Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-10T22:47:31.478Z Has data issue: false hasContentIssue false

4 - The Cholangiopathies

from SECTION I - PATHOPHYSIOLOGY OF PEDIATRIC LIVER DISEASE

Published online by Cambridge University Press:  18 December 2009

Valeer J. Desmet M.D., Ph.D.
Affiliation:
Professor, Department of Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
Tania A. D. Roskams M.D., Ph.D.
Affiliation:
Full Professor, Head of Liver Research Unit, Department of Morphology and Molecular Pathology, Katholieke Universiteit Leuven, Leuven, Belgium; Head of Clinics, Department of Pathology, University Hospital Leuven, Leuven, Belgium
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

EMBRYOLOGY OF EXTRA- AND INTRAHEPATIC BILE DUCTS, DUCTAL PLATE, AND DUCTAL PLATE MALFORMATION

Development of Extrahepatic Bile Ducts

In the human embryo, the first anlage of the bile ducts and the liver is the hepatic diverticulum or liver bud. It starts as a thickening of the endoblastic epithelium in the ventral wall of the cephalad portion of the foregut (the future duodenum), near the origin of the yolk sac; this area is termed the anterior intestinal portal. This occurs around the 7-somite (2.5-mm) stage on the 18th day. In the 19-somite (3-mm, 22nd-day) embryo the diverticulum is formed. In the 22-somite embryo, the hepatic diverticulum is a well-defined hollow structure. From the ventral and lateral surfaces of the diverticulum, on which the endoderm is in contact with the bulk of the mesoderm of the septum transversum (between the pericardial and peritoneal cavities), short sprouts of endodermal cells extend into the septum transversum to form the earliest anlage of the liver [1].

In the embryo about 5 mm in length, the diverticulum also shows a protruding bud in its distal part. Some investigators accordingly distinguish in the hepatic diverticulum a cranial part (pars hepatica) and a caudal part (pars cystica) [2].

The caudal bud or pars cystica grows in length and represents the anlage of the gallbladder, the cystic duct, and common bile duct (ductus choledochus). For up to 8 weeks of gestation, the extrahepatic biliary tree further develops through lengthening of the caudal part of the hepatic diverticulum.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Severn, C B. A morphological study of the development of the human liver. II. Establishment of liver parenchyma, extrahepatic ducts and associated venous channels. Am J Anat 1972;133:85–107.CrossRefGoogle ScholarPubMed
Dubois AM. The embryonic liver. In: Rouillen, C, ed. The liver. New York: Academic Press, 1963:1–39.Google Scholar
Tan, C E L, Moscoso, G J. The developing human biliary system at the porta hepatis level between 29 days and 8 weeks of gestation: a way to understanding biliary atresia. Part 1. Pathol Int 1994;44:587–99.CrossRefGoogle ScholarPubMed
Dubois AM. The embryonic liver. In: Rouiller, C, ed. The liver. New York: Academic Press, 1963:1–39.Google Scholar
Das, K M, Squillante, L, Chitayet, D. Simultaneous appearance of a unique common epitope in fetal colon, skin and biliary epithelial cells. A possible link for extracolonic manifestations in ulcerative colitis. J Clin Gastroenterol 1992;15:311–16.CrossRefGoogle ScholarPubMed
Landry, C, Clotman, F, Hioki, T. HNF-6 is expressed in endoderm derivatives and nervous system of the mouse embryo and participates to the cross-regulatory network of liver-enriched transcription factors. Dev Biol 1997;192:247–57.CrossRefGoogle ScholarPubMed
Rausa, F, Samadani, U, Ye, H. The cut-homeodomain transcriptional activator HNF-6 is coexpressed with its target gene HNF-3 beta in the developing murine liver and pancreas. Dev Biol 1997;192:228–46.CrossRefGoogle ScholarPubMed
Kalinichenko, V V, Zhou, Y, Bhattacharyya, D. Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development. J Biol Chem 2002;277:12369–74.CrossRefGoogle ScholarPubMed
Jorgensen, M. The ductal plate malformation: a study of the intrahepatic bile duct lesion in infantile polycystic disease and congenital hepatic fibrosis. Acta Pathol Microbiol Scand 1977;257(Suppl):1–88.Google Scholar
Tan, C E L, Moscoso, G J. The developing human biliary system at the porta hepatis level between 11 and 25 weeks of gestation: a way to understanding biliary atresia. Part 2. Pathol Int 1994; 44:600–10.CrossRefGoogle ScholarPubMed
Tan, J, Hytiroglou, P, Wieczorek, R. Immunohistochemical evidence for hepatic progenitor cells in liver diseases. Liver 2002;22:365–73.CrossRefGoogle ScholarPubMed
Shiojiri, N, Katayama, H. Secondary joining of the bile ducts during the hepatogenesis of the mouse embryo. Anat Embryol 1987;177:153–63.CrossRefGoogle ScholarPubMed
Mahlapuu, M, Enerback, S, Carlsson, P. Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development 2001;128:2397–406.Google ScholarPubMed
Bloom, W. The embryogenesis of human bile capillaries and ducts. Am J Anat 1926;36:451–62.CrossRefGoogle Scholar
Elias, H, Sherrick, J C. Morphology of the liver. New York: Academic Press, 1969.Google Scholar
Desmet VJ, Van Eyken P. Embryology, malformations and malpositions of the liver. In: Haubrich, W, Schaffner, F, Berk, J E, eds. Bockus gastroenterology, 5th ed. Philadelphia, PA: Saunders, 1995:1849–57.Google Scholar
Blankenberg TA, Lund JK, Ruebner BH. Normal and abnormal development of human intrahepatic bile ducts. An immunohistochemical perspective. In: Abramowsky, C R, Bernstein, J, Rosenberg, H S, eds. Perspectives in pediatric pathology. Transplantation pathology—hepatic morphogenesis. Vol. 14. Basel: Karger, 1991:143–67.Google Scholar
Ruebner, B H, Blankenberg, T A, Burrows, D A. Development and transformation of the ductal plate in the developing human liver. Pediatr Pathol 1990;10:55–68.CrossRefGoogle ScholarPubMed
Hammar, J A. Über die erste Entstehung der nicht kapillaren intrahepatischen Gallengänge beim Menschen. Z Mikrosk Anat Forsch 1926;5:59–89.Google Scholar
Desmet VJ. Embryology of the liver and intrahepatic biliary tract, and an overview of malformations of the bile duct. In: BircherJ, Benharnou JP, McIntyre N, et al. J, Benharnou JP, McIntyre N, et al.. The Oxford textbook of clinical hepatology. Oxford, UK: Oxford University Press, 1999:51–61.Google Scholar
Vijayan, V, Tan, C E. Developing human biliary system in three dimensions. Anat Rec 1997;249:389–98.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Eyken, P, Sciot, R, Callea, F. The development of the intrahepatic bile ducts in man: a keratin-immunohistochemical study. Hepatology 1988;8:1586–95.CrossRefGoogle ScholarPubMed
Haruna, Y, Thung, S, Gerber, M. Cell lineage specific markers during human liver organogenesis and regeneration. Hepatology 1994;20:210A.Google Scholar
Stosiek, P, Kasper, M, Karsten, U. Expression of cytokeratin 19 during human liver organogenesis. Liver 1990;10:59–63.CrossRefGoogle ScholarPubMed
Desmet, V J, Eyken, P, Sciot, R. Cytokeratins for probing cell lineage relationships in developing liver. Hepatology 1990; 12:1249–51.CrossRefGoogle ScholarPubMed
Faa, G, Eyken, P, Roskams, T. Expression of cytokeratin 20 in developing rat liver and in experimental models of ductular and oval cell proliferation. J Hepatol 1998;29:628–33.CrossRefGoogle ScholarPubMed
Eyken, P, Sciot, R, Damme, B. Keratin immunohistochemistry in normal human liver. Cytokeratin pattern of hepatocytes, bile ducts and acinar gradient. Virchows Arch A Pathol Anat Histopathol 1987;412:63–72.CrossRefGoogle ScholarPubMed
Moll, R, Franke, W W, Schiller, D L. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982;31:11–24.CrossRefGoogle ScholarPubMed
Lemaigre, F P. Development of the biliary tract. Mech Dev 2003; 120:81–7.CrossRefGoogle ScholarPubMed
Clotman, F, Jacquemin, P, Plumb-Rudewiez, N. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev 2005;19:1849–54.CrossRefGoogle ScholarPubMed
Croquelois, A, Blindenbacher, A, Terracciano, L. Inducible inactivation of Notch1 causes nodular regenerative hyperplasia in mice. Hepatology 2005;41:487–96.CrossRefGoogle ScholarPubMed
Krupczak-Hollis, K, Wang, X, Kalinichenko, V V. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol 2004;276:74–88.CrossRefGoogle ScholarPubMed
Sergi, C, Adam, S, Kahl, P. The remodeling of the primitive human biliary system. Early Hum Dev 2000;58:167–78.CrossRefGoogle ScholarPubMed
Kahn, E, Markowitz, J, Aiges, H. Human ontogeny of the bile duct to portal space ratio. Hepatology 1989;10:21–3.CrossRefGoogle ScholarPubMed
Doljanski, L, Roulet, F. Ueber die gestaltende Wechselwirkung zwischen dem Epithel und dem Mesenchym, zugleich ein Beitrag zur Histogenese der sogenannten “Gallengangswucherungen.”Virchows Arch [A] 1934;292:256–67.CrossRefGoogle Scholar
Terada, T, Kitamura, Y, Nakanuma, Y. Normal and abnormal development of the human intrahepatic biliary system: a review. Tohoku J Exp Med 1997;181:19–32.CrossRefGoogle ScholarPubMed
Desmet, V J. Embryogenèse des voies biliaires. Med Ther 1995; 1:227–35.Google Scholar
Roskams T, van Eyken P, Desmet V. Human liver growth and development. In: Strain, A J, Diehl, A M. Liver growth and repair. London: Chapman and Hall, 1998:541–57.CrossRefGoogle Scholar
Nakanuma, Y, Hoso, M, Sanzen, T. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc Res Tech 1997;38: 552–70.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Balistreri W. Concluding remarks. 5th International Sendai Symposium on Biliary Atresia. In: Ohi, R. Biliary atresia. Tokyo: ICOM Associates, 1991:293–7.Google Scholar
Couvelard, A, Bringuier, A F, Dauge, M C. Expression of integrins during liver organogenesis in humans. Hepatology 1998;27:839–47.CrossRefGoogle ScholarPubMed
Terada, T, Ashida, K, Kitamura, Y. Expression of epithelial-cadherin, alpha-catenin and beta-catenin during human intrahepatic bile duct development: a possible role in bile duct morphogenesis. J Hepatol 1998;28:263–9.CrossRefGoogle ScholarPubMed
Dudas, J, Papoutsi, M, Hecht, M. The homeobox transcription factor Prox1 is highly conserved in embryonic hepatoblasts and in adult and transformed hepatocytes, but is absent from bile duct epithelium. Anat Embryol (Berl) 2004;208:359–66.CrossRefGoogle ScholarPubMed
Shiojiri, N, Takeshita, K, Yamasaki, H. Suppression of C(EBP alpha expression in biliary cell differentiation from hepatoblasts during mouse liver development. J Hepatol 2004;41:790–8.CrossRefGoogle ScholarPubMed
