Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-10T22:31:45.965Z Has data issue: false hasContentIssue false

Section II - Cholestatic Liver Disease

Published online by Cambridge University Press:  19 January 2021

Frederick J. Suchy
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Ronald J. Sokol
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
William F. Balistreri
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Jorge A. Bezerra
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Cara L. Mack
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Benjamin L. Shneider
Affiliation:
Texas Children’s Hospital, Houston
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Pearson, HA. Lectures on the diseases of children by Eli Ives, MD of Yale and New Haven: America’s first academic pediatrician. Pediatrics 1986;77:680–6.Google Scholar
Trauner, M, Meier, PJ, Boyer, JL. Molecular pathogenesis of cholestasis. N Engl J Med 1998;339:1217–27.Google Scholar
Koopen, NR, Muller, M, Vonk, RJ, Zimniak, P, Kuipers, F. Molecular mechanisms of cholestasis: causes and consequences of impaired bile formation. Biochim Biophys Acta 1998;1408:117.Google Scholar
Suchy, FJ. Neonatal cholestasis. Pediatr Rev 2004;25:388–96.Google Scholar
Fawaz, R, Baumann, U, Ekong, U, et al. Guideline for the Evaluation of Cholestatic Jaundice in Infants: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2017;64:154–68.Google Scholar
Sokol, RJ, Shepherd, RW, Superina, R, Bezerra, JA, Robuck, P, Hoofnagle, JH. Screening and outcomes in biliary atresia: summary of a National Institutes of Health workshop. Hepatology 2007;46:566–81.CrossRefGoogle ScholarPubMed
Balistreri, WF, Bezerra, JA. Whatever happened to “neonatal hepatitis”? Clin Liver Dis 2006;10:2753, v.Google Scholar
Dick, MC, Mowat, AP. Hepatitis syndrome in infancy–an epidemiological survey with 10 year follow up. Arch Dis Child 1985;60:512–16.CrossRefGoogle Scholar
Danks, DM, Campbell, PE, Jack, I, Rogers, J, Smith, AL. Studies of the aetiology of neonatal hepatitis and biliary atresia. Arch Dis Child 1977;52:360–7.Google Scholar
Hartley, JL, Davenport, M, Kelly, DA. Biliary atresia. Lancet 2009;374:1704–13.Google Scholar
Hopkins, PC, Yazigi, N, Nylund, CM. Incidence of biliary atresia and timing of hepatoportoenterostomy in the United States. J Pediatr 2017;187:253–7.CrossRefGoogle ScholarPubMed
Bezerra, JA, Balistreri, WF. Cholestatic syndromes of infancy and childhood. Semin Gastrointest Dis 2001;12:5465.Google ScholarPubMed
Torbenson, M, Hart, J, Westerhoff, M, et al. Neonatal giant cell hepatitis: histological and etiological findings. Am J Surg Pathol 2010;34:1498–503.Google Scholar
Jacquemin, E, Lykavieris, P, Chaoui, N, Hadchouel, M, Bernard, O. Transient neonatal cholestasis: origin and outcome. J Pediatr 1998;133:563–7.CrossRefGoogle ScholarPubMed
Emerick, KM, Whitington, PF. Molecular basis of neonatal cholestasis. Pediatr Clin North Am 2002;49:221–35.Google Scholar
Carlton, VE, Pawlikowska, L, Bull, LN. Molecular basis of intrahepatic cholestasis. Ann Med 2004;36:606–17.Google Scholar
Bull, LN, Thompson, RJ. Progressive familial intrahepatic cholestasis. Clin Liver Dis 2018;22:657–69.Google Scholar
Thompson, R, Strautnieks, S. BSEP: function and role in progressive familial intrahepatic cholestasis. Semin Liver Dis 2001;21:545–50.Google Scholar
Yehezkely-Schildkraut, V, Munichor, M, Mandel, H, et al. Nonsyndromic paucity of interlobular bile ducts: report of 10 patients. J Pediatr Gastroenterol Nutr 2003;37:546–9.Google Scholar
Balistreri, WF. Intrahepatic cholestasis. J Pediatr Gastroenterol Nutr 2002;35 (Suppl 1):S1723.Google Scholar
Moyer, V, Freese, DK, Whitington, PF, et al. Guideline for the Evaluation of Cholestatic Jaundice in Infants: Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2004;39:115–28.Google Scholar
Sokol, RJ, Mack, C, Narkewicz, MR, Karrer, FM. Pathogenesis and outcome of biliary atresia: current concepts. J Pediatr Gastroenterol Nutr 2003;37:421.CrossRefGoogle ScholarPubMed
Kamath, BM, Piccoli, DA. Heritable disorders of the bile ducts. Gastroenterol Clin North Am 2003;32:857–75, vi.Google Scholar
Sokol, RJ, Mack, C. Etiopathogenesis of biliary atresia. Semin Liver Dis 2001;21:517–24.CrossRefGoogle ScholarPubMed
Kelly, DA, McKiernan, PJ. Metabolic liver disease in the pediatric patient. Clin Liver Dis 1998;2:130, v.Google Scholar
Goncalves, I, Hermans, D, Chretien, D, et al. Mitochondrial respiratory chain defect: a new etiology for neonatal cholestasis and early liver insufficiency. J Hepatol 1995;23:290–4.Google Scholar
Sokol, RJ, Stall, C. Anthropometric evaluation of children with chronic liver disease. Am J Clin Nutr 1990;52:203–8.Google Scholar
Davenport, M. Biliary atresia. Semin Pediatr Surg 2005;14:42–8.Google Scholar
Butler, AE, Schreiber, RA, Yanchar, N, Emil, S, Laberge, JM. The Canadian Biliary Atresia Registry: Improving the care of Canadian infants with biliary atresia. Paediatr Child Health 2016;21:131–4.Google Scholar
Serinet, MO, Wildhaber, BE, Broue, P, et al. Impact of age at Kasai operation on its results in late childhood and adolescence: a rational basis for biliary atresia screening. Pediatrics 2009;123:1280–6.Google Scholar
Mieli-Vergani, G, Howard, ER, Portman, B, Mowat, AP. Late referral for biliary atresia–missed opportunities for effective surgery. Lancet 1989;1:421–3.Google Scholar
Lee, WS. Pre-admission consultation and late referral in infants with neonatal cholestasis. J Paediatr Child Health 2008;44:5761.Google Scholar
Schreiber, RA, Barker, CC, Roberts, EA, et al. Biliary atresia: the Canadian experience. J Pediatr 2007;151:659–65, 65 e1.Google Scholar
Suchy, FJ. Clinical problems with developmental anomalies of the biliary tract. Semin Gastrointest Dis 2003;14:156–64.Google ScholarPubMed
Suchy, FJ. (1992). Neonatal jaundice and cholestasis. In: Kaplowitz, N. (Ed.), Liver and Biliary Diseases (p. 446). Baltimore, MD: Williams & Wilkins.Google Scholar
Rinaldo, P, Tortorelli, S, Matern, D. Recent developments and new applications of tandem mass spectrometry in newborn screening. Curr Opin Pediatr 2004;16:427–33.Google Scholar
Balistreri, WF, HH, AK, Setchell, KD, Gremse, D, Ryckman, FC, Schroeder, TJ. New methods for assessing liver function in infants and children. Ann Clin Lab Sci 1992;22:162–74.Google Scholar
Rosenthal, P. Assessing liver function and hyperbilirubinemia in the newborn. National Academy of Clinical Biochemistry. Clin Chem 1997;43:228–34.Google Scholar
Maggiore, G, Bernard, O, Hadchouel, M, Lemonnier, A, Alagille, D. Diagnostic value of serum gamma-glutamyl transpeptidase activity in liver diseases in children. J Pediatr Gastroenterol Nutr 1991;12:21–6.Google Scholar
Shneider, BL, Moore, J, Kerkar, N, et al. Initial assessment of the infant with neonatal cholestasis. Is this biliary atresia? PloS One 2017;12:e0176275.Google Scholar
Fitzpatrick, E, Jardine, R, Farrant, P, et al. Predictive value of bile duct dimensions measured by ultrasound in neonates presenting with cholestasis. J Pediatr Gastroenterol Nutr 2010;51:5560.Google Scholar
Nievelstein, RA, Robben, SG, Blickman, JG. Hepatobiliary and pancreatic imaging in children: techniques and an overview of non-neoplastic disease entities. Pediatric Radiology 2011;41:5575.CrossRefGoogle Scholar
Kanegawa, K, Akasaka, Y, Kitamura, E, et al. Sonographic diagnosis of biliary atresia in pediatric patients using the “triangular cord” sign versus gallbladder length and contraction. AJR Am J Roentgenol 2003;181:1387–90.Google Scholar
Kianifar, HR, Tehranian, S, Shojaei, P, et al. Accuracy of hepatobiliary scintigraphy for differentiation of neonatal hepatitis from biliary atresia: systematic review and meta-analysis of the literature. Pediatric Radiology 2013;43:905–19.Google Scholar
Russo, P, Magee, JC, Boitnott, J, et al. Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy. Clin Gastroenterol Hepatol 2011;9(4):357–62.e2.CrossRefGoogle Scholar
Russo, P, Magee, JC, Anders, RA, et al. Key histopathologic features of liver biopsies that distinguish biliary atresia from other causes of infantile cholestasis and their correlation with outcome: a multicenter study. Am J Surg Pathol 2016;40:1601–15.Google Scholar
Feldman, AG, Sokol, RJ. Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics. Nat Rev Gastroenterol Hepatol 2019;16(61):346–60.Google Scholar
Wang, NL, Lu, YL, Zhang, P, et al. A specially designed multi-gene panel facilitates genetic diagnosis in children with intrahepatic cholestasis: simultaneous test of known large insertions/deletions. PloS One 2016;11:e0164058.Google Scholar
Togawa, T, Sugiura, T, Ito, K, et al. Molecular genetic dissection and neonatal/infantile intrahepatic cholestasis using targeted next-generation sequencing. J Pediatr 2016;171:171–7 e4.Google Scholar
Karpen, S, Kamath, B, Alexander, J, et al. Use of a comprehensive 66 gene panel to diagnose the causes of cholestasis in >700 individuals. Hepatology 2017;66(S1):655A Abstract 1213.Google Scholar
Herbst, SM, Schirmer, S, Posovszky, C, et al. Taking the next step forward – Diagnosing inherited infantile cholestatic disorders with next generation sequencing. Mol Cell Probes 2015;29:291–8.Google Scholar
Lien, TH, Chang, MH, Wu, JF, et al. Effects of the infant stool color card screening program on 5-year outcome of biliary atresia in Taiwan. Hepatology 2011;53:202–8.Google Scholar
