Scholar
Kaminski, T., Heimann, M., and Giering, R. 1999a. A coarse grid three-dimensional global inverse model of the atmospheric transport – 1. Adjoint model and Jacobian matrix. Journal of Geophysical Research: Atmospheres, 104(D15):18535–18553.CrossRefGoogle Scholar
Kaminski, T., Heimann, M., and Giering, R. 1999b. A coarse grid three-dimensional global inverse model of the atmospheric transport – 2. Inversion of the transport of CO2 in the 1980s. Journal of Geophysical Research: Atmospheres, 104(D15):18555–18581.CrossRefGoogle Scholar
Kaminski, T., Rayner, P.J., Heimann, M., and Enting, I.G. 2001. On aggregation errors in atmospheric transport inversions. Journal of Geophysical Research: Atmospheres, 106(D5):4703–4715.CrossRefGoogle Scholar
Kawa, S.R., Erickson, D.J., Pawson, S., and Zhu, Z. 2004. Global CO2 transport simulations using meteorological data from the NASA data assimilation system. Journal of Geophysical Research: Atmospheres, 109:D18312.CrossRefGoogle Scholar
Kawa, S.R., Mao, J., Abshire, J.B., Collatz, G.J., Sun, X., and Weaver, C.J. 2010. Simulation studies for a space-based CO2 lidar mission. Tellus Series B: Chemical and Physical Meteorology, 62(5):759–769.CrossRefGoogle Scholar
Keeling, C.D., Bacastow, R.B., Bainbridge, A.E., Ekdahl, C.A., Guenther, P.R., Waterman, L.S., and Chin, J.F.S. 1976. Atmospheric carbon-dioxide variations at Mauna-Loa Observatory, Hawaii. Tellus, 28(6):538–551.Google Scholar
Keeling, C.D., Whorf, T.P., Wahlen, M., and van der Plicht, J. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375:666–670.CrossRefGoogle Scholar
Krakauer, N.Y., Schneider, T., Randerson, J.T., and Olsen, S.C. 2004. Using generalized cross-validation to select parameters in inversions for regional carbon fluxes. Geophysical Research Letters, 31:L19108.CrossRefGoogle Scholar
Kulawik, S.S., Jones, D.B.A., Nassar, R., Irion, F.W., Worden, J.R., Bowman, K.W.,…Jacobson, A.R. 2010. Characterization of Tropospheric Emission Spectrometer (TES) CO2 for carbon cycle science. Atmospheric Chemistry and Physics, 10(12):5601–5623.CrossRefGoogle Scholar
Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T. 2009. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied Optics, 48(35):6716–6733.CrossRefGoogle ScholarPubMed
Lauvaux, T., Pannekoucke, O., Sarrat, C., Chevallier, F., Ciais, P., Noilhan, J., and Rayner, P.J. 2009. Structure of the transport uncertainty in mesoscale inversions of CO2 sources and sinks using ensemble model simulations. Biogeosciences, 6(6):1089–1102.CrossRefGoogle Scholar
Law, R., Simmonds, I., and Budd, W.F. 1992. Application of an atmospheric tracer model to high southern latitudes. Tellus Series B: Chemical and Physical Meteorology, 44(4):358–370.CrossRefGoogle Scholar
Law, R.M., Rayner, P.J., Steele, L.P., and Enting, I.G. 2003. Data and modelling requirements for CO2 inversions using high-frequency data. Tellus Series B: Chemical and Physical Meteorology, 55(2):512–521.CrossRefGoogle Scholar
Le Quéré, C., Rodenbeck, C., Buitenhuis, E.T., Conway, T.J., Langenfelds, R., Gomez, A.,…Heimann, M. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316(5832):1735–1738.CrossRefGoogle ScholarPubMed
Lin, J.C., Gerbig, C., Wofsy, S.C., Andrews, A.E., Daube, B.C., Davis, K.J., and Grainger, C.A. 2003. A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. Journal of Geophysical Research: Atmospheres, 108(D16):4493.CrossRefGoogle Scholar
Lokupitiya, R.S., Zupanski, D., Denning, A.S., Kawa, S.R., Gurney, K.R., and Zupanski, M. 2008. Estimation of global CO2 fluxes at regional scale using the maximum likeli-hood ensemble filter. Journal of Geophysical Research: Atmospheres, 113:D20110.CrossRefGoogle Scholar
Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N.,…Ogawa, T. 2008. Worldwide measurements of atmospheric CO2 and other trace Gas species using commercial airlines. Journal of Atmospheric and Oceanic Technology, 25(10):1744–1754.CrossRefGoogle Scholar