Quondamatteo, F, Knittel, T, Mehde, M. Matrix metalloproteinases in early human liver development. Histochem Cell Biol 1999;112:277–82.CrossRefGoogle ScholarPubMed
Libbrecht, L, Cassiman, D, Desmet, V. Expression of neural cell adhesion molecule in human liver development and in congenital and acquired liver diseases. Histochem Cell Biol 2001;116:233–9.CrossRefGoogle ScholarPubMed
Shiojiri, N, Nagai, Y. Preferential differentiation of the bile ducts along the portal vein in the development of mouse liver. Anat Embryol (Berl) 1992;185:17–24.CrossRefGoogle ScholarPubMed
Libbrecht, L, Cassiman, D, Desmet, V. The correlation between portal myofibroblasts and development of intrahepatic bile ducts and arterial branches in human liver. Liver 2002;22: 252–8.CrossRefGoogle ScholarPubMed
Terada, T, Nakanuma, Y. Development of human peribiliary capillary plexus: a lectin-histochemical and immunohistochemical study. Hepatology 1993;18:529–36.CrossRefGoogle ScholarPubMed
Clotman, F, Lannoy, V J, Reber, M. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002;129:1819–28.Google ScholarPubMed
Clotman, F, Libbrecht, L, Gresh, L. Hepatic artery malformations associated with a primary defect in intrahepatic bile duct development. J Hepatol 2003;39:686–92.CrossRefGoogle ScholarPubMed
Coffinier, C, Gresh, L, Fiette, L. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development 2002;129:1829–38.Google ScholarPubMed
Xue, Y, Gao, X, Lindsell, C E. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 1999;8:723–30.CrossRefGoogle ScholarPubMed
Crosnier, C, Attie-Bitach, T, Encha-Razavi, F. JAGGED1 gene expression during human embryogenesis elucidates the wide phenotypic spectrum of Alagille syndrome. Hepatology 2000;32:574–81.CrossRefGoogle ScholarPubMed
Louis, A A, Eyken, P, Haber, B A. Hepatic jagged1 expression studies. Hepatology 1999;30:1269–75.CrossRefGoogle ScholarPubMed
McCright, B, Lozier, J, Gridley, T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 2002;129:1075–82.Google ScholarPubMed
Kodama, Y, Hijikata, M, Kageyama, R. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 2004;127:1775–86.CrossRefGoogle ScholarPubMed
Nijjar, S S, Wallace, L, Crosby, H A. Altered Notch ligand expression in human liver disease: further evidence for a role of the Notch signaling pathway in hepatic neovascularization and biliary ductular defects. Am J Pathol 2002;160:1695–703.CrossRefGoogle ScholarPubMed
Flynn, D M, Nijjar, S, Hubscher, S G. The role of Notch receptor expression in bile duct development and disease. J Pathol 2004;204:55–64.CrossRefGoogle ScholarPubMed
Chen, H L, Chen, H L, Liu, Y J. Developmental expression of canalicular transporter genes in human liver. J Hepatol 2005; 43:472–7.CrossRefGoogle ScholarPubMed
Wolf-Peeters, C, Vos, R, Desmet, V. Electron microscopy and morphometry of canalicular differentiation in fetal and neonatal rat liver. Exp Mol Pathol 1974;21:339–50.CrossRefGoogle ScholarPubMed
Kanamura, S, Kanai, K, Watanabe, J. Fine structure and function of hepatocytes during development. J Electron Microsc Tech 1990;14:92–105.CrossRefGoogle ScholarPubMed
Roskams, T, Desmet, V J. Parathyroid hormone-related peptide and development of intrahepatic bile ducts in man. Int Hepatol Comm 1994;2:121–7.CrossRefGoogle Scholar
Terada, T, Nakanuma, Y. Development of human intrahepatic peribiliary glands. Histological, keratin immunohistochemical, and mucus histochemical studies. Lab Invest 1993;68:261–9.Google Scholar
Crawford, J M. Development of the intrahepatic biliary tree. Semin Liver Dis 2002;22:213–26.CrossRefGoogle ScholarPubMed
Shankle, W R, Landing, B H, Gregg, J. Normal organ weights of infants and children: graphs of values by age, with confidence intervals. Pediatr Pathol 1983;1:399–408.CrossRefGoogle ScholarPubMed
Kiernan, F. The anatomy and physiology of the liver. Philos Trans R Soc Lond 1833;123:711–70.CrossRefGoogle Scholar
Mall, F P. A study of the structural unit of the liver. Am J Anat 1906;5:227–308.CrossRefGoogle Scholar
Rappaport, A M. The microcirculatory hepatic unit. Microvasc Res 1973;6:212–228.CrossRefGoogle ScholarPubMed
Lamers WH, Moorman AFM, Charles R. The metabolic lobulus, a key to the architecture of the liver. In: Gumucio, J J. Revisiones sobre biologia cellular. Cell biology reviews. Vol. 19. Berlin: Springer International. 1989:5–26.Google Scholar
Matsumoto, T, Komori, R, Magara, T. A study on the normal structure of human liver, with special reference to its angioarchitecture. Jikeikai Med J 1979;26:1–40.Google Scholar
Matsumoto, R, Kawakami, M. The unit-concept of hepatic parenchyma – a re-examination based on angioarchitectural studies. Acta Pathol Jpn 1982;32:285–314.Google ScholarPubMed
Teutsch, H F. The modular microarchitecture of human liver. Hepatology 2005;42:317–25.CrossRefGoogle ScholarPubMed
Ekataksin W, Wake K. New concepts in biliary and vascular anatomy of the liver. In: Boyer, J L, Ockner, R, eds. Progress in liver disease. Philadelphia: WB Saunders Company, 1997:1–30.Google Scholar
Johnson, F. The development of the lobule of the pig's liver. Am J Anat 1919;25:299–331.CrossRefGoogle Scholar
Landing BH, Wells TR. Considerations of some architectural properties of the biliary tree and liver in childhood. In: Abramowsky, C R, Bernstein, J, Rosenberg, H S. Transplantation pathology – hepatic morphogenesis. Perspectives in pediatric pathology. Vol. 14. Basel: Karger, 1991:122–42.Google Scholar
Ludwig, J, Ritman, E L, LaRusso, N F. Anatomy of the human biliary system studied by quantitative computer-aided three-dimensional imaging techniques. Hepatology 1998;27:893–9.CrossRefGoogle ScholarPubMed
Artavanis-Tsakonas, S, Matsuno, K, Fortini, M E. Notch signaling. Science 1995;268:225–32.CrossRefGoogle ScholarPubMed
Artavanis-Tsakonas, S, Rand, M D, Lake, R J. Notch signaling: cell fate control and signal integration in development. Science 1999;284:770–6.CrossRefGoogle ScholarPubMed
Roskams, T A, Theise, N D, Balabaud, C. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 2004;39:1739–45.CrossRefGoogle ScholarPubMed
Marchal, G J, Desmet, V J, Proesmans, W C. Caroli disease: high frequency US and pathologic findings. Radiology 1986; 158:507–11.CrossRefGoogle ScholarPubMed
Van Eyken P, Desmet VJ. Disordered embryogenesis of the hepatobiliary tract. In: Prieto, J, Rodes, J S, Shafritz, D A, eds. Hepatobiliary diseases. Berlin: Springer, 1992:931–70.CrossRefGoogle Scholar
Inui, A, Fujisawa, T, Suemitsu, T. A case of Caroli's disease with special reference to hepatic CT and US findings. J Pediatr Gastroenterol Nutr 1992;14:463–6.CrossRefGoogle ScholarPubMed
Brancatelli, G, Federle, M P, Vilgrain, V. Fibropolycystic liver disease: CT and MR imaging findings. Radiographics 2005; 25:659–70.CrossRefGoogle ScholarPubMed
Levy, A D, Rohrmann, C A Jr. Biliary cystic disease. Curr Probl Diagn Radiol 2003;32:233–63.CrossRefGoogle ScholarPubMed
Zeitoun, D, Brancatelli, G, Colombat, M. Congenital hepatic fibrosis: CT findings in 18 adults. Radiology 2004;231:109–16.CrossRefGoogle ScholarPubMed
Desmet, V J. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation.”Hepatology 1992;16:1069–83.CrossRefGoogle ScholarPubMed
Desmet, V J. What is congenital hepatic fibrosis?Histopathology 1992;20:465–77.CrossRefGoogle ScholarPubMed
Johnson, C A, Gissen, P, Sergi, C. Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J Med Genet 2003;40:311–19.CrossRefGoogle ScholarPubMed
Desmet VJ, Callea F. Cholestatic syndromes of infancy and childhood. In: Zakim, D, Boyer, T D, eds. Hepatology. A textbook of liver disease. Philadelphia: WB Saunders, 1996:1649–98.Google Scholar
Lefkowitch, J H. Biliary atresia. Mayo Clin Proc 1998;73:90–5.CrossRefGoogle ScholarPubMed
Kasai, M. Surgical treatment of biliary atresia. J Pediatr Surg 1968;3:665–75.CrossRefGoogle Scholar
Howard, E R. Extrahepatic biliary atresia. A review of current management. Br J Surg 1983;70:193–7.CrossRefGoogle ScholarPubMed
Ohya, T, Fujimoto, T, Shimomura, H. Degeneration of intrahepatic bile duct with lymphocyte infiltration into biliary epithelial cells in biliary atresia. J Pediatr Surg 1995;30:515–18.CrossRefGoogle ScholarPubMed
Witzleben CL. The pathogenesis of biliary atresia. In: Javitt, N B. Neonatal hepatitis and biliary atresia. Washington, DC: US Department of Health, Education and Welfare, 1979:339–50.Google Scholar
Witzleben CL. Pathogenesis of bile duct paucity: observations in extrahepatic biliary atresia and arteriohepatic dysplasia. In: Waldschmidt, J, Charissis, G, Schier, F, eds. Cholestasis in neonates. W Zuckschwerdt: München, 1988:53–61.Google Scholar
Haas, J E. Bile duct and liver pathology in biliary atresia. World J Surg 1978;2:561–9.CrossRefGoogle ScholarPubMed
Kasai M. Treatment of biliary atresia with special reference to hepatic porto-enterostomy and its modifications. In: Bill, A H, Kasai, M, eds. Progress of pediatric surgery. Baltimore: University Park Press, 1974:5–52.Google Scholar
Gautier, M, Jehan, P, Odièvre, M. Histologic study of biliary fibrous remnants in 48 cases of extra-hepatic biliary atresia: correlation with postoperative bile flow restoration. J Pediatr 1976;89:704–9.CrossRefGoogle Scholar
Miyano, T, Surugo, K, Tsuchiya, H. A histopathological study of the remnant of extrahepatic bile duct in so-called uncorrectable biliary atresia. J Pediatr Surg 1977;12:19–25.CrossRefGoogle ScholarPubMed
Suruga, K, Miyano, T, Arai, T. A study of patients with long-term bile flow after hepatic portoenterostomy for biliary atresia. J Pediatr Surg 1985;20:252–5.CrossRefGoogle ScholarPubMed
Schweizer, P. Extrahepatische Gallengangsatresie – Eine analytische Bewertung prognostischer Faktoren. Ein Beitrag zu einem rationelen Therapieansatz. Z Kinderchir 1990;45:365–70.Google Scholar
Tan, C E, Davenport, M, Driver, M. Does the morphology of the extrahepatic biliary remnants in biliary atresia influence survival? A review of 205 cases. J Pediatr Surg 1994;29:1459–64.CrossRefGoogle ScholarPubMed
Dolgin, S E. Answered and unanswered controversies in the surgical management of extra hepatic biliary atresia. Pediatr Transplant 2004;8:628–31.CrossRefGoogle ScholarPubMed
Schweizer P, Muller G. Gallengangsatresie. Cholestase-Syndrome im Neugeborenen- und Suglingsalter. Stuttgart: Hippokrates Verlag, 1984.