Franciscovich, A, Vaidya, D, Doyle, J, et al. PoopMD, a mobile health application, accurately identifies infant acholic stools. PloS One 2015;10:e0132270.CrossRefGoogle ScholarPubMed
Lertudomphonwanit, C, Mourya, R, Fei, L, et al. Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia. Sci Transl Med 2017;9:eaan8462. doi: 10.1126/scitranslmed.aan8462Google Scholar
Harpavat, S, Finegold, MJ, Karpen, SJ. Patients with biliary atresia have elevated direct/conjugated bilirubin levels shortly after birth. Pediatrics 2011;128:e1428–33.Google Scholar
Harpavat, S, Garcia-Prats, JA, Shneider, BL. Newborn bilirubin screening for biliary atresia. N Engl J Med 2016;375:605–6.Google Scholar
Harpavat, S, Ramraj, R, Finegold, MJ, et al. Newborn direct or conjugated bilirubin measurements as a potential screen for biliary atresia. J Pediatr Gastroenterol Nutr 2016;62:799803.Google Scholar

References

Shneider, BL, Moore, J, Kerkar, N, Magee, JC, Ye, W, Karpen, SJ, Kamath, BM, et al. Initial assessment of the infant with neonatal cholestasis-Is this biliary atresia? PLoS One 2017;12:e0176275.Google Scholar
Feldman, AG, Sokol, RJ. Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics. Nat Rev Gastroenterol Hepatol 2019;16:346–60.Google Scholar
Lane, E, Murray, KF. cholestasis, Neonatal. Pediatr Clin North Am 2017;64:621–39.CrossRefGoogle Scholar
Squires, JE, McKiernan, P. Molecular mechanisms in pediatric cholestasis. Gastroenterol Clin North Am 2018;47:921–37.Google Scholar
Sticova, E, Jirsa, M, Pawlowska, J. New insights in genetic cholestasis: from molecular mechanisms to clinical implications. Can J Gastroenterol Hepatol 2018;2018:2313675.Google Scholar
Li, Y, Lu, LG. Therapeutic roles of bile acid signaling in chronic liver diseases. J Clin Transl Hepatol 2018;6:425–30.Google Scholar
Jones, H, Alpini, G, Francis, H. Bile acid signaling and biliary functions. Acta Pharm Sin B 2015;5:123–8.Google Scholar
Lazaridis, KN, LaRusso, NF. Primary sclerosing cholangitis. N Engl J Med 2016;375:2501–2.Google Scholar
Deneau, M, Perito, E, Ricciuto, A, Gupta, N, Kamath, BM, Palle, S, Vitola, B, et al. Ursodeoxycholic acid therapy in pediatric primary sclerosing cholangitis: predictors of gamma glutamyltransferase normalization and favorable clinical course. J Pediatr 2019;209:92–6.Google Scholar
Cheng, K, Ashby, D, Smyth, RL. Ursodeoxycholic acid for cystic fibrosis-related liver disease. Cochrane Database Syst Rev 2017;9:CD000222.Google ScholarPubMed
Boelle, PY, Debray, D, Guillot, L, Clement, A, Corvol, H, French CF Modifier Gene Study Investigators. Cystic fibrosis liver disease: outcomes and risk factors in a large cohort of French patients. Hepatology 2019;69:1648–56.Google Scholar
Balistreri, WF. Bile acid therapy in pediatric hepatobiliary disease: the role of ursodeoxycholic acid. J Pediatr Gastroenterol Nutr 1997;24:573–89.CrossRefGoogle ScholarPubMed
Jacquemin, E, Hermans, D, Myara, A, Habes, D, Debray, D, Hadchouel, M, Sokal, EM, et al. Ursodeoxycholic acid therapy in pediatric patients with progressive familial intrahepatic cholestasis. Hepatology 1997;25:519–23.Google Scholar
Heubi, JE, Setchell, KD, Jha, P, Buckley, D, Zhang, W, Rosenthal, P, Potter, C, et al. Treatment of bile acid amidation defects with glycocholic acid. Hepatology 2015;61:268–74.Google Scholar
Ruutu, T, Eriksson, B, Remes, K, Juvonen, E, Volin, L, Remberger, M, Parkkali, T, et al. Ursodeoxycholic acid for the prevention of hepatic complications in allogeneic stem cell transplantation. Blood 2002;100:1977–83.Google Scholar
Bezerra, JA, Spino, C, Magee, JC, Shneider, BL, Rosenthal, P, Wang, KS, Erlichman, J, et al. Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: the START randomized clinical trial. JAMA 2014;311:1750–9.Google Scholar
Chiang, JYL, Ferrell, JM. Bile acids as metabolic regulators and nutrient sensors. Annu Rev Nutr 2019;39:175200.Google Scholar
Gitto, S, Guarneri, V, Sartini, A, Andreone, P. The use of obeticholic acid for the management of non-viral liver disease: current clinical practice and future perspectives. Expert Rev Gastroenterol Hepatol 2018;12:165–71.Google Scholar
Koyama, Y, Brenner, DA. Liver inflammation and fibrosis. J Clin Invest 2017;127:5564.Google Scholar
Koyama, Y, Xu, J, Liu, X, Brenner, DA. New developments on the treatment of liver fibrosis. Dig Dis 2016;34:589–96.Google Scholar
Bergasa, NV. The itch of liver disease. Semin Cutan Med Surg 2011;30:93–8.Google Scholar
Thebaut, A, Debray, D, Gonzales, E. An update on the physiopathology and therapeutic management of cholestatic pruritus in children. Clin Res Hepatol Gastroenterol 2018;42:103–9.Google Scholar
Hegade, VS, Bolier, R, Oude Elferink, RP, Beuers, U, Kendrick, S, Jones, DE. A systematic approach to the management of cholestatic pruritus in primary biliary cirrhosis. Frontline Gastroenterol 2016;7:158–66.Google Scholar
Kremer, AE, van Dijk, R, Leckie, P, Schaap, FG, Kuiper, EM, Mettang, T, Reiners, KS, et al. Serum autotaxin is increased in pruritus of cholestasis, but not of other origin, and responds to therapeutic interventions. Hepatology 2012;56:13911400.Google Scholar
Meixiong, J, Vasavda, C, Green, D, Zheng, Q, Qi, L, Kwatra, SG, Hamilton, JP, et al. Identification of a bilirubin receptor that may mediate a component of cholestatic itch. Elife 2019;8:e44116.Google Scholar
De Vloo, C, Nevens, F. Cholestatic pruritus: an update. Acta Gastroenterol Belg 2019;82:7582.Google Scholar
Yerushalmi, BSR, Narkewicz, MR, Smith, D, Karrer, FM. Use of rifampin for severe pruritus in children with chronic cholestasis. J Pediatr Gastroenterol Nutr 1999;29(4):442–7.Google Scholar
Wolfhagen, FH, Sternieri, E, Hop, WC, Vitale, G, Bertolotti, M, Van Buuren, HR. Oral naltrexone treatment for cholestatic pruritus: a double-blind, placebo-controlled study. Gastroenterology 1997;113:1264–9.Google Scholar
Shneider, BL, Spino, C, Kamath, BM, Magee, JC, Bass, LM, Setchell, KD, Miethke, A, et al. Placebo-controlled randomized trial of an intestinal bile salt transport inhibitor for pruritus in Alagille syndrome. Hepatol Commun 2018;2:1184–98.Google Scholar
Hegade, VS, Kendrick, SF, Dobbins, RL, Miller, SR, Thompson, D, Richards, D, Storey, J, et al. Effect of ileal bile acid transporter inhibitor GSK2330672 on pruritus in primary biliary cholangitis: a double-blind, randomised, placebo-controlled, crossover, phase 2a study. Lancet 2017;389:1114–23.Google Scholar
Bull, LN, Pawlikowska, L, Strautnieks, S, Jankowska, I, Czubkowski, P, Dodge, JL, Emerick, K, et al. Outcomes of surgical management of familial intrahepatic cholestasis 1 and bile salt export protein deficiencies. Hepatol Commun 2018;2:515–28.Google Scholar
Hegade, VS, Krawczyk, M, Kremer, AE, Kuczka, J, Gaouar, F, Kuiper, EM, van Buuren, HR, et al. The safety and efficacy of nasobiliary drainage in the treatment of refractory cholestatic pruritus: a multicentre European study. Aliment Pharmacol Ther 2016;43:294302.Google Scholar
Austin, PW, Gerber, L, Karrar, AK. Fatigue in chronic liver disease: exploring the role of the autonomic nervous system. Liver Int 2015;35:1489–91.Google Scholar
Dyson, JK, Elsharkawy, AM, Lamb, CA, Al-Rifai, A, Newton, JL, Jones, DE, Hudson, M. Fatigue in primary sclerosing cholangitis is associated with sympathetic over-activity and increased cardiac output. Liver Int 2015;35:1633–41.Google Scholar
Black, DD. Chronic cholestasis and dyslipidemia: what is the cardiovascular risk? J Pediatr 2005;146:306–7.Google Scholar
Longo, M, Crosignani, A, Podda, M. Hyperlipidemia in chronic cholestatic liver disease. Curr Treat Options Gastroenterol 2001;4:111–14.Google Scholar
Yu, RWY, Xiao, Y, Mo, L, Liu, A, Li, D, Ge, T, Yu, G, Zhang, T. Prevalence of malnutrition and risk of undernutrition in hospitalised children with liver disease. J Nutr Sci 2017;6:e55:15.CrossRefGoogle ScholarPubMed
Chin, SE, Shepherd, RW, Thomas, BJ, Cleghorn, GJ, Patrick, MK, Wilcox, JA, Ong, TH, et al. The nature of malnutrition in children with end-stage liver disease awaiting orthotopic liver transplantation. Am J Clin Nutr 1992;56:164–8.Google Scholar
Bucuvalas, JC, Cutfield, W, Horn, J, Sperling, MA, Heubi, JE, Campaigne, B, Chernausek, SD. Resistance to the growth-promoting and metabolic effects of growth hormone in children with chronic liver disease. J Pediatr 1990;117:397402.Google Scholar
Sokol, RJ, Stall, C. Anthropometric evaluation of children with chronic liver disease. Am J Clin Nutr 1990;52:203–8.CrossRefGoogle ScholarPubMed
Hogler, W, Baumann, U, Kelly, D. Growth and bone health in chronic liver disease and following liver transplantation in children. Pediatr Endocrinol Rev 2010;7:266–74.Google Scholar
Loomes, KM, Spino, C, Goodrich, NP, Hangartner, TN, Marker, AE, Heubi, JE, Kamath, BM, et al. Bone density in children with chronic liver disease correlates with growth and cholestasis. Hepatology 2019;69:245–57.Google Scholar
Mandato, C, Di Nuzzi, A, Vajro, P. Nutrition and liver disease. Nutrients 2017;10(1):9.Google Scholar
DeRusso, P, Ye, W, Shepherd, R, Haber, BA, Shneider, BL, Whitington, PF, Schwarz, KB, Bezerra, JA, et al. Growth failure and outcomes in infants with biliary atresia: a report from the Biliary Atresia Research Consortium. Hepatology 2007;46:1632–8.Google Scholar