Maddy, E.S., Barnet, C.D., Goldberg, M., Sweeney, C., and Liu, X. 2008. CO2 retrievals from the Atmospheric Infrared Sounder: Methodology and validation. Journal of Geophysical Research: Atmospheres, 113:D11301.CrossRefGoogle Scholar
Marland, G., Rotty, R.M., and Treat, N.L. 1985. CO2 from fossil-fuel burning – global distribution of emissions. Tellus Series B: Chemical and Physical Meteorology, 37(4–5):243–258.CrossRefGoogle Scholar
Masarie, K.A., Langenfelds, R.L., Allison, C.E., Conway, T.J., Dlugokencky, E.J., Francey, R.J.,…White, J.W.C. 2001. NOAA/CSIRO Flask Air Intercomparison Experiment: A strategy for directly assessing consistency among atmospheric measurements made by independent laboratories. Journal of Geophysical Research: Atmospheres, 106(D17):20445–20464.CrossRefGoogle Scholar
Michalak, A.M. 2008. Technical note: Adapting a fixed-lag Kalman smoother to a geostatistical atmospheric inversion framework. Atmospheric Chemistry and Physics, 8(22):6789–6799.CrossRefGoogle Scholar
Michalak, A.M., Bruhwiler, L., and Tans, P.P. 2004. A geostatistical approach to surface flux estimation of atmospheric trace gases. Journal of Geophysical Research: Atmospheres, 109:D14109.CrossRefGoogle Scholar
Michalak, A.M., Hirsch, A., Bruhwiler, L., Gurney, K.R., Peters, W., and Tans, P.P. 2005. Maximum likelihood estimation of covariance parameters for bayesian atmospheric trace gas surface flux inversions. Journal of Geophysical Research, 110:D24107, .CrossRefGoogle Scholar
Miller, C.E., Crisp, D., DeCola, P.L., Olsen, S.C., Randerson, J.T., Michalak, A.M.,…Law, R.M. 2007. Precision requirements for space-based X-CO2 data. Journal of Geophysical Research: Atmospheres, 112:D10314.CrossRefGoogle Scholar
Miyazaki, K., Maki, T., Patra, P., and Nakazawa, T. 2011. Assessing the impact of satellite, aircraft, and surface observations on CO2 flux estimation using an ensemble-based 4-D data assimilation system. Journal of Geophysical Research: Atmospheres, 116:D16306, .CrossRefGoogle Scholar
Morino, I., Uchino, O., Inoue, M., Yoshida, Y., Yokota, T., Wennberg, P.O.,…Rettinger, M. 2011. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmospheric Measurement Techniques, 4(6):1061–1076.CrossRefGoogle Scholar
Mueller, K.L., Gourdji, S.M., and Michalak, A.M. 2008. Global monthly averaged CO2 fluxes recovered using a geostatistical inverse modeling approach: 1. Results using atmospheric measurements. Journal of Geophysical Research: Atmospheres, 113:D21114.CrossRefGoogle Scholar
Nassar, R., Jones, D.B.A., Kulawik, S.S., Worden, J.R., Bowman, K.W., Andres, R.J.,…Worthy, D.E. 2011. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements. Atmospheric Chemistry and Physics, 11(12):6029–6047.CrossRefGoogle Scholar
National Research Council. 2007. Earth science and applications from space: National imperatives for the next decade and beyond. Washington, DC: National Academies Press.Google Scholar
O’Dell, C.W., Connor, B., Bosch, H., O’Brien, D., Frankenberg, C., Castano, R.,…Wunch, D. 2012. The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations. Atmospheric Measurement Techniques, 5:99–121, .CrossRefGoogle Scholar
Pagano, T.S., Chahine, M.T., and Olsen, E.T. 2011. Seven years of observations of mid-tropospheric CO2 from the Atmospheric Infrared Sounder. Acta Astronautica, 69(7–8):355–359.CrossRefGoogle Scholar
Pales, J.C., and Keeling, C.D. 1965. Concentration of atmospheric carbon dioxide in Hawaii. Journal of Geophysical Research, 70(24):6053–6076.CrossRefGoogle Scholar
Palmer, P.I., Barkley, M.P., and Monks, P.S. 2008. Interpreting the variability of space-borne CO2 column-averaged volume mixing ratios over North America using a chemistry transport model. Atmospheric Chemistry and Physics, 8(19):5855–5868.CrossRefGoogle Scholar