Desmet VJ. Pathology of paediatric cholestasis. In: Lentze, M, Reichen, J, eds. Paediatric cholestasis. Novel approaches to treatment. Dordrecht: Kluwer Academic Publishers, 1992:55–73.Google Scholar
Cocjin, J, Rosenthal, P, Buslon, V. Bile ductule formation in fetal, neonatal, and infant livers compared with extrahepatic biliary atresia. Hepatology 1996;24:568–74.CrossRefGoogle ScholarPubMed
Brough AJ, Bernstein J. Morphologic approach to the evaluation of infantile conjugated hyperbilirubinemia. In: Javitt, N B, ed. Neonatal hepatitis and biliary atresia. DHEW publication no. (NIH) 79–1296. Washington, DC: US Department of Health, Education and Welfare, 1979;381–8.Google Scholar
Eyken, P, Desmet, V J. Cytokeratins and the liver. Liver 1993; 13:113–22.CrossRefGoogle ScholarPubMed
Roskams, T, Desmet, V. Ductular reaction and its diagnostic significance. Semin Diagn Pathol 1998;15:259–69.Google ScholarPubMed
Roskams, T. The role of immunohistochemistry in diagnosis. Clin Liver Dis 2002;6:571–89, x.CrossRefGoogle ScholarPubMed
Azar, G, Beneck, D, Lane, B. Atypical morphologic presentation of biliary atresia and value of serial liver biopsies. J Pediatr Gastroenterol Nutr 2002;34:212–15.CrossRefGoogle ScholarPubMed
Santos, dos J L, Silveira, da T R, Silva, da V D. Medial thickening of hepatic artery branches in biliary atresia. A morphometric study. J Pediatr Surg 2005;40:637–42.CrossRefGoogle ScholarPubMed
Ho, C W, Shioda, K, Shirasaki, K. The pathogenesis of biliary atresia: a morphological study of the hepatobiliary system and the hepatic artery. J Pediatr Gastroenterol Nutr 1993;16:53–60.CrossRefGoogle ScholarPubMed
Azarow, K S, Phillips, M J, Sandler, A D. Biliary atresia: should all patients undergo a portoenterostomy?J Pediatr Surg 1997;32:168–72; discussion 172–4.CrossRefGoogle ScholarPubMed
Lilly JR, Alejandro M, Hernandez C, et al. Surgery of biliary atresia. In: Balistreri, W F, Stocker, J T, eds. Pediatric hepatology. New York: Hemisphere Publishing Corporation, 1990:19–27.Google Scholar
Lilly, J R, Karrer, F M. Contemporary surgery of biliary atresia. Pediatr Clin North Am 1985;32:1233–46.CrossRefGoogle ScholarPubMed
Landing, B H, Wells, T R, Ramicone, E. Time course of the intrahepatic lesion of extrahepatic biliary atresia. A morphometric study. Pediatr Pathol 1985;4:309–19.CrossRefGoogle ScholarPubMed
Aronson, D C, Haan, J, James, J. Quantitative aspects of the parenchyma-stroma relationship in experimentally induced cholestasis. Liver 1988;8:116–26.CrossRefGoogle ScholarPubMed
Raweily, E A, Gibson, A A M, Burt, A D. Abnormalities of intrahepatic bile ducts in extrahepatic biliary atresia. Histopathology 1990;17:521–7.CrossRefGoogle ScholarPubMed
Low, Y, Vijayan, V, Tan, C E. The prognostic value of ductal plate malformation and other histologic parameters in biliary atresia: an immunohistochemical study. J Pediatr 2001;139:320–2.CrossRefGoogle Scholar
Desmet, V J. Cholangiopathies: past, present and future. Semin Liver Dis 1987;7:67–76.CrossRefGoogle Scholar
Ryckman, F C, Alonso, M H, Bucuvalas, J C. Biliary atresia – surgical management and treatment options as they relate to outcome. Liver Transpl Surg 1998;4(5 suppl 1):S24–33.Google Scholar
Bates, M D, Bucuvalas, J C, Alonso, M H. Biliary atresia: pathogenesis and treatment. Semin Liver Dis 1998;18:281–93.CrossRefGoogle ScholarPubMed
Laurent, J, Gauthier, F, Bernard, O. Long-term outcome after surgery for biliary atresia. Study of 40 patients surviving more than 10 years. Gastroenterology 1990;99:1793–7.CrossRefGoogle ScholarPubMed
Fabbretti G, Gosseye S, Brisigutti M, et al. Liver transplantation after unsuccessful porto-enterostomy for extra-hepatic biliary atresia (EHBDA): morphologic study of 31 removed livers. In: Ohi, R, ed. Biliary atresia. Tokyo: ICOM Associates, 1991:70–4.Google Scholar
Petersen, C. Surgery in biliary atresia – futile or futuristic?Eur J Pediatr Surg 2004;14:226–9.CrossRefGoogle ScholarPubMed
Callea F, Facchetti F, Lucini L, et al. Liver morphology in anicteric patients at long-term follow-up after Kasai operation: a study of 16 cases. In: Ohi, R, ed. Biliary atresia. Tokyo: ICOM Associates, 1991:304–10.Google Scholar
Perlmutter, D H, Shepherd, R W. Extrahepatic biliary atresia: a disease or a phenotype?Hepatology 2002;35:1297–304.CrossRefGoogle ScholarPubMed
Bezerra, J A. Potential etiologies of biliary atresia. Pediatr Transplant 2005;9:646–51.CrossRefGoogle ScholarPubMed
Squires, R H Jr. From whence does biliary atresia arise?Pediatr Transplant 2005;9:145–7.Google ScholarPubMed
Mack, C L, Sokol, R J. Unraveling the pathogenesis and etiology of biliary atresia. Pediatr Res 2005;57(5 pt 2):87R–94R.CrossRefGoogle Scholar
Sokol, R J, Mack, C, Narkewicz, M R. Pathogenesis and outcome of biliary atresia: current concepts. J Pediatr Gastroenterol Nutr 2003;37:4–21.CrossRefGoogle ScholarPubMed
Carmi, R, Magee, C A, Neill, C A. Extrahepatic biliary atresia and associated anomalies: etiologic heterogeneity suggested by distinctive patterns of associations. Am J Med Genet 1993;45:683–93.CrossRefGoogle ScholarPubMed
Mazziotti, M V, Willis, L K, Heuckeroth, R O. Anomalous development of the hepatobiliary system in the Inv mouse. Hepatology 1999;30:372–8.CrossRefGoogle ScholarPubMed
Schon, P, Tsuchiya, K, Lenoir, D. Identification, genomic organization, chromosomal mapping and mutation analysis of the human INV gene, the ortholog of a murine gene implicated in left-right axis development and biliary atresia. Hum Genet 2002;110:157–65.CrossRefGoogle ScholarPubMed
Jacquemin, E, Cresteil, D, Raynaud, N. CFCI gene mutation and biliary atresia with polysplenia syndrome. J Pediatr Gastroenterol Nutr 2002;34:326–7.CrossRefGoogle ScholarPubMed
Ware, S M, Peng, J, Zhu, L. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 2004;74:93–105.CrossRefGoogle ScholarPubMed
Zhang, D Y, Sabla, G, Shivakumar, P. Coordinate expression of regulatory genes differentiates embryonic and perinatal forms of biliary atresia. Hepatology 2004;39:954–62.CrossRefGoogle ScholarPubMed
Kohsaka, T, Yuan, Z R, Guo, S X. The significance of human jagged 1 mutations detected in severe cases of extrahepatic biliary atresia. Hepatology 2002;36(4 pt 1):904–12.CrossRefGoogle Scholar
Sasaki, H, Nio, M, Iwami, D. Cytokeratin subtypes in biliary atresia: immunohistochemical study. Pathol Int 2001;51:511–18.CrossRefGoogle ScholarPubMed
Omary, M B, Ku, N O, Toivola, D M. Keratins: guardians of the liver. Hepatology 2002;35:251–7.CrossRefGoogle ScholarPubMed
Tan, C E, Chan, V S, Yong, R Y. Distortion in TGF beta 1 peptide immunolocalization in biliary atresia: comparison with the normal pattern in the developing human intrahepatic bile duct system. Pathol Int 1995;45:815–24.CrossRefGoogle ScholarPubMed
Sasaki, H, Nio, M, Iwami, D. E-cadherin, alpha-catenin and beta-catenin in biliary atresia: correlation with apoptosis and cell cycle. Pathol Int 2001;51:923–32.CrossRefGoogle ScholarPubMed
Funaki, N, Sasano, H, Shizawa, S. Apoptosis and cell proliferation in biliary atresia. J Pathol 1998;186:429–33.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Colombo, C, Zuliani, G, Ronchi, M. Biliary bile acid composition of the human fetus in early gestation. Pediatr Res 1987;21:197–200.CrossRefGoogle ScholarPubMed
Yamamoto, K, Fisher, M M, Phillips, M J. Hilar biliary plexus in human liver. A comparative study of the intrahepatic bile ducts in man and animals. Lab Invest 1985;52:103–6.Google ScholarPubMed
Lester, R, Pyrek, St J, Little, J M. Nature of bile acids in the fetus and newborn infant. J Pediatr Gastroenterol Nutr 1983; 2(suppl 1):S197–206.CrossRefGoogle Scholar
Hata Y, Sasaki F, Takahashi H, et al. Fetal bile acids in congenital biliary atresia. In: Ohi, R, ed. Biliary atresia. Tokyo: ICOM Associates, 1991:182–6.Google Scholar
Rolleston, H, Hayne, L. A case of congenital hepatic cirrhosis with obliterative cholangitis (congenital obliteration of the bile ducts). BMJ 1901;1:758–60.CrossRefGoogle Scholar
Uflacker, R, Pariente, D M. Angiographic findings in biliary atresia. Cardiovasc Intervent Radiol 2004;27:486–90.CrossRefGoogle ScholarPubMed
Harper, P A W, Plant, J W, Unger, D B. Congenital biliary atresia and jaundice in lambs and calves. Aust Vet J 1990;67:18–22.CrossRefGoogle ScholarPubMed
Alagille, D, Odievre, M, Gautier, M. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental and sexual development and cardiac murmur. J Pediatr 1975;86:63–71.CrossRefGoogle ScholarPubMed
Treem, W R, Krzymowski, G A, Cartun, R W. Cytokeratin immunohistochemical examination of liver biopsies in infants with Alagille syndrome and biliary atresia. J Pediatr Gastroenterol Nutr 1992;15:73–80.CrossRefGoogle ScholarPubMed
Faa, G, Eyken, P, Demelia, L. Idiopathic adulthood ductopenia presenting with chronic recurrent cholestasis. A case report. J Hepatol 1991;12:14–20.CrossRefGoogle ScholarPubMed
Hadchouel, M, Hugon, R N, Gautier, M. Reduced ratio of portal tracts to paucity of intrahepatic bile ducts. Arch Pathol Lab Med 1978;102:402–3.Google ScholarPubMed
Birnbaum, A, Suchy, F J. The intrahepatic cholangiopathies. Semin Liver Dis 1998;18:263–9.CrossRefGoogle ScholarPubMed