Sullivan, JS, Sundaram, SS, Pan, Z, Sokol, RJ. Parenteral nutrition supplementation in biliary atresia patients listed for liver transplantation. Liver Transpl 2012;18:120–8.Google Scholar
Nightingale, S, Ng, VL. Optimizing nutritional management in children with chronic liver disease. Pediatr Clin North Am 2009;56:1161–83.Google Scholar
Yang, CH, Perumpail, BJ, Yoo, ER, Ahmed, A, Kerner, JA Jr. Nutritional needs and support for children with chronic liver disease. Nutrients 2017;9(10):1127.Google Scholar
Enguita, M, Razquin, N, Pamplona, R, Quiroga, J, Prieto, J, Fortes, P. The cirrhotic liver is depleted of docosahexaenoic acid (DHA), a key modulator of NF-kappaB and TGFbeta pathways in hepatic stellate cells. Cell Death Dis 2019;10:14.CrossRefGoogle ScholarPubMed
Sokol, RJ. Fat-soluble vitamins and their importance in patients with cholestatic liver diseases. Gastroenterol Clin North Am 1994;23:673705.Google Scholar
Shen, YM, Wu, JF, Hsu, HY, Ni, YH, Chang, MH, Liu, YW, Lai, HS, et al. Oral absorbable fat-soluble vitamin formulation in pediatric patients with cholestasis. J Pediatr Gastroenterol Nutr 2012;55:587–91.Google Scholar
Shneider, BL, Magee, JC, Bezerra, JA, Haber, B, Karpen, SJ, Raghunathan, T, Rosenthal, P, et al. Efficacy of fat-soluble vitamin supplementation in infants with biliary atresia. Pediatrics 2012;130:e607–14.Google Scholar
Feranchak, AP, Gralla, J, King, R, Ramirez, RO, Corkill, M, Narkewicz, MR, Sokol, RJ. Comparison of indices of vitamin A status in children with chronic liver disease. Hepatology 2005;42:782–92.Google Scholar
Sathe, MN, Patel, AS. Update in pediatrics: focus on fat-soluble vitamins. Nutr Clin Pract 2010;25:340–6.Google Scholar
Sokol, RJ. Assessing vitamin E status in childhood cholestasis. J Pediatr Gastroenterol Nutr 1987;6:1013.Google Scholar
Sokol, RJ, Heubi, JE, Butler-Simon, N, McClung, HJ, Lilly, JR, Silverman, A. Treatment of vitamin E deficiency during chronic childhood cholestasis with oral d-alpha-tocopheryl polyethylene glycol-1000 succinate. Gastroenterology 1987;93:975–85.Google Scholar
Sokol, RJ. A new old treatment for vitamin E deficiency in cholestasis. J Pediatr Gastroenterol Nutr 2016;63:577–8.Google Scholar
Sokol, RJ, Butler-Simon, N, Conner, C, Heubi, JE, Sinatra, FR, Suchy, FJ, Heyman, MB, et al. Multicenter trial of d-alpha-tocopheryl polyethylene glycol 1000 succinate for treatment of vitamin E deficiency in children with chronic cholestasis. Gastroenterology 1993;104:1727–35.Google Scholar
Haney, S, Harper, J, Truemper, E. Progressive familial intrahepatic cholestasis presenting with an intracranial bleed and mimicking abusive head trauma. WMJ 2019;118:47–8.Google Scholar
Yanofsky, RA, Jackson, VG, Lilly, JR, Stellin, G, Klingensmith, WC, 3rd, Hathaway, WE. The multiple coagulopathies of biliary atresia. Am J Hematol 1984;16:171–80.Google Scholar
Heubi, JE, Higgins, JV, Argao, EA, Sierra, RI, Specker, BL. The role of magnesium in the pathogenesis of bone disease in childhood cholestatic liver disease: a preliminary report. J Pediatr Gastroenterol Nutr 1997;25:301–6.Google Scholar
Mattar, RH, Azevedo, RA, Speridiao, PG, Fagundes Neto, U, Morais, MB. Nutritional status and intestinal iron absorption in children with chronic hepatic disease with and without cholestasis. J Pediatr 2005;81:317–24.Google Scholar
Gold, A, Rogers, A, Cruchley, E, Rankin, S, Parmar, A, Kamath, BM, Avitzur, Y, et al. Assessment of school readiness in chronic cholestatic liver disease: a pilot study examining children with and without liver transplantation. Can J Gastroenterol Hepatol 2017;2017:9873945.Google Scholar
Ng, VL, Sorensen, LG, Alonso, EM, Fredericks, EM, Ye, W, Moore, J, Karpen, SJ, et al. Neurodevelopmental outcome of young children with biliary atresia and native liver: results from the ChiLDReN Study. J Pediatr 2018;196:139–47 e133.Google Scholar
Feldman, AG, Kempe, A, Beaty, BL, Sundaram, SS. Studies of Pediatric Liver Transplantation Research Group. Immunization practices among pediatric transplant hepatologists. Pediatr Transplant 2016;20:1038–44.Google Scholar

References

Hamilton, JR, Sass-Kortsak, A. Jaundice associated with severe bacterial infection in young infants. J Pediatr 1963;63:121–32.Google Scholar
Zimmerman, HJ, Fang, M, Utili, R, et al. Jaundice due to bacterial infection. Gastroenterology 1979;77:362–74.Google Scholar
Andres, JM, Walker, WA. Effect of Escherichia coli endotoxin on the developing rat liver. I. Giant cell induction and disruption in protein metabolism. Pediatr Res 1979;13:1290–3.Google Scholar
Bolder, U, Ton-Nu, HT, Schteingart, CD, et al. Hepatocyte transport of bile acids and organic anions in endotoxemic rats: impaired uptake and secretion. Gastroenterology 1997;112:214–25.Google Scholar
Borges, MAG, DeBrito, T, Borges, JMG. Hepatic manifestations in bacterial infections of infants and children. Clinical features, biochemical data and morphologic hepatic changes. Acta Hepatogastroenterol 1972;19:328–44.Google Scholar
Lam, HS, Li, AM, Chu, WCW, et al. Mal-positioned umbilical venous catheter causing liver abscess in a preterm infant. Biol Neonate 2005;88:54–6.Google Scholar
Garcia, FJ, Nager, AL. Jaundice as an early diagnostic sign of urinary tract infection in infancy. Pediatrics 2002;109:846–51.Google Scholar
Hoarau, C, Ranivoharimina, V, Chavet- Queru, MS, et al. Congenital syphilis: update and perspectives. Sante 1999;9:3845.Google Scholar
Herman, TE. Extensive hepatic calcification secondary to fulminant neonatal syphilitic hepatitis. Pediatr Radiol 1995;25:120–2.Google Scholar
Kumar, R, Gupta, N, Sabharwal, A. Congenital tuberculosis. Indian J Pediatr 2005;72:631–3.Google Scholar
Montoya, JG, Rosso, F. Diagnosis and management of toxoplasmosis. Clin Perinatol 2005;32:705–26.Google Scholar
Desmonts, G, Couvreur, J. Congenital toxoplasmosis. A prospective study of 378 pregnancies. N Engl J Med 1974;290:1110–16.Google Scholar
Schmidt, DR, Hogh, B, Andersen, O, et al. Treatment of infants with congenital toxoplasmosis: tolerability and plasma concentrations of sulfadiazine and pyrimethamine. Eur J Pediatr 2005;165:1925.Google Scholar
Nicol, KK, Geisinger, KR. Congenital toxoplasmosis: diagnosis by exfoliative cytology. Diagn Cytopathol 1998;18:357–61.Google Scholar
Bellomo-Brandao, MA, Andrade, PD, Costa, SC, et al. Cytomegalovirus frequency in neonatal intrahepatic cholestasis determined by serology, histology, immunohistochemistry and PCR. World J Gastroenterol 2009;15:3411–16.Google Scholar
Laifer, SA, Ehrlich, GD, Huff, DS, et al. Congenital cytomegalovirus infection in offspring of liver transplant recipients. Clin Infect Dis 1995;20:52–5.Google Scholar
Zuppan, CW, Bui, HD, Grill, BG. Diffuse hepatic fibrosis in congenital cytomegalovirus infection. J Pediatr Gastroenterol Nutr 1986;5:489–91.Google Scholar
Watkins, JB, Sunaryo, FP, Berezin, SH. Hepatic manifestations of congenital and perinatal disease. Clin Perinatol 1981;8:467–80.Google Scholar
Weller, TH, Hanshaw, JB. Virologic and clinical observations on cytomegalic inclusion disease. N Engl J Med 1962;266:1233–44.Google Scholar
Snover, DC, Horwitz, CA. Liver disease in cytomegalovirus mononucleosis: a light microscopical and immunoperoxidase study of six cases. Hepatology 1984;3: 408–12.Google Scholar
Greenfield, C, Sinickas, V, Harrison, LC. Detection of cytomegalovirus by the polymerase chain reaction. A simple, rapid and sensitive non-radioactive method. Med J Aust 1991;154:383–5.Google Scholar
Berenberg, W, Nankervis, G. Long-term follow-up of cytomegalic inclusion disease of infancy. Pediatrics 1970;46:403–10.Google Scholar
Dressler, S, Linder, D. Noncirrhotic portal fibrosis following neonatal cytomegalic inclusion disease. J Pediatr 1978;93:887–8.Google Scholar
Thompson, C, Whitley, R. Neonatal herpes simplex virus infections: where are we now? World J Gastroenterol 2009;15:3411–16.Google Scholar
Twagira, M, Hadzic, N, Smith, M, et al. Disseminated neonatal herpes simplex virus (HSV) type 2 infection diagnosed by HSV DNA detection in blood and successfully managed by liver transplantation. Eur J Pediatr 2004;163:166–9.Google Scholar
Nakamura, Y, Yamamoto, S, Tanaka, S, et al. Herpes simplex viral infection in human neonates: an immunohistochemical and electron microscopic study. Human Pathol 1985;16:1091–7.Google Scholar
Raga, J, Chrystal, V, Coovadia, HM. Usefulness of clinical features and liver biopsy in diagnosis of disseminated herpes simplex infection. Arch Dis Child 1984;59:820–4.Google Scholar
Egawa, H, Inomata, Y, Nakayama, S, et al. Fulminant hepatic failure secondary to herpes simplex virus infection in a neonate: a case report of successful treatment with liver transplantation and perioperative acyclovir. Liver Transplant Surg 1998;4:513–15.Google Scholar
Schluter, WW, Reef, SE, Redd, SC, et al. Changing epidemiology of congenital rubella syndrome in the United States. J Infect Dis 1998;178:636–41.Google Scholar
Monif, GRG, Asofsky, R, Sever, JL. Hepatic dysfunction in the congenital rubella syndrome. BMJ 1966;1:1086–8.Google Scholar
Strauss, L, Bernstein, J. Neonatal hepatitis in congenital rubella. Arch Pathol 1968;86:317–27.Google Scholar
Duff, P. Hepatitis in pregnancy. Semin Perinatol 1998;22:277–83.Google Scholar
Noble, RC, Kane, MA, Reeves, SA, et al. Posttransfusion hepatitis A in a neonatal intensive care unit. JAMA 1984;252:2711–15.Google Scholar