Patra, P.K., Gurney, K.R., Denning, A.S., Maksyutov, S., Nakazawa, T., Baker, D.,…Yuen, C.-W. 2006. Sensitivity of inverse estimation of annual mean CO2 sources and sinks to ocean-only sites versus all-sites observational networks. Geophysical Research Letters, 33:L05814.CrossRefGoogle Scholar
Peters, W., Jacobson, A.R., Sweeney, C., Andrews, A.E., Conway, T.J., Masarie, K.,…Tans, P.P. 2007. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences of the United States of America, 104(48):18925–18930.CrossRefGoogle ScholarPubMed
Peters, W., Krol, M.C., Dlugokencky, E.J., Dentener, F.J., Bergamaschi, P., Dutton, G.,…Tans, P.P. 2004. Toward regional-scale modeling using the two-way nested global model TM5: Characterization of transport using SF6. Journal of Geophysical Research: Atmospheres, 109:1–17.CrossRefGoogle Scholar
Peters, W., Krol, M.C., Van Der Werf, G.R., Houweling, S., Jones, C.D., Hughes, J.,…Tans, P.P. 2010. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations, Global Change Biology, 16(4):1317–1337.CrossRefGoogle Scholar
Peters, W., Miller, J.B., Whitaker, J., Denning, A.S., Hirsch, A., Krol, M.C., Zupanski, D.,…Tans, P.P. 2005. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. Journal of Geophysical Research: Atmospheres, 110:D24304.CrossRefGoogle Scholar
Peylin, P., Baker, D., Sarmiento, J., Ciais, P., and Bousquet, P. 2002. Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data. Journal of Geophysical Research: Atmospheres, 107:4385.CrossRefGoogle Scholar
Peylin, P., Rayner, P.J., Bousquet, P., Carouge, C., Hourdin, F., Heinrich, P.,…AEROCARB contributors. 2005. Daily CO2 flux estimates over Europe from continuous atmospheric measurements: 1. Inverse methodology. Atmospheric Chemistry and Physics, 5:3173–3186.CrossRefGoogle Scholar
Rayner, P.J., Enting, I.G., Francey, R.J., and Langenfelds, R. 1999. Reconstructing the recent carbon cycle from atmospheric CO2, delta C-13 and O-2/N-2 observations. Tellus Series B: Chemical and Physical Meteorology, 51(2):213–232.CrossRefGoogle Scholar
Reuter, M., Bovensmann, H., Buchwitz, M., Burrows, J.P., Connor, B.J., Deutscher, N.M.,…Wunch, D. 2011. Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results. Journal of Geophysical Research: Atmospheres, 116:D04301.CrossRefGoogle Scholar
Rivier, L., Peylin, P., Ciais, P., Gloor, M.Rodenbeck, C., Geels, C.,…Meimann, M. 2010. European CO2 fluxes from atmospheric inversions using regional and global transport models. Climatic Change, 103(1–2):93–115.CrossRefGoogle Scholar
Rodenbeck, C. 2005. Estimating CO2 sources and sinks from atmospheric mixing ratio measurements using a global inversion of atmospheric transport. Tech. rep. 6, Jena, Germany.Google Scholar
Rodenbeck, C., Conway, T.J., and Langenfelds, R.L. 2006. The effect of systematic measurement errors on atmospheric CO2 inversions: A quantitative assessment. Atmospheric Chemistry and Physics, 6:149–161.CrossRefGoogle Scholar
Rodenbeck, C., Houweling, S., Gloor, M., and Heimann, M. 2003. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmospheric Chemistry and Physics, 3:1919–1964.CrossRefGoogle Scholar
Schaefer, K., Zhang, T.J., Bruhwiler, L., and Barrett, A.P. 2011. Amount and timing of permafrost carbon release in response to climate warming. Tellus Series B: Chemical and Physical Meteorology, 63(2):165–180.CrossRefGoogle Scholar
Schneising, O., Buchwitz, M., Burrows, J.P., Bovensmann, H., Reuter, M., Notholt, J.,…Warneke, T. 2008. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 1: Carbon dioxide. Atmospheric Chemistry and Physics, 8(14):3827–3853.CrossRefGoogle Scholar
Schneising, O., Buchwitz, M., Reuter, M., Heymann, J., Bovensmann, H., and Burrows, J.P. 2011. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmospheric Chemistry and Physics, 11(6):2863–2880.CrossRefGoogle Scholar