Kahn E. Paucity of interlobular bile ducts. Arteriohepatic dysplasia and nonsyndromic duct paucity. In: Abramowsky, C R, Bernstein, J, Rosenberg, H S, eds. Perspectives in pediatric pathology. Transplantation pathology – hepatic morphogenesis, Vol. 14. Basel: Karger, 1991:168–215.Google Scholar
Hashida, Y, Yunis, E J. Syndromatic paucity of interlobular bile ducts: hepatic histopathology of the early and endstage liver. Pediatr Pathol 1988;8:1–15.CrossRefGoogle ScholarPubMed
Krantz, I D, Piccoli, D A, Spinner, N B. Alagille syndrome. J Med Genet 1997;34:152–7.CrossRefGoogle ScholarPubMed
Harper, J A, Yuan, J S, Tan, J B. Notch signaling in development and disease. Clin Genet 2003;64:461–72.CrossRefGoogle ScholarPubMed
Balistreri, W F, Bezerra, J A, Jansen, P. Intrahepatic cholestasis: summary of an American Association for the Study of Liver Diseases single-topic conference. Hepatology 2005;42:222–35.CrossRefGoogle Scholar
Lorent, K, Yeo, S Y, Oda, T. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development 2004;131:5753–66.CrossRefGoogle ScholarPubMed
Boyer, J, Crosnier, C, Driancourt, C. Expression of mutant JAGGED1 alleles in patients with Alagille syndrome. Hum Genet 2005;116:445–53.CrossRefGoogle ScholarPubMed
Loomes, K M, Taichman, D B, Glover, C L. Characterization of Notch receptor expression in the developing mammalian heart and liver. Am J Med Genet 2002;112:181–9.CrossRefGoogle ScholarPubMed
Deutsch, G H, Sokol, R J, Stathos, T H. Proliferation to paucity: evolution of bile duct abnormalities in a case of Alagille syndrome. Pediatr Dev Pathol 2001;4:559–63.CrossRefGoogle Scholar
Emerick, K M, Rand, E B, Goldmuntz, E. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 1999;29:822–9.CrossRefGoogle ScholarPubMed
Libbrecht, L, Spinner, N B, Moore, E C. Peripheral bile duct paucity and cholestasis in the liver of a patient with Alagille syndrome: further evidence supporting a lack of postnatal bile duct branching and elongation. Am J Surg Pathol 2005;29:820–6.CrossRefGoogle ScholarPubMed
Aburano, T, Yokoyama, K, Takayama, T. Distinct hepatic retention of Tc-99m IDA in arteriohepatic dysplasia (Alagille syndrome). Clin Nucl Med 1989;14:874–6.CrossRefGoogle Scholar
Torizuka, T, Tamaki, N, Fujita, T. Focal liver hyperplasia in Alagille syndrome: assessment with hepatoreceptor and hepatobiliary imaging. J Nucl Med, 1996;37:1365–7.Google ScholarPubMed
Jinguji, M, Tsuchimochi, S, Nakajo, M. Scintigraphic progress of the liver in a patient with Alagille syndrome (arteriohepatic dysplasia). Ann Nucl Med 2003;17:693–7.CrossRefGoogle Scholar
Kamath, B M, Spinner, N B, Emerick, K M. Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 2004;109:1354–8.CrossRefGoogle ScholarPubMed
Spinner, N B. Alagille syndrome and the notch signaling pathway: new insights into human development. Gastroenterology 1999;116:1257–60.CrossRefGoogle ScholarPubMed
Makos, B K, Youson, J H. Serum levels of bilirubin and biliverdin in the sea lamprey, Petromyzon marinus L., before and after their biliary atresia. Comp Biochem Physiol 1987;87A:761–4.CrossRefGoogle Scholar
Hoffenberg, E J, Narkewicz, M R, Sondheimer, J M. Outcome of syndromic paucity of interlobular bile ducts (Alagille syndrome) with onset of cholestasis in infancy. J Pediatr 1995;127:220–4.CrossRefGoogle ScholarPubMed
Wegmann, C, Munzenmaier, R, Dormann, A J. [Ticlopidine-induced acute cholestatic hepatitis]. Dtsch Med Wochenschr 1998;123:146–50.CrossRefGoogle Scholar
Kim, B, Park, S H, Yang, H R. Hepatocellular carcinoma occurring in Alagille syndrome. Pathol Res Pract 2005;201:55–60.CrossRefGoogle ScholarPubMed
Furuya, K N, Roberts, E A, Canny, G J. Neonatal hepatitis syndrome with paucity of interlobular bile ducts in cystic fibrosis. J Pediatr Gastroenterol Nutr 1991;12:127–30.CrossRefGoogle ScholarPubMed
Jansen, P L, Sturm, E. Genetic cholestasis, causes and consequences for hepatobiliary transport. Liver Int 2003;23:315–22.CrossRefGoogle ScholarPubMed
Bove, K E, Heubi, J E, Balistreri, W F. Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr Dev Pathol 2004;7:315–34.CrossRefGoogle ScholarPubMed
Kahn, E I, Daum, F, Markowitz, J. Arteriohepatic dysplasia II. Hepatobiliary morphology. Hepatology 1983;3:77–84.CrossRefGoogle ScholarPubMed
Gosseye, S, Otte, J B, Meyer, R. A histological study of extrahepatic biliary atresia. Acta Paediatr Belg 1977;30:85–90.Google ScholarPubMed
Lilly, J R. The surgery of biliary hypoplasia. J Pediatr Surg 1976; 11:815–21.CrossRefGoogle ScholarPubMed
Yamagiwa, I, Obata, K, Hatanaka, Y. Clinico-pathological studies on a transitional type between extrahepatic biliary atresia and paucity of interlobular bile ducts. Jpn J Surg 1993; 23:307–14.Google Scholar
Amedee-Manesme, O, Bernard, O, Brunelle, F. Sclerosing cholangitis with neonatal onset. J Pediatr 1987;111:225–9.CrossRefGoogle ScholarPubMed
Guay-Woodford, L M, Galliani, C A, Musulman-Mroczek, E. Diffuse renal cystic disease in children: morphologic and genetic correlations. Pediatr Nephrol 1998;12:173–82.CrossRefGoogle ScholarPubMed
Caroli, J, Corcos, V. Maladies des voies biliaires intrah patiques segmentaires. Paris: Masson, 1964.Google Scholar
Welling LW, Grantham JJ. Cystic diseases of the kidney. In: Tisher, C C, Brenner, B M, eds. Renal pathology with clinical and functional correlations. Philadelphia: JB Lippincott, 1989:1233–75.Google Scholar
Henry, X, Marrasse, E, Stoppa, R. Association maladie de Caroli – kyste du cholédoque – fibrose hépatique congénitale – polykystose rénale. Chirurgie 1987;113:834–43.Google Scholar
Buts, J P, Otte, J B, Claus, D. Kyste du cholédoque: un cas avec dilatation des voies biliaires intrahépatiques et fibrose hépatique congénitale. Helv Paediatr Acta 1980;35:289–95.Google Scholar
Cole BR. Autosomal recessive polycystic kidney disease. In: Gardner, K D Jr, Bernstein, J, eds. The cystic kidney. Dordrecht: Kluwer Academic Publishers, 1990:327–50.CrossRefGoogle Scholar
Zerres, K, Rudnik-Schöneborn, S, Senderek, J. Autosomal recessive polycystic kidney disease (ARPKD). J Nephrol 2003; 16:453–8.Google Scholar
Onuchic, L F, Furu, L, Nagasawa, Y. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet 2002;70:1305–17.CrossRefGoogle ScholarPubMed
Wang, S, Luo, Y, Wilson, P D. The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol 2004;15:592–602.CrossRefGoogle ScholarPubMed
Masyuk, T V, Huang, B Q, Ward, C J. Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 2003;125:1303–10.CrossRefGoogle ScholarPubMed
D'Agata, I D, Jonas, M M, Perez-Atayde, A R. Combined cystic disease of the liver and kidney. Semin Liver Dis 1994;14:215–28.CrossRefGoogle ScholarPubMed
Bergmann, C, Senderek, J, Windelen, E. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int 2005; 67:829–48.CrossRefGoogle Scholar
Gattone, V H 2nd, MacNaughton, K A, Kraybill, A L. Murine autosomal recessive polycystic kidney disease with multiorgan involvement induced by the cpk gene. Anat Rec 1996;245:488–99.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Guay-Woodford, L M, Green, W J, Lindsey, J R. Germline and somatic loss of function of the mouse cpk gene causes biliary ductal pathology that is genetically modulated. Hum Mol Genet 2000;9:769–78.CrossRefGoogle Scholar
Zou, M H, Hou, X Y, Shi, C M. Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem 2002;277:32552–7.CrossRefGoogle ScholarPubMed
Yoder, B K, Tousson, A, Millican, L. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Renal Physiol 2002;282:F541–52.CrossRefGoogle ScholarPubMed
Moser, M, Matthiesen, S, Kirfel, J. A mouse model for cystic biliary dysgenesis in autosomal recessive polycystic kidney disease (ARPKD). Hepatology 2005;41:1113–21.CrossRefGoogle Scholar
Sanzen, T, Harada, K, Yasoshima, M. Polycystic kidney rat is a novel animal model of Caroli's disease associated with congenital hepatic fibrosis. Am J Pathol 2001;158:1605–12.CrossRefGoogle ScholarPubMed
Masyuk, T V, Huang, B Q, Masyuk, A I. Biliary dysgenesis in the PCK rat, an orthologous model of autosomal recessive polycystic kidney disease. Am J Pathol 2004;165:1719–30.CrossRefGoogle ScholarPubMed
Blyth, H, Ockenden, B G. Polycystic disease of kidneys and liver presenting in childhood. J Med Genet 1971;8:257–84.CrossRefGoogle ScholarPubMed
Rossetti, S, Torra, R, Coto, E. A complete mutation screen of PKHD1 in autosomal-recessive polycystic kidney disease (ARPKD) pedigrees. Kidney Int 2003;64:391–403.CrossRefGoogle ScholarPubMed
Witzleben CL. Cystic diseases of the liver. In: Zakim, D, Boyer, T D, eds. Hepatology. A textbook of liver disease. 2nd ed. Vol. 2. Philadelphia: WB Saunders, 1990:1395–411.Google Scholar
Nakanuma, Y, Terada, T, Ohta, G. Caroli's disease in congenital hepatic fibrosis and infantile polycystic disease. Liver 1982;2:346–54.CrossRefGoogle ScholarPubMed
Osathanondh, V, Potter, E L. Pathogenesis of polycystic kidneys. Arch Pathol 1964;77:466–73.Google ScholarPubMed
Lieberman, E, Salinas-Madrigal, L, Gwinn, J L. Infantile polycystic disease of the kidneys and liver. Clinical, pathological and radiological correlations and comparison with congenital hepatic fibrosis. Medicine 1971;50:277–318.Google ScholarPubMed
Bernstein, J, Stickler, G B, Neel, I V. Congenital hepatic fibrosis: evolving morphology. APMIS Suppl 1988;4:17–26.Google ScholarPubMed