Renge, RL, Dani, VS, Chitambar, SD, Arankalle, VA. Vertical transmission of hepatitis A. Indian J Pediatr 2002;69:535–6.Google Scholar
Leikin, E, Lysikiewicz, A, Garry, D, Tejani, N. Intrauterine transmission of hepatitis A virus. Obstet Gynecol 1996;88:690–1.Google Scholar
Poland, GA, Jacobson, RM. Prevention of hepatitis B with the hepatitis B vaccine. N Eng J Med 2004;351:2832–8.Google Scholar
Tang, JR, Hsu, HY, Lin, HH, et al. Hepatitis B surface antigenemia at birth: a long-term follow-up study. J Pediatr 1998;133:374–7.Google Scholar
Suskind, DL, Rosenthal, P. Chronic viral hepatitis. Adolesc Med Clin 2004;15:145–58.Google Scholar
Granovsky, MO, Minkoff, HL, Tess, BH, et al. Hepatitis C virus infection in the mothers and infants cohort study. Pediatrics 1998;102:355–9.Google Scholar
Kumar, RM, Shahul, S. Role of breast-feeding in transmission of hepatitis C virus to infants of HCV-infected mothers. J Hepatol 1998;29:191–7.Google Scholar
Chang, MH. Chronic hepatitis virus infection in children. J Gastroenterol Hepatol 1998;13:541–8.Google Scholar
Realdi, G, Alberti, A, Rugge, M, et al. Long-term follow-up of acute and chronic non-A, non-B post-transfusion hepatitis: evidence of progression to liver cirrhosis. Gut 1982;23:270–5.Google Scholar
Hasan, F, Jeffers, LJ, De Medina, M, et al. Hepatitis-C associated hepatocellular carcinoma. Hepatology 1990;12:589–91.Google Scholar
McHutchison, JG, Gordon, SC, Schiff, ER, et al. Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. N Engl J Med 1998;339:1485–92.Google ScholarPubMed
Fried, MW, Shiffman, ML, Reddy, KR, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 2002;347:975–82.Google Scholar
Gonzalez-Peralta, RP. Treatment of chronic hepatitis C in children. Pediatr Transplant 2004;8:639–43.Google Scholar
Bortolotti, F, Iorio, R, Nebbia, G, et al. Interferon treatment in children with chronic hepatitis C: long-lasting remission in responders, and risk for disease progression in non-responders. Dig Liver Dis 2005;37:336–41.Google Scholar
Schwarz, KB, Gonzalez-Peralta, RP, Murray, KF, et al. The combination of ribavirin and peginterferon is superior to peginterferon and placebo for children and adolescents with chronic hepatitis C. Gastroenterology 2011;140:450–8.Google Scholar
Terrault, NA, Lok, ASF, McMahon, BJ, chang, KM, Hwang, JP, Jonas, MM, Brown, RS Jr., et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018;67:1560–99.Google Scholar
Chen, HL, Chang, MH, Lin, HH, et al. Antibodies to E2 protein of hepatitis G virus in children: different responses according to age at infection. J Pediatr 1998;133:382–5.Google Scholar
Zanetti, AR, Tanzi, E, Romano, L, et al. Multicenter trial on mother-to-infant transmission of GBV-C virus. The Lombardy Study Group on Vertical/Perinatal Hepatitis Viruses Transmission. J Med Virol 1998;54:107–12.Google Scholar
Woelfle, J, Berg, T, Keller, KM, et al. Persistent hepatitis G virus infection after neonatal transfusion. J Pediatr Gastroenterol Nutr 1998;26:402–7.Google Scholar
Naoumov, NV, Petrova, EP, Thomas, MG, et al. Presence of a newly described human DNA virus (TTV) in patients with liver disease. Lancet 1998;352:195–7.Google Scholar
Okamoto, H, Akahane, Y, Ukita, M, et al. Fecal excretion of a nonenveloped DNA virus (TTV) associated with posttransfusion non-A-G hepatitis. J Med Virol 1998;56:128–32.Google Scholar
Koidl, C, Michael, B, Berg, J, et al. Detection of transfusion transmitted virus DNA by real-time PCR. J Clin Virol 2004;29:277–81.Google Scholar
Abzug, MJ. Prognosis for neonates with enterovirus hepatitis and coagulopathy. Pediatr Infect Dis J 2001;20:758–63.Google ScholarPubMed
Kawashima, H, Ryou, S, Nishimata, S, et al. Enteroviral hepatitis in children. Pediatr Int 2004;46:130–4.Google Scholar
Abzug, MJ. Presentation, diagnosis, and management of enterovirus infections in neonates. Paediatr Drugs 2004;6:110.Google Scholar
Pardi, DS, Romero, Y, Mertz, LE, et al. Hepatitis-associated aplastic anemia and acute parvovirus B19 infection: a report of two cases and a review of the literature. Am J Gastroenterol 1998;93:468–70.Google Scholar
Granot, E, Miskin, H, Aker, M. Monoclonal anti-CD52 antibodies: a potential mode of therapy for parvovirus B19 hepatitis. Transplant Proc 2001;33:2151–3.Google Scholar
Tajiri, H, Tanaka-Taya, K, Ozaki, Y, et al. Chronic hepatitis in an infant, in association with human herpesvirus-6 infection. J Pediatr 1997;131:473–5.Google Scholar
Landing, BH. Considerations of the pathogenesis of neonatal hepatitis, biliary atresia and choledochal cyst: the concept of infantile obstructive cholangiopathy. Prog Pediatr Surg 1974;4:113–39.Google Scholar
Steele, MI, Marshall, CM, Lloyd, RE, et al. Reovirus 3 not detected by reverse transcriptase-mediated polymerase chain reaction analysis of preserved tissue from infants with cholestatic liver disease. Hepatology 1995;21:697702.Google Scholar
Tyler, KL, Sokol, RJ, Oberhaus, SM, et al. Detection of reovirus RNA in hepatobiliary tissues from patients with extrahepatic biliary atresia and choledochal cysts. Hepatology 1998;27:1475–82.Google Scholar
Phillips, MJ, Blendis, LM, Poucell, S, et al. Syncytial giant-cell hepatitis: sporadic hepatitis with distinctive pathological features, a severe clinical course, and paramyxoviral features. N Engl J Med 1991;324:455–60.Google Scholar
Kahn, E, Greco, MA, Daum, F, et al. Hepatic pathology in pediatric acquired immunodeficiency syndrome. Human Pathol 1991;22:1111–19.Google Scholar
Poles, MA, Dieterich, DT, Schwarz, ED, et al. Liver biopsy findings in 501 patients infected with human immunodeficiency virus (HIV). J AIDS Hum Retrovirol 1996;11:170–7.Google Scholar
Dworsky, M, Whitley, R, Alford, C. Herpes zoster in early infancy. Am J Dis Child 1980;134:618–19.Google Scholar
Costello, A, Dua, T, Duran, P, Gulmezoglu, M, Oladapo, OT, Perea, W, Pires, J, et al. Defining the syndrome associated with congenital Zika virus infection. Bull World Health Organ 2016;94:406–6A.Google Scholar
Rice, ME, Galang, RR, Roth, NM, Ellington, SR, Moore, CA, Valencia-Prado, M, Ellis, EM, et al. Vital signs: Zika-associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection – U.S. Territories and Freely Associated States, 2018. MMWR Morb Mortal Wkly Rep 2018;67:858–67.Google Scholar
Moore, CA, Staples, JE, Dobyns, WB, Pessoa, A, Ventura, CV, Fonseca, EB, Ribeiro, EM, et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr 2017;171:288–95.Google Scholar
Wu, Y, Cui, X, Wu, N, Song, R, Yang, W, Zhang, W, Fan, D, et al. A unique case of human Zika virus infection in association with severe liver injury and coagulation disorders. Sci Rep 2017;7:11393.Google Scholar
Adebanjo, T, Godfred-Cato, S, Viens, L, Fischer, M, Staples, JE, Kuhnert-Tallman, W, Walke, H, et al. Update: Interim Guidance for the Diagnosis, Evaluation, and Management of Infants with Possible Congenital Zika Virus Infection – United States, October 2017. MMWR Morb Mortal Wkly Rep 2017;66:1089–99.Google Scholar
Fleming-Dutra, KE, Nelson, JM, Fischer, M, Staples, JE, Karwowski, MP, Mead, P, Villanueva, J, et al. Update: Interim Guidelines for Health Care Providers Caring for Infants and Children with Possible Zika Virus Infection–United States, February 2016. MMWR Morb Mortal Wkly Rep 2016;65:182–7.Google Scholar
Laxer, RM, Roberts, EA, Gross, KR, et al. Liver disease in neonatal lupus erythematosus. J Pediatr 1990;116:238–42.Google Scholar
Lee, LA, Sokol, RJ, Buyon, JP. Hepatobiliary disease in neonatal lupus: prevalence and clinical characteristics in cases enrolled in a national registry. Pediatrics 2002;109:E11.Google Scholar
Alpert, LI, Strauss, L, Hirschhorn, K. Neonatal hepatitis and biliary atresia associated with trisomy 17–18 syndrome. N Engl J Med 1969;280:1620.Google Scholar
Schwab, M, Niemeyer, C, Schwarzer, U. Down syndrome, transient myeloproliferative disorder, and infantile liver fibrosis. Med Pediatr Oncol 1998;31:159–65.Google Scholar
Pratt, DS. Cholestasis and cholestatic syndromes. Curr Opin Gastroenterol 2005;21:270–4.Google Scholar
van Mil, SW, Houwen, RH, Klomp, LW. Genetics of familial intrahepatic cholestasis syndromes. J Med Genet 2005;42:449–63.Google Scholar
Krantz, ID, Piccoli, DA, Spinner, NB. Alagille syndrome. J Med Genet 1997;34:152–7.Google Scholar
Bull, LN, van Eijk, MJ, Pawlikowska, L, et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet 1998;18:219–24.Google Scholar
Vivarelli, R, Grosso, S, Cioni, M, et al. Pseudo-TORCH syndrome or Baraitser–Reardon syndrome: diagnostic criteria. Brain Dev 2001;23:1823.Google Scholar
Sanchis, A, Cervero, L, Bataller, A, et al. Genetic syndromes mimic congenital infections. J Pediatr 2005;146:701–5.Google Scholar
Knoblauch, H, Tyennstedt, C, Brueck, W, et al. Two brothers with findings resembling congenital intrauterine infection-like syndrome (pseudo-TORCH syndrome). Am J Med Genet A 2003;120:261–5.Google Scholar
Hadzic, N, Portmann, B, Lewis, I, Mieli-Vergani, G. Coombs positive giant cell hepatitis: a new feature of Evans’ syndrome. Arch Dis Child 1998;78:397–8.Google Scholar
Akylidiz, M, Karasu, Z, Arikan, C, et al. Successful liver transplantation for giant cell hepatitis and Coombs-positive haemolytic anemia: a case report. Pediatr Transplant 2005;9:630–3.Google Scholar