Schuh, A.E., Denning, A.S., Corbin, K.D., Baker, I.T., Uliasz, M., Parazoo, N.,…Worthy, D.E.J. 2010. A regional high-resolution carbon flux inversion of North America for 2004. Biogeosciences, 7(5):1625–1644.CrossRefGoogle Scholar
Schuh, A.E., Denning, A.S., Uliasz, M., and Corbin, K.D. 2009. Seeing the forest through the trees: Recovering large-scale carbon flux biases in the midst of small-scale variability. Journal of Geophysical Research: Biogeosciences, 114:G03007.CrossRefGoogle Scholar
Stephens, B.B., Gurney, K.R., Tans, P.P., Sweeney, C., Peters, W., Bruhwiler, L.,…Denning, A.S. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316(5832):1732–1735.CrossRefGoogle ScholarPubMed
Spiers, G.D., Menzies, R.T., Jacob, J., Christensen, L.E., Phillips, M.W., Choi, Y.H., and Browell, E.V. 2011. Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection. Applied Optics, 50:2098–2111.CrossRefGoogle ScholarPubMed
Strow, L.L., and Hannon, S.E. 2008. A 4-year zonal climatology of lower tropospheric CO2 derived from ocean-only Atmospheric Infrared Sounder observations. Journal of Geophysical Research: Atmospheres, 113:D18302.CrossRefGoogle Scholar
Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B.,…Nojiri, Y. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research Part II: Topical Studies in Oceanography, 49(9–10):1601–1622.CrossRefGoogle Scholar
Takahashi, T., Sutherland, S.S., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D.W.,…de Baar, H.J.W. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8–10), 554–577.CrossRefGoogle Scholar
Tans, P.P., and Conway, T.J. 2005. Monthly atmospheric CO2 mixing ratios from the NOAA CMDL Carbon Cycle Cooperative Global Air Sampling Network, 1968–2002. Edited. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.Google Scholar
Tans, P.P., Fung, I.Y., and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science, 247(4949):1431–1438.CrossRefGoogle Scholar
Tiwari, Y.K., Gloor, M., Engelen, R.J., Chevallier, F., Rodenbeck, C., Korner, S.,…Heimann, M. 2006. Comparing CO2 retrieved from Atmospheric Infrared Sounder with model predictions: Implications for constraining surface fluxes and lower-to-upper troposphere transport. Journal of Geophysical Research: Atmospheres, 111:D17106.CrossRefGoogle Scholar
Uliasz, M. 1993. The atmospheric mesoscale dispersion modeling system. Journal of Applied Meteorology, 32:139–143.2.0.CO;2>CrossRefGoogle Scholar
Washenfelder, R.A., Toon, G.C., Blavier, J.F., Yang, Z., Allen, N.T., Wennberg, P.O.,…Daube, B.C. 2006. Carbon dioxide column abundances at the Wisconsin Tall Tower site. Journal of Geophysical Research: Atmospheres, 111:D22305.CrossRefGoogle Scholar
Wofsy, S.C., and the HIPPO Science Team and Cooperating Modellers and Satellite Teams. 2011. HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 369(1943):2073–2086.CrossRefGoogle ScholarPubMed
Wunch, D., Toon, G.C., Wennberg, P.O., Wofsy, S.C., Stephens, B.B., Fischer, M.L.,…Zondlo, M.A. 2010. Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmospheric Measurement Techniques, 3(5):1351–1362.CrossRefGoogle Scholar
Wunch, D.W.D., Toon, G.C., Blavier, J.F.L., Washenfelder, R.A., Notholt, J., Connor, B.J.,…Wennberg, P.O. 2011. The Total Carbon Column Observing Network. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 369(1943):2087–2112.CrossRefGoogle ScholarPubMed
Yuen, C.W., Higuchi, K., and Transcom, M. 2005. Impact of Fraserdale CO2 observations on annual flux inversion of the North American boreal region. Tellus Series B: Chemical and Physical Meteorology, 57(3):203–209.CrossRefGoogle Scholar
Zupanski, D., Denning, A.S., Uliasz, M., Zupanski, M., Schuh, A.E., Rayner, P.J.,…Corbin, K.D. 2007. Carbon flux bias estimation employing maximum likelihood ensemble filter (MLEF). Journal of Geophysical Research: Atmospheres, 112:D17107.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×