Premkumar, A, Berdon, W E, Levy, J. The emergence of hepatic fibrosis and portal hypertension in infants and children with autosomal recessive polycystic kidney disease: initial and follow-up sonographic and radiographic findings. Pediatr Radiol 1988;18:123–9.CrossRefGoogle ScholarPubMed
Gang, D, Herrin, J. Infantile polycystic disease of the liver and kidneys. Clin Nephrol 1986;25:28–36.Google ScholarPubMed
Kerr, D N S, Harrison, C V, Sherlock, S. Congenital hepatic fibrosis. Q J Med 1961;30:91–117.Google ScholarPubMed
Alvarez, F, Bernard, O, Brunelle, F. Congenital hepatic fibrosis in children. J Pediatr 1981;99:370–5.CrossRefGoogle ScholarPubMed
Matsuda, O, Ideura, T, Shinoda, T. Polycystic kidney of autosomal dominant inheritance, polycystic liver and congenital hepatic fibrosis in a single kindred. Am J Nephrol 1990;10:237–41.CrossRefGoogle Scholar
Tazelaar, H D, Payne, J A, Patel, S. Congenital hepatic fibrosis and asymptomatic familial adult-type polycystic disease in a 19-year old woman. Gastroenterology 1984;86:757–60.Google Scholar
Devos, M, Barbier, F, Cuvelier, C. Congenital hepatic fibrosis. J Hepatol 1988;6:222–8.CrossRefGoogle Scholar
Cobben, J M, Breuning, M H, Schoots, C. Congenital hepatic fibrosis in autosomal-dominant polycystic kidney disease. Kidney Int 1990;38:880–5.CrossRefGoogle ScholarPubMed
Lipschitz, B, Berdon, W E, Defelice, A R. Association of congenital hepatic fibrosis with autosomal dominant polycystic kidney disease. Report of a family with review of literature. Pediatr Radiol 1993;23:131–3.CrossRefGoogle ScholarPubMed
Koning, T J, Nikkels, P G, Dorland, L. Congenital hepatic fibrosis in 3 siblings with phosphomannose isomerase deficiency. Virchows Arch 2000;437:101–5.CrossRefGoogle ScholarPubMed
Schwarzenberg, S J. Congenital hepatic fibrosis – is it really a matter of “a spoonful of sugar?”Hepatology 1999;30:582–3.CrossRefGoogle Scholar
Clermont, R J, Maillard, J N, Benhamou, J P. Fibrose hépatique congénitale. Can Med Assoc J 1967;97:1272–8.Google Scholar
Shneider, B L, Magid, M S. Liver disease in autosomal recessive polycystic kidney disease. Pediatr Transplant 2005;9:634–9.CrossRefGoogle ScholarPubMed
Ghishan, F K, Younoszai, M K. Congenital hepatic fibrosis: a disease with diverse manifestations. Am J Gastroenterol 1981;75: 317–20.Google ScholarPubMed
Murray-Lyon, I M, Ockenden, B G, Williams, R. Congenital hepatic fibrosis – is it a single clinical entity?Gastroenterology 1973; 64:653–6.Google ScholarPubMed
Summerfield, J A, Nagafuchi, Y, Sherlock, S. Hepatobiliary fibropolycystic disease: a clinical and histological review of 51 patients. J Hepatol 1986;2:141–56.CrossRefGoogle ScholarPubMed
Potet, F. Problèmes anatomo-cliniques posés par la fibrose hépatique congénitale. Cah Med (Europa Medica) 1971;12:1015–30.Google Scholar
Nathan, M, Batsakis, J G. Congenital hepatic fibrosis. Surg Gynecol Obstet 1969;128:1033–41.Google ScholarPubMed
Hausner, R J, Alexander, R W. Localized congenital hepatic fibrosis presenting as an abdominal mass. Hum Pathol 1978;9:473–6.CrossRefGoogle ScholarPubMed
Zlatkovic, M, Duricic, S, Plamenac, P. Congenital hepatic fibrosis of heterotopic hepatic tissue. Pathol Res Pract 1998;194:523–6.CrossRefGoogle ScholarPubMed
Phillips, M J, Poucell, S, Patterson, J. The liver. An atlas and text of ultrastructural pathology. New York: Raven Press, 1987:524.Google Scholar
Bianchi, L, Reichen, J. A 20-year-old woman with portal hypertension and a cholestatic syndrome. Hepatology 1994;20:515–22.CrossRefGoogle Scholar
Ledinghen, V, Bail, B, Trillaud, H. Case report: secondary biliary cirrhosis possibly related to congenital hepatic fibrosis. Evidence for decreased number of portal branch veins and hypertrophic peribiliary vascular plexus. J Gastroenterol Hepatol 1998;13:720–4.CrossRefGoogle ScholarPubMed
Parker, R G F. Fibrosis of the liver as a congenital anomaly. J Pathol Bacteriol 1956;71:359–68.CrossRefGoogle ScholarPubMed
Adams, C M, Danks, D M, Campbell, P E. Comments upon the classification of infantile polycystic diseases of the liver and kidney, based upon three-dimensional reconstruction of the liver. J Med Genet 1974;11:234–43.CrossRefGoogle Scholar
Takatori, M, Iwabuchi, S, Hayashi, T. Congenital hepatic fibrosis with fatal cholestatic liver damage. Intern Med 2000;39: 930–5.CrossRefGoogle ScholarPubMed
Bernstein J, Gardner KD Jr. Renal cystic disease and renal dysplasia. In: Walsh, P C, Gitters, R F, Perlmutter, A D, Stamey, T A, eds. Campbell's urology. 5th ed. Philadelphia: WB Saunders, 1986: 1760–803.Google Scholar
Gresh, L, Fischer, E, Reimann, A. A transcriptional network in polycystic kidney disease. EMBO J 2004;23:1657–68.CrossRefGoogle ScholarPubMed
Hiesberger, T, Shao, X, Gourley, E. Role of the hepatocyte nuclear factor-1beta (HNF-1beta) C-terminal domain in Pkhd1 (ARPKD) gene transcription and renal cystogenesis. J Biol Chem 2005;280:10578–86.CrossRefGoogle ScholarPubMed
Hiesberger, T, Bai, Y, Shao, X. Mutation of hepatocyte nuclear factor-1beta inhibits Pkhd1 gene expression and produces renal cysts in mice. J Clin Invest 2004;113:814–25.CrossRefGoogle ScholarPubMed
Montoli, A, Colussi, G, Massa, O. Renal cysts and diabetes syndrome linked to mutations of the hepatocyte nuclear factor-1 beta gene: description of a new family with associated liver involvement. Am J Kidney Dis 2002;40:397–402.CrossRefGoogle ScholarPubMed
Hildebrandt, F, Omram, H. New insights: nephronophthisis-medullary cystic kidney disease. Pediatr Nephrol 2001;16:168–76.CrossRefGoogle ScholarPubMed
Bissler, J J, Dixon, B P. A mechanistic approach to inherited polycystic kidney disease. Pediatr Nephrol 2005;20:558–66.CrossRefGoogle ScholarPubMed
Wolf, M T, Vlem, B, Hennies, H C. Telomeric refinement of the MCKD1 locus on chromosome 1q21. Kidney Int 2004;66:580–5.CrossRefGoogle ScholarPubMed
Mollet, G, Salomon, R, Gribouval, O. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat Genet 2002;32:300–5.CrossRefGoogle ScholarPubMed
Otto, E A, Schermer, B, Obara, T. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 2003;34:413–20.CrossRefGoogle ScholarPubMed
Olbrich, H, Fliegauf, M, Hoefele, J. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet 2003;34:455–9.CrossRefGoogle Scholar
Boichis, H, Passwell, J, David, R. Congenital hepatic fibrosis and nephronophthisis. A family study. Q J Med 1973;42:221–33.Google ScholarPubMed
Fernandez-Rodriguez, R, Morales, J M, Martinez, R. Senior-Loken syndrome (nephronophthisis and pigmentary retinopathy) associated to liver fibrosis: a family study. Nephron 1990;55: 74–7.CrossRefGoogle ScholarPubMed
Proesmans, W, Damme, B, Macken, J. Nephronophthisis and tapetoretinal degeneration associated with liver fibrosis. Clin Nephrol 1975;3:160–4.Google ScholarPubMed
Hunter, A G, Rothman, S J, Hwang, W S. Hepatic fibrosis, polycystic kidney, colobomata and encephalopathy in siblings. Clin Genet 1974;6:82–9.CrossRefGoogle ScholarPubMed
Gentile, M, Carlo, Di A, Susca, F. COACH syndrome: report of two brothers with congenital hepatic fibrosis, cerebellar vermis hypoplasia, oligophrenia, ataxia, and mental retardation. Am J Med Genet 1996;64:514–20.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Lewis, S M, Roberts, E A, Marcon, M A. Joubert syndrome with congenital hepatic fibrosis: an entity in the spectrum of oculo-encephalo-hepato-renal disorders. Am J Med Genet 1994;52:419–26.CrossRefGoogle ScholarPubMed
Foell, D, August, C, Frosch, M. Early detection of severe cholestatic hepatopathy in COACH syndrome. Am J Med Genet 2002;111:429–34.CrossRefGoogle ScholarPubMed
Kirchner, G I, Wagner, S, Flemming, P. COACH syndrome associated with multifocal liver tumors. Am J Gastroenterol 2002;97:2664–9.CrossRefGoogle ScholarPubMed
Coppola, G, Vajro, P, Virgiliis, S. Cerebellar vermis defect, oligophrenia, congenital ataxia, and hepatic fibrocirrhosis without coloboma and renal abnormalities: report of three cases. Neuropediatrics 2002;33:180–5.CrossRefGoogle ScholarPubMed
Louie, C M, Gleeson, J G. Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum Mol Genet 2005;14(spec no. 2):R235–42.CrossRefGoogle Scholar
Parisi, M A, Bennett, C L, Eckert, M L. The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am J Hum Genet 2004;75:82–91.CrossRefGoogle Scholar
Caroli, J. Diseases of the intrahepatic biliary tree. Clin Gastroenterol 1973;2:147–61.Google ScholarPubMed
Mall, J C, Chahremani, G G, Boyer, J L. Caroli's disease associated with congenital hepatic fibrosis and renal tubular ectasia. Gastroenterology 1974;66:1029–53.Google ScholarPubMed
Erlinger, S. [Cystic dilatation of the biliary tract]. Rev Prat 2000; 50:2136–41.Google Scholar
Hoglund, M, Muren, C, Schmidt, D. Caroli's disease in two sisters. Diagnosis by ultrasonography and computed tomography. Acta Radiol 1989;30:459–62.CrossRefGoogle ScholarPubMed
Tsuchida, Y, Sato, T, Sanjo, K. Evaluation of long-term results of Caroli's disease: 21 years' observation of a family with autosomal “dominant” inheritance, and review of the literature. Hepatogastroenterology 1995;42:175–81.Google ScholarPubMed
Sgro, M, Rossetti, S, Barozzino, T. Caroli's disease: prenatal diagnosis, postnatal outcome and genetic analysis. Ultrasound Obstet Gynecol 2004;23:73–6.CrossRefGoogle ScholarPubMed