Balistreri, WF, Grand, R, Hoofnagle, JH, et al. Biliary atresia: current concepts and research directions. Summary of a symposium. Hepatology 1996;23:1682–92.Google Scholar
Bates, MD, Bucuvalas, JC, Alonso, MH, et al. Biliary atresia: pathogenesis and treatment. Semin Liver Dis 1998;18:281–93.Google Scholar
Tazawa, Y, Abukawa, D, Maisawa, S, et al. Idiopathic neonatal hepatitis presenting as neonatal hepatic siderosis and steatosis. Dig Dis Sci 1998;43:392–6.CrossRefGoogle ScholarPubMed
Shet, TM, Kandalkar, BM, Vora, IM. Neonatal hepatitis: an autopsy study of 14 cases. Indian J Pathol Microbiol 1998;41:7784.Google Scholar
Nishinomiya, F, Abukawa, D, Takada, G, et al. Relationships between clinical and histological profiles of non-familial idiopathic neonatal hepatitis. Acta Paediatr Jpn 1996;38:242–7.Google Scholar
Ruebner, B, Thaler, MM (1979). Giant-cell transformation in infantile liver disease. In Javitt, NB (Ed.) Neonatal Hepatitis and Biliary Atresia (pp. 299314).Bethesda, MD: US Department of Health, Education and Welfare.Google Scholar
Park, WH, Kim, SP, Park, KK, et al. Electron microscopic study of the liver with biliary atresia and neonatal hepatitis. J Pediatr Surg 1996;31:367–74.Google Scholar
Moore, L, Bourne, AJ, Moore, DJ, et al. Hepatocellular carcinoma following neonatal hepatitis. Pediatr Pathol Lab Med 1997;17:601–10.CrossRefGoogle ScholarPubMed
Suita, S, Arima, T, Ishii, K, et al. Fate of infants with neonatal hepatitis: pediatric surgeons’ dilemma. J Pediatr Surg 1992;27:696–9.Google Scholar
Dick, MC, Mowat, AP. Hepatitis syndrome in infancy: an epidemiological survey with 10 year follow-up. Arch Dis Child 1985;60:512–16.Google Scholar
Lee, PI, Chang, MH, Chen, DS, et al. Prognostic implications of serum alpha-fetoprotein levels in neonatal hepatitis. J Pediatr Gastroenterol Nutr 1990;11:2731.Google Scholar
Chang, MH, Hsu, HC, Lee, CY, et al. Neonatal hepatitis: a follow-up study. J Pediatr Gastroenterol Nutr 1987;6:203–7.Google Scholar
Deutsch, J, Smith, AL, Danks, DM, et al. Long-term prognosis for babies with neonatal liver disease. Arch Dis Child 1985;60:447–51.Google Scholar

References

Landing, BH. Considerations of the pathogenesis of neonatal hepatitis, biliary atresia and choledochal cyst: the concept of infantile obstructive cholangiopathy. Prog Pediatr Surg 1974;6:113–39.Google Scholar
Desmet, VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation.” Hepatology 1992;16:1069–83.Google Scholar
Li, J, Bessho, K, Shivakumar, P, et al. Th2 signals induce epithelial injury in mice and are compatible with the biliary atresia phenotype. J Clin Invest 2011;121:4244–56.Google Scholar
Bezerra, JA, Wells, RG, Mack, CL, et al. Biliary atresia: clinical and research challenges for the 21st century. Hepatology 2018;68(3):1163–73.Google Scholar
Landing, BH, Wells, TR, Ramicone, E. Time course of the intrahepatic lesion of extrahepatic biliary atresia: a morphometric study. Pediatr Pathol 1985;4:309–19.Google Scholar
Balistreri, WF, Grand, R, Hoofnagle, JH, et al. Biliary atresia: current concepts and research directions. Summary of a symposium. Hepatology 1996;23:1682–92.Google Scholar
Bessho, K, Bezerra, JA. Biliary atresia: will blocking inflammation tame the disease? Annu Rev Med 2011;62:171–85.Google Scholar
Bezerra, JA, Tiao, G, Ryckman, FC, et al. Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet 2002;360:1653–9.Google Scholar
Mack, CL, Tucker, RM, Sokol, RJ, et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pediatr Res 2004;56:7987.Google Scholar
Yoon, PW, Bresee, JS, Olney, RS, et al. Epidemiology of biliary atresia: a population-based study. Pediatrics 1997;99:376–82.Google Scholar
Davenport, M, Savage, M, Mowat, AP, et al. Biliary atresia splenic malformation syndrome: an etiologic and prognostic subgroup. Surgery 1993;113:662–8.Google Scholar
Balistreri, WF. Neonatal cholestasis. J Pediatr 1985;106:171–84.Google Scholar
Pacheco, MC, Campbell, KM, Bove, KE. Ductal plate malformation-like arrays in early explants after a Kasai procedure are independent of splenic malformation complex (heterotaxy). Pediatr Dev Pathol 2009;12:355–60.Google Scholar
Davenport, M, Caponcelli, E, Livesey, E, et al. Surgical outcome in biliary atresia: etiology affects the influence of age at surgery. Ann Surg 2008;247:694–8.Google Scholar
Hsiao, CH, Chang, MH, Chen, HL, et al. Universal screening for biliary atresia using an infant stool color card in Taiwan. Hepatology 2008;47:1233–40.Google Scholar
Fischler, B, Ehrnst, A, Forsgren, M, et al. The viral association of neonatal cholestasis in Sweden: a possible link between cytomegalovirus infection and extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr 1998;27:5764.Google Scholar
Jevon, GP, Dimmick, JE. Biliary atresia and cytomegalovirus infection: a DNA study. Pediatr Dev Pathol 1999;2:1114.Google Scholar
Mason, AL, Xu, L, Guo, L, et al. Detection of retroviral antibodies in primary biliary cirrhosis and other idiopathic biliary disorders. Lancet 1998;351:1620–4.Google Scholar
Mack, CL. The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease. Semin Liver Dis 2007;27:233–42.Google Scholar
Szavay, PO, Leonhardt, J, Czech-Schmidt, G, et al. The role of reovirus type 3 infection in an established murine model for biliary atresia. Eur J Pediatr Surg 2002;12:248–50.Google Scholar
Tyler, KL, Sokol, RJ, Oberhaus, SM, et al. Detection of reovirus RNA in hepatobiliary tissues from patients with extrahepatic biliary atresia and choledochal cysts. Hepatology 1998;27:1475–82.Google Scholar
Riepenhoff-Talty, M, Schaekel, K, Clark, HF, et al. Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr Res 1993;33:394–9.Google Scholar
Riepenhoff-Talty, M, Gouvea, V, Evans, MJ, et al. Detection of group C rotavirus in infants with extrahepatic biliary atresia. J Infect Dis 1996;174:815.Google Scholar
Lin, YC, Chang, MH, Liao, SF, et al. Decreasing rate of biliary atresia in Taiwan: a survey, 2004–2009. Pediatrics 2011;128:e530–6.Google Scholar
Tan, CE, Davenport, M, Driver, M, et al. Does the morphology of the extrahepatic biliary remnants in biliary atresia influence survival? A review of 205 cases. J Pediatr Surg 1994;29:1459–64.Google Scholar
Sokol, RJ, Shepherd, RW, Superina, R, et al. Screening and outcomes in biliary atresia: summary of a National Institutes of Health workshop. Hepatology 2007;46:566–81.Google Scholar
Schon, P, Tsuchiya, K, Lenoir, D, et al. Identification, genomic organization, chromosomal mapping and mutation analysis of the human INV gene, the ortholog of a murine gene implicated in left-right axis development and biliary atresia. Hum Genet 2002;110:157–65.Google Scholar
Desmet, VJ. Intrahepatic bile ducts under the lens. J Hepatol 1985;1:545–59.Google Scholar
Silveira, TR, Salzano, FM, Donaldson, PT, et al. Association between HLA and extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr 1993;16:114–17.Google Scholar
Cheng, G, Tang, CS, Wong, EH, et al. Common genetic variants regulating ADD3 gene expression alter biliary atresia risk. J Hepatol 2013;59:1285–91.Google Scholar
Moyer, K, Kaimal, V, Pacheco, C, et al. Staging of biliary atresia at diagnosis by molecular profiling of the liver. Genome Med 2010;2:33.Google Scholar
Mack, CL, Falta, MT, Sullivan, AK, et al. Oligoclonal expansions of CD4+ and CD8+ T-cells in the target organ of patients with biliary atresia. Gastroenterology 2007;133:278–87.Google Scholar
Lu, BR, Brindley, SM, Tucker, RM, et al. Alpha-enolase autoantibodies cross-reactive to viral proteins in a mouse model of biliary atresia. Gastroenterology 2010;139:1753–61.Google Scholar
Jafri, M, Donnelly, B, Allen, S, et al. Cholangiocyte expression of alpha2beta1-integrin confers susceptibility to rotavirus-induced experimental biliary atresia. Am J Physiol Gastrointest Liver Physiol 2008;295:G16G26.Google Scholar
Saxena, V, Shivakumar, P, Sabla, G, et al. Dendritic cells regulate natural killer cell activation and epithelial injury in experimental biliary atresia. Sci Transl Med 2011;3:102ra94.Google Scholar
Miethke, AG, Saxena, V, Shivakumar, P, et al. Post-natal paucity of regulatory T cells and control of NK cell activation in experimental biliary atresia. J Hepatol 2010;52:718–26.Google Scholar
Harper, P, Plant, JW, Unger, DB. Congenital biliary atresia and jaundice in lambs and calves. Aust Vet J 1990;67:1822.Google Scholar
Klippel, CH. A new theory of biliary atresia. J Pediatr Surg 1972;7:651–4.Google Scholar
Choi, SO, Park, WH, Lee, HJ, et al. “Triangular cord”: a sonographic finding applicable in the diagnosis of biliary atresia. J Pediatr Surg 1996;31:363–6.Google Scholar
Alagille, D. Cholestasis in the first three months of life. Prog Liver Dis 1979;6:471–85.Google Scholar
Russo, P, Magee, JC, Boitnott, J, et al. Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy. Clin Gastroenterol Hepatol 2011;9:357–362 e2.Google Scholar
Zerbini, MC, Gallucci, SD, Maezono, R, et al. Liver biopsy in neonatal cholestasis: a review on statistical grounds. Mod Pathol 1997;10:793–9.Google Scholar
Markowitz, J, Daum, F, Kahn, EI, et al. Arteriohepatic dysplasia. I. Pitfalls in diagnosis and management. Hepatology 1983;3:74–6.Google Scholar
Kasai, M, Watanabe, I, Ohi, R. Follow-up studies of long-term survivors after hepatic portoenterostomy for “noncorrectible” biliary atresia. J Pediatr Surg 1975;10:173–82.Google Scholar
Endo, M, Katsumata, K, Yokoyama, J, et al. Extended dissection of the porta hepatis and creation of an intussuscepted ileocolic conduit for biliary atresia. J Pediatr Surg 1983;18:784–93.Google Scholar
Hashimoto, T, Otobe, Y, Shimizu, Y, et al. A modification of hepatic portoenterostomy (Kasai operation) for biliary atresia. J Am Coll Surg 1997;185:548–53.Google Scholar
Ohi, R, Ibrahim, M. Biliary atresia. Semin Pediatr Surg 1992;1:115–24.Google Scholar
Ryckman, FC, Alonso, MH, Bucuvalas, JC, et al. Biliary atresia–surgical management and treatment options as they relate to outcome. Liver Transpl Surg 1998;4:S2433.Google Scholar
Ryckman, F, Fisher, R, Pedersen, S, et al. Improved survival in biliary atresia patients in the present era of liver transplantation. J Pediatr Surg 1993;28:382–5; discussion 386.Google Scholar
Lally, KP, Kanegaye, J, Matsumura, M, et al. Perioperative factors affecting the outcome following repair of biliary atresia. Pediatrics 1989;83:723–6.Google Scholar
Chandra, RS, Altman, RP. Ductal remnants in extrahepatic biliary atresia: a histopathologic study with clinical correlation. J Pediatr 1978;93:196200.Google Scholar
Ohya, T, Miyano, T, Kimura, K. Indication for portoenterostomy based on 103 patients with Suruga II modification. J Pediatr Surg 1990;25:801–4.Google Scholar
Davenport, M, De Ville de Goyet, J, Stringer, MD, et al. Seamless management of biliary atresia in England and Wales (1999–2002). Lancet 2004;363:1354–7.Google Scholar
Gottrand, F, Bernard, O, Hadchouel, M, et al. Late cholangitis after successful surgical repair of biliary atresia. Am J Dis Child 1991;145:213–15.Google Scholar
Lunzmann, K, Schweizer, P. The influence of cholangitis on the prognosis of extrahepatic biliary atresia. Eur J Pediatr Surg 1999;9:1923.Google Scholar
Ohi, R, Hanamatsu, M, Mochizuki, I, et al. Reoperation in patients with biliary atresia. J Pediatr Surg 1985;20:256–9.Google Scholar
Balistreri, WF. Bile acid therapy in pediatric hepatobiliary disease: the role of ursodeoxycholic acid. J Pediatr Gastroenterol Nutr 1997;24:573–89.Google Scholar
Bezerra, JA, Spino, C, Magee, JC, et al. Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: the START randomized clinical trial. JAMA 2014;311:1750–9.Google Scholar
Davenport, M, Parsons, C, Tizzard, S, et al. Steroids in biliary atresia: single surgeon, single centre, prospective study. J Hepatol 2013;59:1054–8.Google Scholar
Miga, D, Sokol, RJ, Mackenzie, T, et al. Survival after first esophageal variceal hemorrhage in patients with biliary atresia. J Pediatr 2001;139:291–6.Google Scholar
Laurent, J, Gauthier, F, Bernard, O, et al. Long-term outcome after surgery for biliary atresia. Study of 40 patients surviving for more than 10 years. Gastroenterology 1990;99:1793–7.Google Scholar
Ryckman, FC, Fisher, RA, Pedersen, SH, et al. Liver transplantation in children. Semin Pediatr Surg 1992;1:162–72.Google Scholar
Ryckman, FC, Flake, AW, Fisher, RA, et al. Segmental orthotopic hepatic transplantation as a means to improve patient survival and diminish waiting-list mortality. J Pediatr Surg 1991;26:422–7; discussion 427–8.Google Scholar
Tiao, GM, Alonso, M, Bezerra, J, et al. Liver transplantation in children younger than 1 year–the Cincinnati experience. J Pediatr Surg 2005;40:268–73.Google Scholar
Chardot, C, Carton, M, Spire-Bendelac, N, et al. Prognosis of biliary atresia in the era of liver transplantation: French national study from 1986 to 1996. Hepatology 1999;30:606–11.Google Scholar
De Matos, V, Erlichman, J, Russo, PA, et al. Does “cystic” biliary atresia represent a distinct clinical and etiological subgroup? A series of three cases. Pediatr Dev Pathol 2005;8:725–31.Google Scholar
Ando, K, Miyano, T, Kohno, S, et al. Spontaneous perforation of choledochal cyst: a study of 13 cases. Eur J Pediatr Surg 1998;8:23–5.Google Scholar
Redkar, R, Davenport, M, Howard, ER. Antenatal diagnosis of congenital anomalies of the biliary tract. J Pediatr Surg 1998;33:700–4.Google Scholar
Haller, JO, Condon, VR, Berdon, WE, et al. Spontaneous perforation of the common bile duct in children. Radiology 1989;172:621–4.Google Scholar
So, SK, Lindahl, JA, Sharp, HL, et al. Bile ascites during infancy: diagnosis using Disofenin Tc 99 m sequential scintiphotography. Pediatrics 1983;71:402–5.Google Scholar

References

Gourley, G. (2007). Neonatal jaundice and disorders of bilirubin metabolism. In: Suchy, FJSR, Balistreri, WF, (Eds.). Liver Disease in Children, 3rd Edn. (pp. 270309). New York: Cambridge University Press.Google Scholar
Weiss, JS, Gautam, A, Lauff, JJ, Sundberg, MW, Jatlow, P, Boyer, JL, et al. The clinical importance of a protein-bound fraction of serum bilirubin in patients with hyperbilirubinemia. N Engl J Med 1983;309(3):147–50.Google Scholar
Billing, B. (1986). Intestinal and renal metabolism of bilirubin including enterohepatic circulation. In: Ostrow, JD, (Ed.). Bile Pigments and Jaundice (pp. 255–69). New York: Marcel Dekker.Google Scholar
Poland, RL, Odell, GB. Physiologic jaundice: the enterohepatic circulation of bilirubin. N Engl J Med 1971;284(1):16.Google Scholar
Lester, R, Schmid, R. Intestinal absorption of bile pigments. I. The enterohepatic circulation of bilirubin in the rat. J Clin Invest 1963;42:736–46.Google Scholar
Gourley, GR, Arend, RA. Beta-glucuronidase and hyperbilirubinaemia in breast-fed and formula-fed babies. Lancet. 1986;1(8482):644–6.Google Scholar
Gourley, G. (1998). Pathophysiology of breastmilk jaundice. In: Polin, R, Fox, WW, (Eds.). Fetal and Neonatal Physiology, 2nd Edn. (pp. 1499–505). Philadelphia: Saunders.Google Scholar
Gourley, GR, Li, Z, Kreamer, BL, Kosorok, MR. A controlled, randomized, double-blind trial of prophylaxis against jaundice among breastfed newborns. Pediatrics 2005;116(2):385–91.Google Scholar
Maisels, MJ, Bhutani, VK, Bogen, D, Newman, TB, Stark, AR, Watchko, JF. Hyperbilirubinemia in the newborn infant > or =35 weeks’ gestation: an update with clarifications. Pediatrics 2009;124(4):1193–8.Google Scholar
Kramer, LI. Advancement of dermal icterus in the jaundiced newborn. Am J Dis Child 1969;118(3):454–8.Google Scholar
Fujiwara, R, Chen, S, Karin, M, Tukey, RH. Reduced expression of UGT1A1 in intestines of humanized UGT1 mice via inactivation of NF-kappaB leads to hyperbilirubinemia. Gastroenterology 2012;142(1):109–18 e2.Google Scholar
American Academy of Pediatrics. Practice parameter: management of hyperbilirubinemia in the healthy term newborn. Provisional Committee for Quality Improvement and Subcommittee on Hyperbilirubinemia. Pediatrics 1994;94(4 Pt 1):558–65.Google Scholar
American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2004;114(1):297316.Google Scholar
Davis, AR, Rosenthal, P, Escobar, GJ, Newman, TB. Interpreting conjugated bilirubin levels in newborns. J Pediatr 2011;158(4):562–5 e1.Google Scholar
Harpavat, S, Garcia-Prats, JA, Shneider, BL. Newborn bilirubin screening for biliary atresia. N Engl J Med 2016;375(6):605–6.Google Scholar
Kreamer, BL, Siegel, FL, Gourley, GR. A novel inhibitor of beta-glucuronidase: L-aspartic acid. Pediatr Res 2001;50(4):460–6.Google Scholar
Odell, GB. Studies in kernicterus. I. The protein binding of bilirubin. J Clin Invest 1959;38(5):823–33.Google Scholar
Maisels, MJ, Watchko, JF, Bhutani, VK, Stevenson, DK. An approach to the management of hyperbilirubinemia in the preterm infant less than 35 weeks of gestation. J Perinatol 2012;32(9):660–4.Google Scholar
Stevenson, DK, Maisels, MJ, Watchko, J. (2012). Care of the Jaundiced Neonate. New York: McGraw-Hill Medical.Google Scholar
Kawade, N, Onishi, S. The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem J 1981;196(1):257–60.Google Scholar
Watchko, JF, Oski, FA. Kernicterus in preterm newborns: past, present, and future. Pediatrics 1992;90(5):707–15.Google Scholar
Watchko, JF, Maisels, MJ. The enigma of low bilirubin kernicterus in premature infants: why does it still occur, and is it preventable? Semin Perinatol 2014;38(7):397406.Google Scholar
Rubboli, G, Ronchi, F, Cecchi, P, Rizzi, R, Gardella, E, Meletti, S, et al. A neurophysiological study in children and adolescents with Crigler-Najjar syndrome type I. Neuropediatrics 1997;28(5):281–6.Google Scholar
Odell, GB. The dissociation of bilirubin from albumin and its clinical implications. J Pediatr 1959;55:268–79.Google Scholar
McDonagh, AF PL, Lightner, DA. Phototherapy for neonatal jaundice: stereospecific and regioselective photoisomerization of bilirubin bound to human serum albumin and NMR characterization of intramolecular cyclized photoproducts. JACS 1982;(104):6867–9.Google Scholar
Steiner, LA, Bizzarro, MJ, Ehrenkranz, RA, Gallagher, PG. A decline in the frequency of neonatal exchange transfusions and its effect on exchange-related morbidity and mortality. Pediatrics 2007;120(1):2732.Google Scholar
Maisels, MJ, McDonagh, AF. Phototherapy for neonatal jaundice. N Engl J Med 2008;358(9):920–8.Google Scholar
Yeo, KL, Perlman, M, Hao, Y, Mullaney, P. Outcomes of extremely premature infants related to their peak serum bilirubin concentrations and exposure to phototherapy. Pediatrics 1998;102(6):1426–31.Google Scholar
Morris, BH, Oh, W, Tyson, JE, Stevenson, DK, Phelps, DL, O’Shea, TM, et al. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N Engl J Med 2008;359(18):1885–96.Google Scholar