Jordan, D, Harpaz, N, Thung, S N. Caroli's disease and adult polycystic kidney disease: a rarely recognized association. Liver 1989;9:30–5.CrossRefGoogle Scholar
GuntzPH, Coppo B, Lorimier G PH, Coppo B, Lorimier G. La maladie de Caroli unilobaire. J Chir (Paris) 1991;128:167–81.Google Scholar
Senyuz, O F, Yesildag, E, Kuruoglu, S. Caroli's disease in children: is it commonly misdiagnosed?Acta Paediatr 2005;94:117–20.CrossRefGoogle ScholarPubMed
Fevery, J, Tanghe, W, Kerremans, R. Congenital dilatation of the intrahepatic bile ducts associated with the development of amyloidosis. Gut 1972;13:604–9.CrossRefGoogle ScholarPubMed
Fozard, J B, Wyatt, J I, Hall, R I. Epithelial dysplasia in Caroli's disease. Gut 1989;30:1150–3.CrossRefGoogle ScholarPubMed
Etienne, J C, Bouillot, J L, Alexandre, J H. Cholangiocarcinome développé sur maladie de Caroli. J Chir (Paris) 1987;124:161–4.Google Scholar
Choi, B I, Yeon, K M, Kim, S H. Caroli disease: central dot sign in CT. Radiology 1990;174:161–3.CrossRefGoogle ScholarPubMed
Takehara, Y. Caroli's disease associated with polycystic kidney: its noninvasive diagnosis. Radiat Med 1989;7:13–15.Google ScholarPubMed
Hopper, K D. The role of computed tomography in the evaluation of Caroli's disease. Clin Imaging 1989;13:68–73.CrossRefGoogle ScholarPubMed
Hussman, K L, Friedwald, J P, Gollub, M J. Caroli's disease associated with infantile polycystic kidney disease. J Ultrasound Med 1991;10:235–7.CrossRefGoogle ScholarPubMed
Sood, G K, Mahapatra, J R, Khurana, A. Caroli disease: computed tomographic diagnosis. Gastrointest Radiol 1991;16:243–4.CrossRefGoogle ScholarPubMed
Krause, D, Cercueil, J P, Dranssart, M. MRI for evaluating congenital bile duct abnormalities. J Comput Assist Tomogr 2002;26:541–52.CrossRefGoogle ScholarPubMed
Fain, J S, Lewin, K J. Intrahepatic biliary cysts in congenital biliary atresia. Arch Pathol Lab Med 1989;113:1383–6.Google ScholarPubMed
Takahashi, A, Tsuchida, Y, Hatakeyama, S. A peculiar form of multiple cystic dilatation of the intrahepatic biliary system found in a patient with biliary atresia. J Pediatr Surg 1997;32: 1776–9.CrossRefGoogle Scholar
Landing, B H. Considerations on the pathogenesis of neonatal hepatitis, biliary atresia and choledochal cyst. The concept of infantile obstructive cholangiopathy. Prog Pediatr Surg 1974;6:113–39.Google ScholarPubMed
Ryckman, F, Fisher, R, Pedersen, S. Improved survival in biliary atresia patients in the present era of liver transplantation. J Pediatr Surg 1993;28:382–5; discussion 386.CrossRefGoogle ScholarPubMed
Todani, T, Watanabe, Y, Narusue, M. Congential bile duct cysts. Classification, operative procedures and review of thirty-seven cases including cancer arising from choledochal cyst. Am J Surg 1977;134:263–9.CrossRefGoogle Scholar
Burns, C, Kuhns, J G, Wieman, T J. Cholangiocarcinoma in association with multiple biliary microhamartomas. Arch Pathol Lab Med 1990;114:1287–9.Google ScholarPubMed
Jain, D, Sarode, V R, Abdul-Karim, F W. Evidence for the neoplastic transformation of Von-Meyenburg complexes. Am J Surg Pathol 2000;24:1131–9.CrossRefGoogle ScholarPubMed
Eguchi, S, Tajima, Y, Yanaga, K. Hilar bile duct cancer associated with preoperatively undetectable von Meyenburg complex – report of a case. Hepatogastroenterology 2004;51:1301–3.Google Scholar
Melnick, P J. Polycystic liver. Analysis of seventy cases. Arch Pathol 1955;59:162–72.Google ScholarPubMed
Karhunen, P J. Adult polycystic liver disease and biliary microhamartomas (Von Meyenburg's complexes). Acta Pathol Microbiol Immunol Scand [A] 1986;94:397–400.Google Scholar
Tsui, W M. How many types of biliary hamartomas and adenomas are there?Adv Anat Pathol 1998;5:16–20.CrossRefGoogle Scholar
Redston, M S, Wanless, I R. The hepatic von Meyenburg complex: prevalence and association with hepatic and renal cysts among 2843 autopsies [corrected]. Mod Pathol 1996;9:233–7.Google Scholar
Ohta, W, Ushio, H. Histological reconstruction of von Meyenburg's complex on the liver surface. Endoscopy 1984;16:71–4.CrossRefGoogle ScholarPubMed
Grimm, P C, Crocker, J F, Malatjalian, D A. The microanatomy of the intrahepatic bile duct in polycystic disease: comparison of the cpk mouse and human. J Exp Pathol 1990;71:119–31.Google ScholarPubMed
Ramos, A, Torres, V E, Holley, K E. The liver in autosomal dominant polycystic kidney disease. Implications for pathogenesis. Arch Pathol Lab Med 1990;114:180–4.Google ScholarPubMed
Lev-Toaff, A S, Bach, A M, Wechsler, R J. The radiologic and pathologic spectrum of biliary hamartomas. AJR Am J Roentgenol 1995;165:309–13.CrossRefGoogle ScholarPubMed
Mortele, B, Mortele, K, Seynaeve, P. Hepatic bile duct hamartomas (von Meyenburg complexes): MR and MR cholangiography findings. J Comput Assist Tomogr 2002;26:438–43.CrossRefGoogle Scholar
Bruegel, M, Rummeny, E J, Gaa, J. Image of the month. Multiple biliary hamartomas as an incidental finding in a patient with neuroendocrine carcinoma of the pancreas. Gastroenterology 2005;128:259; answer 523.CrossRefGoogle Scholar
Milutinovic, J, Schabel, S I, Ainsworth, S K. Autosomal dominant polycystic kidney disease with liver and pancreatic involvement in early childhood. Am J Kidney Dis 1989;13:340–4.CrossRefGoogle ScholarPubMed
Gabow PA. Autosomal dominant polycystic kidney disease. In: Gardner, K D Jr, Bernstein, J, eds. The cystic kidney. Dordrecht: Kluwer Academic Publishers, 1990:295–326.CrossRefGoogle Scholar
Gabow, P A. Autosomal dominant polycystic kidney disease. N Engl J Med 1993;329:332–42.CrossRefGoogle ScholarPubMed
Gabow, P A, Johnson, A M, Kaehny, W D. Risk factors for the development of hepatic cysts in autosomal dominant polycystic kidney disease. Hepatology 1990;11:1033–7.CrossRefGoogle ScholarPubMed
Mousson, C, Rabec, M, Cercueil, J P. Caroli's disease and autosomal dominant polycystic kidney disease: a rare association?Nephrol Dial Transplant 1997;12:1481–3.CrossRefGoogle ScholarPubMed
Klinkert, J, Koopman, M G, Wolf, H. Pregnancy in a patient with autosomal-dominant polycystic kidney disease and congenital hepatic fibrosis. Eur J Obstet Gynecol Reprod Biol 1998;76:45–7.CrossRefGoogle Scholar
Grunfeld, J P, Albouze, G, Junger, P. Liver changes and complications in adult polycystic kidney disease. Adv Nephrol 1985;14:1.Google ScholarPubMed
Leier, C V, Baker, P B, Kilman, J W. Cardiovascular abnormalities associated with adult polycystic kidney disease. Ann Intern Med 1984;100:683–8.CrossRefGoogle ScholarPubMed
Sutters, M, Germino, G G. Autosomal dominant polycystic kidney disease: molecular genetics and pathophysiology. J Lab Clin Med 2003;141:91–101.CrossRefGoogle ScholarPubMed
Ariza, M, Alvarez, V, Marin, R. A family with a milder form of adult dominant polycystic kidney disease not linked to the PKD1 (16p) or PKD2 (4q) genes. J Med Genet 1997;34:587–9.CrossRefGoogle ScholarPubMed
Consortium, EPKD. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European Polycystic Kidney Disease Consortium. Cell 1994;77:881–94.Google Scholar
Reeders ST. The genetics of renal cystic disease. In: Garder, K D Jr, Bernstein, J, eds. The cystic kidney. Dordrecht: Kluwer Academic Publishers, 1990;117–46.CrossRefGoogle Scholar
Hughes, J, Ward, C J, Peral, B. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 1995;10:151–60.CrossRefGoogle ScholarPubMed
Geng, L, Segal, Y, Peissel, B. Identification and localization of polycystin, the PKD1 gene product. J Clin Invest 1996;98:2674–82.CrossRefGoogle ScholarPubMed
Ibraghimov-Beskrovnaya, O, Dackowski, W R, Foggensteiner, L. Polycystin: in vitro synthesis, in vivo tissue expression, and subcellular localization identifies a large membrane-associated protein. Proc Natl Acad Sci USA 1997;94:6397–402.CrossRefGoogle ScholarPubMed
Ward, C J, Turley, H, Ong, A C. Polycystin, the polycystic kidney disease 1 protein, is expressed by epithelial cells in fetal, adult, and polycystic kidney. Proc Natl Acad Sci USA 1996; 93:1524–8.CrossRefGoogle ScholarPubMed
Kottgen, M, Walz, G. Subcellular localization and trafficking of polycystins. Pflugers Arch 2005;451:286–93.CrossRefGoogle ScholarPubMed
Kimberling, W J, Kumar, S, Gabow, P A. Autosomal dominant polycystic kidney disease: localization of the second gene to chromosome 4q13-q23. Genomics 1993;18:467–72.CrossRefGoogle ScholarPubMed
Veldhuisen, B, Saris, J J, Haij, S. A spectrum of mutations in the second gene for autosomal dominant polycystic kidney disease (PKD2). Am J Hum Genet 1997;61:547–55.CrossRefGoogle Scholar
Schneider, M C, Rodriguez, A M, Nomura, H. A gene similar to PKD1 maps to chromosome 4q22: a candidate gene for PKD2. Genomics 1996;38:1–4.CrossRefGoogle ScholarPubMed
Peters, D J, Spruit, L, Saris, J J. Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nat Genet 1993;5:359–62.CrossRefGoogle ScholarPubMed
Wu, G, D'Agati, V, Cai, Y. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 1998;93:177–88.CrossRefGoogle ScholarPubMed
Mochizuki, T, Wu, G, Hayashi, T. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996;272:1339–42.CrossRefGoogle ScholarPubMed
Al-Bhalal, L, Akhtar, M. Molecular basis of autosomal dominant polycystic kidney disease. Adv Anat Pathol 2005;12:126–33.CrossRefGoogle ScholarPubMed