Alpay, F, Sarici, SU, Okutan, V, Erdem, G, Ozcan, O, Gokcay, E. High-dose intravenous immunoglobulin therapy in neonatal immune haemolytic jaundice. Acta Paediatr 1999;88(2):216–19.Google Scholar
Valaes, TN, Harvey-Wilkes, K. Pharmacologic approaches to the prevention and treatment of neonatal hyperbilirubinemia. Clin Perinatol 1990;17(2):245–73.Google Scholar
Gilbert, A, Lereboullet, P. La cholemie simple familiale. La Semaine Medicale 1901;21:241–3.Google Scholar
Bosma, P, Chowdhury, JR, Jansen, PH. Genetic inheritance of Gilbert’s syndrome. Lancet. 1995;346(8970):314–15.Google Scholar
Odell, GB. (1980). The Estrogenation of the Newborn. Neonatal Hyperbilirubinemia (pp. 3941). New York: Grune and Stratton.Google Scholar
Bancroft, JD, Kreamer, B, Gourley, GR. Gilbert syndrome accelerates development of neonatal jaundice. J Pediatr 1998;132(4):656–60.Google Scholar
Kaplan, M, Renbaum, P, Levy-Lahad, E, Hammerman, C, Lahad, A, Beutler, E. Gilbert syndrome and glucose-6-phosphate dehydrogenase deficiency: a dose-dependent genetic interaction crucial to neonatal hyperbilirubinemia. Proc Natl Acad Sci U S A 1997;94(22):12128–32.Google Scholar
Debinski, HS, Lee, CS, Dhillon, AP, Mackenzie, P, Rhode, J, Desmond, PV. UDP-glucuronosyltransferase in Gilbert’s syndrome. Pathology 1996;28(3):238–41.Google Scholar
Bosma, PJ, Chowdhury, JR, Bakker, C, Gantla, S, de Boer, A, Oostra, BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 1995;333(18):1171–5.Google Scholar
Akaba, K, Kimura, T, Sasaki, A, Tanabe, S, Wakabayashi, T, Hiroi, M, et al. Neonatal hyperbilirubinemia and a common mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene in Japanese. J Hum Genet 1999;44(1):22–5.Google Scholar
Moyer, AM, Skierka, JM, Kotzer, KE, Kluge, ML, Black, JL, Baudhuin, LM. Clinical UGT1A1 genetic analysis in pediatric patients: experience of a reference laboratory. Mol Diagn Ther 2017;21(3):327–35.Google Scholar
Skierka, JM, Kotzer, KE, Lagerstedt, SA, O’Kane, DJ, Baudhuin, LM. UGT1A1 genetic analysis as a diagnostic aid for individuals with unconjugated hyperbilirubinemia.J Pediatr 2013;162(6):1146–52, 52 e12.Google Scholar
Crigler, JF Jr., Najjar, VA. Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics 1952;10(2):169–80.Google Scholar
Gourley, GR. Bilirubin metabolism and kernicterus. Adv Pediatr 1997;44:173229.Google Scholar
Shevell, MI, Majnemer, A, Schiff, D. Neurologic perspectives of Crigler-Najjar syndrome type I. J Child Neurol 1998;13(6):265–9.Google Scholar
Strauss, KA, Robinson, DL, Vreman, HJ, Puffenberger, EG, Hart, G, Morton, DH. Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur J Pediatr 2006;165(5):306–19.Google Scholar
Arias, IM, Gartner, LM, Cohen, M, Ezzer, JB, Levi, AJ. Chronic nonhemolytic unconjugated hyperbilirubinemia with glucuronyl transferase deficiency. Clinical, biochemical, pharmacologic and genetic evidence for heterogeneity. Am J Med 1969;47(3):395409.Google Scholar
Clarke, DJ, Moghrabi, N, Monaghan, G, Cassidy, A, Boxer, M, Hume, R, et al. Genetic defects of the UDP-glucuronosyltransferase-1 (UGT1) gene that cause familial non-haemolytic unconjugated hyperbilirubinaemias. Clin Chim Acta 1997;266(1):6374.Google Scholar
Labrune, P, Myara, A, Hadchouel, M, Ronchi, F, Bernard, O, Trivin, F, et al. Genetic heterogeneity of Crigler-Najjar syndrome type I: a study of 14 cases. Hum Genet 1994;94(6):693–7.Google Scholar
Sinaasappel, M, Jansen, PL. The differential diagnosis of Crigler-Najjar disease, types 1 and 2, by bile pigment analysis. Gastroenterology 1991;100(3):783–9.Google Scholar
Rubaltelli, FF. Current drug treatment options in neonatal hyperbilirubinaemia and the prevention of kernicterus. Drugs 1998;56(1):2330.Google Scholar
van der Veere, CN, Sinaasappel, M, McDonagh, AF, Rosenthal, P, Labrune, P, Odievre, M, et al. Current therapy for Crigler-Najjar syndrome type 1: report of a world registry. Hepatology 1996;24(2):311–15.Google Scholar
Rubaltelli, FF, Novello, A, Zancan, L, Vilei, MT, Muraca, M. Serum and bile bilirubin pigments in the differential diagnosis of Crigler-Najjar disease. Pediatrics 1994;94(4 Pt 1):553–6.Google Scholar
van de Steeg, E, Stranecky, V, Hartmannova, H, Noskova, L, Hrebicek, M, Wagenaar, E, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest 2012;122(2):519–28.Google Scholar
Wolkoff, AW, Wolpert, E, Pascasio, FN, Arias, IM. Rotor’s syndrome. A distinct inheritable pathophysiologic entity. Am J Med 1976;60(2):173–9.Google Scholar
Shimizu, Y, Naruto, H, Ida, S, Kohakura, M. Urinary coproporphyrin isomers in Rotor’s syndrome: a study in eight families. Hepatology 1981;1(2):173–8.Google Scholar
Jirsa, M, Knisely, AS, Schinkel, A, Kmoch, S. (1993). Rotor syndrome. In: Adam, MP, Ardinger, HH, Pagon, RA, Wallace, SE, Bean, LJH, Stephens, K, et al., (Eds.). GeneReviews®. Available at: www.ncbi.nlm.nih.gov/books/NBK114805/Google Scholar
Dubin, IN, Johnson, FB. Chronic idiopathic jaundice with unidentified pigment in liver cells: a new clinicopathologic entity with a report of 12 cases. Medicine 1954;33(3):155–97.Google Scholar
Toh, S, Wada, M, Uchiumi, T, Inokuchi, A, Makino, Y, Horie, Y, et al. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome. Am J Hum Genet 1999;64(3):739–46.Google Scholar
Frank, M, Doss, M, de Carvalho, DG. Diagnostic and pathogenetic implications of urinary coproporphyrin excretion in the Dubin-Johnson syndrome. Hepatogastroenterology 1990;37(1):147–51.Google Scholar
Chen, HL, Li, HY, Wu, JF, Wu, SH, Chen, HL, Yang, YH, et al. Panel-based next-generation sequencing for the diagnosis of cholestatic genetic liver diseases: clinical utility and challenges. J Pediatr 2019;205:153–9 e6.Google Scholar
Machida, I, Wakusawa, S, Sanae, F, Hayashi, H, Kusakabe, A, Ninomiya, H, et al. Mutational analysis of the MRP2 gene and long-term follow-up of Dubin-Johnson syndrome in Japan. J Gastroenterol 2005;40(4):366–70.Google Scholar

References

Balistreri, WF, Bezerra, JA, Jansen, P, Karpen, SJ, Shneider, BL, Suchy, FJ. Intrahepatic cholestasis: summary of an American Association for the Study of Liver Diseases single-topic conference. Hepatology 2005;42:222–35.Google Scholar
Feldman, AG, Sokol, RJ. Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics. Nat Rev Gastroenterol Hepatol 2019;16(6):346–60.Google Scholar
Bull, LN, Thompson, RJ. Progressive familial intrahepatic cholestasis. Clin Liver Dis 2018;22:657–69.Google Scholar
Baker, A, Kerkar, N, Todorova, L, Kamath, BM, Houwen, RHJ. Systematic review of progressive familial intrahepatic cholestasis. Clin Res Hepatol Gastroenterol 2018;3(1):2036.Google Scholar
Droge, C, Bonus, M, Baumann, U, Klindt, C, Lainka, E, Kathemann, S, Brinkert, F, et al. Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. J Hepatol 2017;67:1253–64.Google Scholar
Vitale, G, Gitto, S, Raimondi, F, Mattiaccio, A, Mantovani, V, Vukotic, R, D’Errico, A, et al. Cryptogenic cholestasis in young and adults: ATP8B1, ABCB11, ABCB4, and TJP2 gene variants analysis by high-throughput sequencing. J Gastroenterol 2018;53:945–58.Google Scholar
Strautnieks, SS, Bull, LN, Knisely, AS, Kocoshis, SA, Dahl, N, Arnell, H, Sokal, E, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 1998;20:233–8.Google Scholar
Davit-Spraul, A, Fabre, M, Branchereau, S, Baussan, C, Gonzales, E, Stieger, B, Bernard, O, et al. ATP8B1 and ABCB11 analysis in 62 children with normal gamma-glutamyl transferase progressive familial intrahepatic cholestasis (PFIC): phenotypic differences between PFIC1 and PFIC2 and natural history. Hepatology 2010;51:1645–55.Google Scholar
Davit-Spraul, A, Gonzales, E, Baussan, C, Jacquemin, E. Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis 2009;4:1.Google Scholar
Paulusma, CC, Elferink, RP, Jansen, PL. Progressive familial intrahepatic cholestasis type 1. Semin Liver Dis 2010;30:117–24.Google Scholar
Pawlikowska, L, Strautnieks, S, Jankowska, I, Czubkowski, P, Emerick, K, Antoniou, A, Wanty, C, et al. Differences in presentation and progression between severe FIC1 and BSEP deficiencies. J Hepatol 2010;53:170–8.Google Scholar
Lykavieris, P, van Mil, S, Cresteil, D, Fabre, M, Hadchouel, M, Klomp, L, Bernard, O, et al. Progressive familial intrahepatic cholestasis type 1 and extrahepatic features: no catch-up of stature growth, exacerbation of diarrhea, and appearance of liver steatosis after liver transplantation. J Hepatol 2003;39:447–52.Google Scholar
Miyagawa-Hayashino, A, Egawa, H, Yorifuji, T, Hasegawa, M, Haga, H, Tsuruyama, T, Wen, MC, et al. Allograft steatohepatitis in progressive familial intrahepatic cholestasis type 1 after living donor liver transplantation. Liver Transpl 2009;15:610–18.Google Scholar
Knisely, AS. Progressive familial intrahepatic cholestasis: an update. Pediatr Dev Pathol 2004;7:309–14.Google Scholar
Morotti, RA, Suchy, FJ, Magid, MS. Progressive familial intrahepatic cholestasis (PFIC) type 1, 2, and 3: a review of the liver pathology findings. Semin Liver Dis 2011;31:310.Google Scholar
Bull, LN, Carlton, VE, Stricker, NL, Baharloo, S, DeYoung, JA, Freimer, NB, Magid, MS, et al. Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): evidence for heterogeneity. Hepatology 1997;26:155–64.Google Scholar