Yoder, B K, Hou, X, Guay-Woodford, L M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 2002;13:2508–16.CrossRefGoogle ScholarPubMed
Nauli, S M, Zhou, J. Polycystins and mechanosensation in renal and nodal cilia. Bioessays 2004;26:844–56.CrossRefGoogle ScholarPubMed
Berridge, M J, Bootman, M D, Roderick, H L. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4:517–29.CrossRefGoogle ScholarPubMed
Pei, Y. Nature and nurture on phenotypic variability of autosomal dominant polycystic kidney disease. Kidney Int 2005; 67:1630–1.CrossRefGoogle ScholarPubMed
Fain, P R, McFann, K K, Taylor, M R. Modifier genes play a significant role in the phenotypic expression of PKD1. Kidney Int 2005;67:1256–67.CrossRefGoogle ScholarPubMed
Perrone, R D, Grubman, S A, Rogers, L C. Continuous epithelial cell lines from ADPKD liver cysts exhibit characteristics of intrahepatic biliary epithelium. Am J Physiol 1995;269(3 pt 1): G335–45.Google Scholar
Witzleben, C, Steigman, C. Immunohistochemically defined duct element patterns in pediatric liver diseases. Lab Invest 1990;69:8P.Google Scholar
Piccoli DA, Witzleben CL. Disorders of the intrahepatic bile ducts. In: Walker, W A, Durie, R P, Hamilton, J R., eds. Pediatric gastrointestinal disease: pathophysiology, diagnosis, managementPhiladelphia: BC Decker, 1991:1124–40.Google Scholar
Patterson, M, Gonzalez-Vitale, J C, Fagan, C J. Polycystic liver disease. A study of cyst fluid constituents. Hepatology 1982;2:475–8.CrossRefGoogle ScholarPubMed
Everson, G T, Emmett, M, Brown, W R. Functional similarities of hepatic cystic and biliary epithelium: studies of fluid constituents and in vivo secretion in response to secretin. Hepatology 1990;11:557–65.CrossRefGoogle ScholarPubMed
Itai, Y, Ebihara, R, Eguchi, N. Hepatobiliary cysts in patients with autosomal dominant polycystic kidney disease: prevalence and CT findings. AJR Am J Roentgenol 1995;164:339–42.CrossRefGoogle ScholarPubMed
Kida, T, Nakanuma, Y, Terada, T. Cystic dilatation of peribiliary glands in livers with adult polycystic disease and livers with solitary nonparasitic cysts: an autopsy study. Hepatology 1992;16:334–40.CrossRefGoogle Scholar
Desmet, V. Pathogenesis of ductal plate abnormalities. Mayo Clinic Proc 1998;73:80–9.CrossRefGoogle ScholarPubMed
Torra, R, Badenas, C, Darnell, A. [Clinical, genetic and molecular studies on autosomal dominant polycystic kidney disease]. Med Clin (Barc) 1998;110:481–7.Google Scholar
Pirson, Y, Lannoy, N, Peters, D. Isolated polycystic liver disease as a distinct genetic disease, unlinked to polycystic kidney disease 1 and polycystic kidney disease 2. Hepatology 1996;23:249–52.CrossRefGoogle ScholarPubMed
Iglesias, D M, Palmitano, J A, Arrizurieta, E. Isolated polycystic liver disease not linked to polycystic kidney disease 1 and 2. Dig Dis Sci 1999;44:385–8.CrossRefGoogle Scholar
Li, A, Davila, S, Furu, L. Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease. Am J Hum Genet 2003;72:691–703.CrossRefGoogle ScholarPubMed
Drenth, J P, Tahvanainen, E, Morsche, te R H. Abnormal hepatocystin caused by truncating PRKCSH mutations leads to autosomal dominant polycystic liver disease. Hepatology 2004;39:924–31.CrossRefGoogle ScholarPubMed
Tahvanainen, P, Tahvanainen, E, Reijonen, H. Polycystic liver disease is genetically heterogeneous: clinical and linkage studies in eight Finnish families. J Hepatol 2003;38:39–43.CrossRefGoogle ScholarPubMed
Davila, S, Furu, L, Gharavi, A G. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Genet 2004;36:575–7.CrossRefGoogle ScholarPubMed
Qian, Q, Li, A, King, B F. Clinical profile of autosomal dominant polycystic liver disease. Hepatology 2003;37:164–71.CrossRefGoogle ScholarPubMed
Zimmerman, K. Bwitrage zur kenntnis einiger Drusen und epithelien. Arch Mikrosk Anat Entwicklungmech 1898;52:552–706.CrossRefGoogle Scholar
Wheatley, D N. Primary cilia in normal and pathological tissues. Pathobiology 1995;63:222–38.CrossRefGoogle ScholarPubMed
Rosenbaum, J L, Witman, G B. Intraflagellar transport. Nat Rev Mol Cell Biol 2002;3:813–25.CrossRefGoogle ScholarPubMed
Delmas, P, Padilla, F, Osorio, N. Polycystins, calcium signaling, and human diseases. Biochem Biophys Res Commun 2004; 322:1374–83.CrossRefGoogle ScholarPubMed
Montell, C. The latest waves in calcium signaling. Cell 2005; 122:157–63.CrossRefGoogle ScholarPubMed
McGrath, J, Somlo, S, Makova, S. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 2003;114:61–73.CrossRefGoogle ScholarPubMed
Levin, M. Motor protein control of ion flux is an early step in embryonic left-right asymmetry. Bioessays 2003;25:1002–10.CrossRefGoogle ScholarPubMed
Tekotte, H, Davis, I. Intracellular mRNA localization: motors move messages. Trends Genet 2002;18:636–42.CrossRefGoogle ScholarPubMed
Ong, A C, Harris, P C. Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int 2005;67:1234–47.CrossRefGoogle ScholarPubMed
Ward, C J, Yuan, D, Masyuk, T V. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 2003;12:2703–10.CrossRefGoogle ScholarPubMed
Watanabe, J, Asaka, Y, Tanaka, T. Measurement of NADPH-cytochrome P-450 reductase content in rat liver sections by quantitative immunohistochemistry with a video image processor. J Histochem Cytochem 1994;42:1161–7.CrossRefGoogle ScholarPubMed
Ansley, S J, Badano, J L, Blacque, O E. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 2003;425:628–33.CrossRefGoogle ScholarPubMed
Pazour, G J, Dickert, B L, Vucica, Y. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000; 151:709–18.CrossRefGoogle ScholarPubMed
Hou, X, Mrug, M, Yoder, B K. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 2002;109:533–40.CrossRefGoogle ScholarPubMed
Mai, W, Chen, D, Ding, T. Inhibition of Pkhd1 impairs tubulomorphogenesis of cultured IMCD cells. Mol Biol Cell 2005;16:4398–409.CrossRefGoogle ScholarPubMed
Watnick, T, Germino, G. From cilia to cyst. Nat Genet 2003; 34:355–6.CrossRefGoogle Scholar
Ong, A C, Wheatley, D N. Polycystic kidney disease – the ciliary connection. Lancet 2003;361:774–6.CrossRefGoogle ScholarPubMed
Ong, A C, Ward, C J, Butler, R J. Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am J Pathol 1999;154:1721–9.CrossRefGoogle ScholarPubMed
Watnick, T J, Torres, V E, Gandolph, M A. Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol Cell 1998;2:247–51.CrossRefGoogle ScholarPubMed
Nichols, M T, Gidey, E, Matzakos, T. Secretion of cytokines and growth factors into autosomal dominant polycystic kidney disease liver cyst fluid. Hepatology 2004;40:836–46.CrossRefGoogle ScholarPubMed
Nagasawa, Y, Matthiesen, S, Onuchic, L F. Identification and characterization of Pkhd1, the mouse orthologue of the human ARPKD gene. J Am Soc Nephrol 2002;13:2246–58.CrossRefGoogle ScholarPubMed
Edmondson, H. Differential diagnosis of tumors and tumor-like lesions of liver in infancy and childhood. AMA J Dis Child 1956;91:168–86.Google ScholarPubMed
DeMaioribus, C A, Lally, K P, Sim, K. Mesenchymal hamartoma of the liver. A 35-year review. Arch Surg 1990;125:598–600.CrossRefGoogle ScholarPubMed
Stringer, M D, Alizai, N K. Mesenchymal hamartoma of the liver: a systematic review. J Pediatr Surg 2005;40:1681–90.CrossRefGoogle ScholarPubMed
Gornicka, B, Ziarkiewicz-Wroblewska, B, Wroblewski, T. Myoid hamartoma of the liver – a novel variant of hamartoma developing in the hilar region and imitating a malignant liver tumor. Med Sci Monit 2004;10:CS23–6.Google ScholarPubMed
Dehner, L P, Ewing, S L, Summer, H W. Infantile mesenchymal hamartoma of the liver. Histologic and ultrastructural observations. Arch Pathol 1975;99:379–81.Google ScholarPubMed
Lennington, W J, Gray, G F Jr, Page, D L. Mesenchymal hamartoma of liver. A regional ischemic lesion of a sequestered lobe. Am J Dis Child 1993;147:193–6.CrossRefGoogle ScholarPubMed
O'Sullivan, M J, Swanson, P E, Knoll, J. Undifferentiated embryonal sarcoma with unusual features arising within mesenchymal hamartoma of the liver: report of a case and review of the literature. Pediatr Dev Pathol 2001;4:482–9.CrossRefGoogle ScholarPubMed
Lauwers, G Y, Grant, L D, Donnelly, W H. Hepatic undifferentiated (embryonal) sarcoma arising in a mesenchymal hamartoma. Am J Surg Pathol 1997;21:1248–54.CrossRefGoogle Scholar
Stocker, J T, Ishak, K G. Mesenchymal hamartoma of the liver: report of 30 cases and review of the literature. Pediatr Pathol 1983;1:245–67.CrossRefGoogle ScholarPubMed
Cook, J R, Pfeifer, J D, Dehner, L P. Mesenchymal hamartoma of the liver in the adult: association with distinct clinical features and histological changes. Hum Pathol 2002;33:893–8.CrossRefGoogle ScholarPubMed
Ishak KG, Sharp HL. Developmental abnormality and liver disease in childhood. In: MacSween, R N M. Pathology of the liver. 3rd ed. Edinburgh: Churchill Livingstone, 1994:83–122.Google Scholar
Otani, Y, Takayasu, H, Ishimaru, Y. Secretion and expression of epithelial markers supports the biliary origin of solitary nonparasitic cyst of the liver in infancy. J Pediatr Surg 2005;40:e27–30.CrossRefGoogle ScholarPubMed
Lin, C C, Lin, S C, Ko, W C. Adenocarcinoma and infection in a solitary hepatic cyst: a case report. World J Gastroenterol 2005;11:1881–3.CrossRefGoogle Scholar
Raboei, E, Luoma, R. Definitive treatment of congenital liver cyst with alcohol. J Pediatr Surg 2000;35:1138–9.CrossRefGoogle ScholarPubMed
Reichel, S, Alzen, G, Keller, K M. [Congenital, solitary hepatic cyst: observation of the development from birth upon the intervention in the 5th year of life]. Klin Padiatr 2002;214:332–3.CrossRefGoogle Scholar
Friedrich, N. Cyste mit flimmerepithel in der leber. Arch Pathol Anat 1857;11:466–9.CrossRefGoogle Scholar
Kim, S, White, F V, McAlister, W. Ciliated hepatic foregut cyst in a young child. J Pediatr Surg 2005;40:e51–3.CrossRefGoogle Scholar
Vick, D J, Goodman, Z D, Deavers, M T. Ciliated hepatic foregut cyst: a study of six cases and review of the literature. Am J Surg Pathol 1999;23:671–7.CrossRefGoogle ScholarPubMed
Koletsa, T, Tzioufa, V, Michalopoulos, A. Ciliated hepatic foregut cyst communicating with the gallbladder. Virchows Arch 2005;446:200–1.CrossRefGoogle ScholarPubMed
Rodriguez, E, Soler, R, Fernandez, P. MR imagings of ciliated hepatic foregut cyst: an unusual cause of fluid-fluid level within a focal hepatic lesion (2005.4b). Eur Radiol 2005;15:1499–501.Google Scholar
Furlanetto, A, Tos, Dei A P. Squamous cell carcinoma arising in a ciliated hepatic foregut cyst. Virchows Arch 2002;441:296–8.CrossRefGoogle Scholar
Puente, S G, Bannura, G C. Radiological anatomy of the biliary tract. Variations and congenital abnormalities. World J Surg 1983;7:271–6.CrossRefGoogle ScholarPubMed
Hashmonai, M, Kam, I, Schramek, A. The etiology of “white bile” in the biliary tree. J Surg Res 1984;37:479–86.CrossRefGoogle ScholarPubMed
Markle, G B. Agenesis of the common bile duct. Arch Surg 1981;116:350–2.CrossRefGoogle ScholarPubMed
Schwartz, M Z, Hall, R J, Reubner, B. Agenesis of the extrahepatic bile ducts: report of five cases. J Pediatr Surg 1990;25:805–7.CrossRefGoogle ScholarPubMed
Sherlock, S. Diseases of the liver and biliary system. Oxford: Blackwell Scientific Publications, 1989.Google Scholar
Luschka, H. Die Anatomie des Menschlichen Bauches Bd II. Tubingen: Laup und Siebeckle, 1863:248–55.Google Scholar
Sharif, K, Goyet, Ville J. Bile duct of Luschka leading to bile leak after cholecystectomy – revisiting the biliary anatomy. J Pediatr Surg 2003;38:E21–3.CrossRefGoogle ScholarPubMed
Kitami, M, Murakami, G, Suzuki, D. Heterogeneity of subvesical ducts or the ducts of Luschka: a study using drip-infusion cholangiography-computed tomography in patients and cadaver specimens. World J Surg 2005;29:217–23.CrossRefGoogle ScholarPubMed
Boyden, E. The problem of the double ductus choledochus (an interpretation of an accessory bile duct found attached to the pars superior of the duodenum). Anat Rec 1932;55:71–93.CrossRefGoogle Scholar
Lamah, M, Karanjia, N D, Dickson, G H. Anatomical variations of the extrahepatic biliary tree: review of the world literature. Clin Anat 2001;14:167–72.CrossRefGoogle ScholarPubMed
Kodama, T, Iseki, J, Murata, N. Duplication of common bile duct – a case report. Jpn J Surg 1980;10:67–71.CrossRefGoogle ScholarPubMed
Yamashita, K, Oka, Y, Urakami, A. Double common bile duct: a case report and a review of the Japanese literature. Surgery 2002;131:676–81.CrossRefGoogle Scholar
Yamataka, A, Yanai, T, Hosoda, Y. A case of biliary atresia with duplication of the common bile duct. J Pediatr Surg 2001;36:506–7.CrossRefGoogle ScholarPubMed
Casebolt, B T. Duplication of the common bile duct. Case report. Mo Med 1973;70:171–4 passim.Google ScholarPubMed
Neuhauser, E B, Elkin, M, Landing, B. Congenital direct communication between biliary system and respiratory tract. AMA Am J Dis Child 1952;83:654–9.Google ScholarPubMed
Hourigan, J S, Carr, M G, Burton, E M. Congenital bronchobiliary fistula: MRI appearance. Pediatr Radiol 2004;34:348–50.CrossRefGoogle ScholarPubMed
Chan, Y T, Ng, W D, Mak, W P. Congenital bronchobiliary fistula associated with biliary atresia. Br J Surg 1984;71:240–1.CrossRefGoogle ScholarPubMed
DiFiore, J W, Alexander, F. Congenital bronchobiliary fistula in association with right-sided congenital diaphragmatic hernia. J Pediatr Surg 2002;37:1208–9.CrossRefGoogle ScholarPubMed
Weitzman, J J, Cohen, S R, Woods, L O Jr. Congenital bronchobiliary fistula. J Pediatr 1968;73:329–34.CrossRefGoogle ScholarPubMed
Sane, S M, Sieber, W K, Girdany, B R. Congenital bronchobiliary fistula. Surgery 1971;69:599–608.Google ScholarPubMed
Dijkstra, C. Galuitstorting in de buikholte bij een zuigeling. Maandsch Kindergeneesk 1932;1:409–14.Google Scholar
Xanthakos, S A, Yazigi, N A, Ryckman, F C. Spontaneous perforation of the bile duct in infancy: a rare but important cause of irritability and abdominal distension. J Pediatr Gastroenterol Nutr 2003;36:287–91.CrossRefGoogle ScholarPubMed
Alagille D. Cholestasis in the first three months of life. In: Popper, H, Schaffner, F, eds. Progress in liver disease. Vol. 1. New York: Grune and Stratton, 1979:471–85.Google Scholar
Gorelick, F S, Dobbins, J W, Burrell, M. Biliary tract abnormalities in patients with arteriohepatic dysplasia. Dig Dis Sci 1982;27:815–20.CrossRefGoogle ScholarPubMed
Morelli, A, Pelli, M A, Vedovelli, A. Endoscopic retrograde cholangiopancreatography study in Alagille's syndrome: first report. Am J Gastroenterol 1983;78:241–4.Google ScholarPubMed
Krant, S M, Swenson, O. Biliary duct hypoplasia. J Pediatr Surg 1973;8:301–7.CrossRefGoogle ScholarPubMed
Afroudakis, A, Kaplovitz, N. Liver histopathology in chronic common bile duct stenosis due to chronic alcoholic pancreatitis. Hepatology 1981;1:65–72.CrossRefGoogle ScholarPubMed
Sherlock S. The liver in infancy and childhood. In: Sherlock, S, ed. Diseases of the liver and biliary system. 8th ed. Oxford: Blackwell Scientific Publications, 1989:501–22.Google Scholar
Ryckman, F C, Noseworthy, J. Neonatal cholestatic conditions requiring surgical reconstruction. Semin Liver Dis 1987;7:134–54.CrossRefGoogle ScholarPubMed
Okada, T, Sasaki, F, Ueki, S. Postnatal management for prenatally diagnosed choledochal cysts. J Pediatr Surg 2004;39: 1055–8.CrossRefGoogle ScholarPubMed
Wong, A M, Cheung, Y C, Liu, Y H. Prenatal diagnosis of choledochal cyst using magnetic resonance imaging: a case report. World J Gastroenterol 2005;11:5082–3.CrossRefGoogle ScholarPubMed
Lej, Alonso F, Rever, W B, Pessagna, D J. Congenital choledochal cyst, with a report of two and an analysis of 94 cases. Surg Gynecol Obstet 1959;108:1–30.Google Scholar
Hadad, A R, Westbrook, K C, Campbell, G S. Congenital dilatation of the bile ducts. Am J Surg 1976;132:799–804.CrossRefGoogle ScholarPubMed
Longmire, W P, Mandiola, S A, Gordon, H E. Congenital cystic disease of the liver and biliary system. Ann Surg 1971;174:711–24.CrossRefGoogle ScholarPubMed
Rizzo, R J, Szucs, R A, Turner, M A. Congenital abnormalities of the pancreas and biliary tree in adults. Radiographics 1995;15:49–68; quiz 147–8.CrossRefGoogle ScholarPubMed
Tandon, R K, Grewal, H, Anand, A C. Caroli's syndrome: a heterogeneous entity. Am J Gastroenterol 1990;85:170–3.Google ScholarPubMed
Yamaguchi, M. Congenital choledochal cyst. Analysis of 1.433 patients in the Japanese literature. Am J Surg 1980;140:653–7.CrossRefGoogle ScholarPubMed
Chongsrisawat, V, Roekwibunsi, S, Mahayosnond, A. Spontaneous choledochal cyst rupture in a child. Pediatr Surg Int 2004;20:811–12.CrossRefGoogle Scholar
Soreide, K, Korner, H, Havnen, J. Bile duct cysts in adults. Br J Surg 2004;91:1538–48.CrossRefGoogle ScholarPubMed
Lam, A H, Lam, V K. Choledochal cyst with biliary atresia in an infant. Australas Radiol 1987;31:384–5.CrossRefGoogle ScholarPubMed
Joseph, V T. Surgical techniques and long-term results in the treatment of choledochal cyst. J Pediatr Surg 1990;25:782–7.CrossRefGoogle ScholarPubMed
Jordan, P H Jr, Goss, J A Jr, Rosenberg, W R. Some considerations for management of choledochal cysts. Am J Surg 2004; 187:434–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The Cholangiopathies
    • By Valeer J. Desmet, M.D., Ph.D., Professor, Department of Pathology, Katholieke Universiteit Leuven, Leuven, Belgium, Tania A. D. Roskams, M.D., Ph.D., Full Professor, Head of Liver Research Unit, Department of Morphology and Molecular Pathology, Katholieke Universiteit Leuven, Leuven, Belgium; Head of Clinics, Department of Pathology, University Hospital Leuven, Leuven, Belgium
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The Cholangiopathies
    • By Valeer J. Desmet, M.D., Ph.D., Professor, Department of Pathology, Katholieke Universiteit Leuven, Leuven, Belgium, Tania A. D. Roskams, M.D., Ph.D., Full Professor, Head of Liver Research Unit, Department of Morphology and Molecular Pathology, Katholieke Universiteit Leuven, Leuven, Belgium; Head of Clinics, Department of Pathology, University Hospital Leuven, Leuven, Belgium
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The Cholangiopathies
    • By Valeer J. Desmet, M.D., Ph.D., Professor, Department of Pathology, Katholieke Universiteit Leuven, Leuven, Belgium, Tania A. D. Roskams, M.D., Ph.D., Full Professor, Head of Liver Research Unit, Department of Morphology and Molecular Pathology, Katholieke Universiteit Leuven, Leuven, Belgium; Head of Clinics, Department of Pathology, University Hospital Leuven, Leuven, Belgium
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.006
Available formats
×