Klomp, LW, Vargas, JC, van Mil, SW, Pawlikowska, L, Strautnieks, SS, van Eijk, MJ, Juijn, JA, et al. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 2004;40:2738.Google Scholar
Frankenberg, T, Miloh, T, Chen, FY, Ananthanarayanan, M, Sun, AQ, Balasubramaniyan, N, Arias, I, et al. The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology 2008;48:18961905.Google Scholar
van der Velden, LM, Stapelbroek, JM, Krieger, E, van den Berghe, PV, Berger, R, Verhulst, PM, Holthuis, JC, et al. Folding defects in P-type ATP 8B1 associated with hereditary cholestasis are ameliorated by 4-phenylbutyrate. Hepatology 2010;51:286–96.Google Scholar
Pawlikowska, L, Groen, A, Eppens, EF, Kunne, C, Ottenhoff, R, Looije, N, Knisely, AS, et al. A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion. Hum Mol Genet 2004;13:881–92.Google Scholar
Groen, A, Kunne, C, Oude Elferink, RP. Increased serum concentrations of secondary bile salts during cholate feeding are due to coprophagy. A study with wild-type and Atp8b1-deficient mice. Mol Pharm 2006;3:756–61.Google Scholar
Stapelbroek, JM, Peters, TA, van Beurden, DH, Curfs, JH, Joosten, A, Beynon, AJ, van Leeuwen, BM, et al. ATP8B1 is essential for maintaining normal hearing. Proc Natl Acad Sci U S A 2009;106:9709–14.Google Scholar
Ray, NB, Durairaj, L, Chen, BB, McVerry, BJ, Ryan, AJ, Donahoe, M, Waltenbaugh, AK, et al. Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat Med 2010;16:1120–7.Google Scholar
Takatsu, H, Tanaka, G, Segawa, K, Suzuki, J, Nagata, S, Nakayama, K, Shin, HW. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane. J Biol Chem 2014;289:33543–56.Google Scholar
Paulusma, CC, Folmer, DE, Ho-Mok, KS, de Waart, DR, Hilarius, PM, Verhoeven, AJ, Oude Elferink, RP. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 2008;47:268–78.Google Scholar
Liu, L, Zhang, L, Zhang, L, Yang, F, Zhu, X, Lu, Z, Yang, Y, et al. Hepatic Tmem30a deficiency causes intrahepatic cholestasis by impairing expression and localization of bile salt transporters. Am J Pathol 2017;187:2775–87.Google Scholar
Verhulst, PM, van der Velden, LM, Oorschot, V, van Faassen, EE, Klumperman, J, Houwen, RH, Pomorski, TG, et al. A flippase-independent function of ATP8B1, the protein affected in familial intrahepatic cholestasis type 1, is required for apical protein expression and microvillus formation in polarized epithelial cells. Hepatology 2010;51:2049–60.Google Scholar
Paulusma, CC, de Waart, DR, Kunne, C, Mok, KS, Elferink, RP. Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content. J Biol Chem 2009;284:9947–54.Google Scholar
Groen, A, Romero, MR, Kunne, C, Hoosdally, SJ, Dixon, PH, Wooding, C, Williamson, C, et al. Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity. Gastroenterology 2011;141:1927–37 e1921–4.Google Scholar
Ujhazy, P, Ortiz, D, Misra, S, Li, S, Moseley, J, Jones, H, Arias, IM. Familial intrahepatic cholestasis 1: studies of localization and function. Hepatology 2001;34:768–75.Google Scholar
Chen, F, Ananthanarayanan, M, Emre, S, Neimark, E, Bull, LN, Knisely, AS, Strautnieks, SS, et al. Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Gastroenterology 2004;126:756–64.Google Scholar
Chen, F, Ellis, E, Strom, SC, Shneider, BL. ATPase Class I Type 8B Member 1 and protein kinase C zeta induce the expression of the canalicular bile salt export pump in human hepatocytes. Pediatr Res 2010;67:183–7.Google Scholar
Strautnieks, SS, Kagalwalla, AF, Tanner, MS, Knisely, AS, Bull, L, Freimer, N, Kocoshis, SA, et al. Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24. Am J Hum Genet 1997;61:630–3.Google Scholar
Strautnieks, SS, Byrne, JA, Pawlikowska, L, Cebecauerova, D, Rayner, A, Dutton, L, Meier, Y, et al. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology 2008;134:1203–14.Google Scholar
Ananthanarayanan, M, Balasubramanian, N, Makishima, M, Mangelsdorf, DJ, Suchy, FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 2001;276:28857–65.Google Scholar
Alissa, FT, Jaffe, R, Shneider, BL. Update on progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr 2008;46:241–52.Google Scholar
Jansen, PL, Strautnieks, SS, Jacquemin, E, Hadchouel, M, Sokal, EM, Hooiveld, GJ, Koning, JH, et al. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 1999;117:1370–9.Google Scholar
Evason, K, Bove, KE, Finegold, MJ, Knisely, AS, Rhee, S, Rosenthal, P, Miethke, AG, et al. Morphologic findings in progressive familial intrahepatic cholestasis 2 (PFIC2): correlation with genetic and immunohistochemical studies. Am J Surg Pathol 2011;35:687–96.Google Scholar
Thompson, R, Strautnieks, S. BSEP: function and role in progressive familial intrahepatic cholestasis. Semin Liver Dis 2001;21:545–50.Google Scholar
Knisely, AS. Progressive familial intrahepatic cholestasis: a personal perspective. Pediatr Dev Pathol 2000;3:113–25.Google Scholar
Byrne, JA, Strautnieks, SS, Ihrke, G, Pagani, F, Knisely, AS, Linton, KJ, Mieli-Vergani, G, et al. Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing. Hepatology 2009;49:553–67.Google Scholar
Wang, R, Salem, M, Yousef, IM, Tuchweber, B, Lam, P, Childs, SJ, Helgason, CD, et al. Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci U S A 2001;98:2011–16.Google Scholar
Hayashi, H, Takada, T, Suzuki, H, Akita, H, Sugiyama, Y. Two common PFIC2 mutations are associated with the impaired membrane trafficking of BSEP/ABCB11. Hepatology 2005;41:916–24.Google Scholar
Imagawa, K, Takayama, K, Isoyama, S, Tanikawa, K, Shinkai, M, Harada, K, Tachibana, M, et al. Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. Sci Rep 2017;7:41806.Google Scholar
Whitington, PF, Whitington, GL. Partial external diversion of bile for the treatment of intractable pruritus associated with intrahepatic cholestasis. Gastroenterology 1988;95:130–6.Google Scholar
Wang, KS, Tiao, G, Bass, LM, Hertel, PM, Mogul, D, Kerkar, N, Clifton, M, et al. Analysis of surgical interruption of the enterohepatic circulation as a treatment for pediatric cholestasis. Hepatology 2017;65:1645–54.Google Scholar
Bull, LN, Pawlikowska, L, Strautnieks, S, Jankowska, I, Czubkowski, P, Dodge, JL, Emerick, K, et al. Outcomes of surgical management of familial intrahepatic cholestasis 1 and bile salt export protein deficiencies. Hepatol Commun 2018;2:515–28.Google Scholar
Naoi, S, Hayashi, H, Inoue, T, Tanikawa, K, Igarashi, K, Nagasaka, H, Kage, M, et al. Improved liver function and relieved pruritus after 4-phenylbutyrate therapy in a patient with progressive familial intrahepatic cholestasis type 2. J Pediatr 2014;164:1219–27 e1213.Google Scholar
Gonzales, E, Grosse, B, Schuller, B, Davit-Spraul, A, Conti, F, Guettier, C, Cassio, D, et al. Targeted pharmacotherapy in progressive familial intrahepatic cholestasis type 2: evidence for improvement of cholestasis with 4-phenylbutyrate. Hepatology 2015;62:558–66.Google Scholar
Hasegawa, Y, Hayashi, H, Naoi, S, Kondou, H, Bessho, K, Igarashi, K, Hanada, K, et al. Intractable itch relieved by 4-phenylbutyrate therapy in patients with progressive familial intrahepatic cholestasis type 1. Orphanet J Rare Dis 2014;9:89.Google Scholar
Mehl, A, Bohorquez, H, Serrano, MS, Galliano, G, Reichman, TW. Liver transplantation and the management of progressive familial intrahepatic cholestasis in children. World J Transplant 2016;6:278–90.Google Scholar
Mali, VP, Fukuda, A, Shigeta, T, Uchida, H, Hirata, Y, Rahayatri, TH, Kanazawa, H, et al. Total internal biliary diversion during liver transplantation for type 1 progressive familial intrahepatic cholestasis: a novel approach. Pediatr Transplant 2016;20:981–6.Google Scholar
Jara, P, Hierro, L, Martinez-Fernandez, P, Alvarez-Doforno, R, Yanez, F, Diaz, MC, Camarena, C, et al. Recurrence of bile salt export pump deficiency after liver transplantation. N Engl J Med 2009;361:1359–67.Google Scholar
Sundaram, SS, Sokol, RJ. The multiple facets of ABCB4 (MDR3) deficiency. Curr Treat Options Gastroenterol 2007;10:495503.Google Scholar
Reichert, MC, Lammert, F. ABCB4 gene aberrations in human liver disease: an evolving spectrum. Semin Liver Dis 2018;38:299307.Google Scholar
Schatz, SB, Jungst, C, Keitel-Anselmo, V, Kubitz, R, Becker, C, Gerner, P, Pfister, ED, et al. Phenotypic spectrum and diagnostic pitfalls of ABCB4 deficiency depending on age of onset. Hepatol Commun 2018;2:504–14.Google Scholar
Jacquemin, E, De Vree, JM, Cresteil, D, Sokal, EM, Sturm, E, Dumont, M, Scheffer, GL, et al. The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology 2001;120:1448–58.Google Scholar
Lucena, JF, Herrero, JI, Quiroga, J, Sangro, B, Garcia-Foncillas, J, Zabalegui, N, Sola, J, et al. A multidrug resistance 3 gene mutation causing cholelithiasis, cholestasis of pregnancy, and adulthood biliary cirrhosis. Gastroenterology 2003;124:1037–42.Google Scholar
Jacquemin, E, Cresteil, D, Manouvrier, S, Boute, O, Hadchouel, M. Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy. Lancet 1999;353:210–11.Google Scholar
Delaunay, JL, Durand-Schneider, AM, Dossier, C, Falguieres, T, Gautherot, J, Davit-Spraul, A, Ait-Slimane, T, et al. A functional classification of ABCB4 variations causing progressive familial intrahepatic cholestasis type 3. Hepatology 2016;63:1620–31.Google Scholar
Jacquemin, E, Hadchouel, M. Genetic basis of progressive familial intrahepatic cholestasis. J Hepatol 1999;31:377–81.Google Scholar
Delaunay, JL, Durand-Schneider, AM, Delautier, D, Rada, A, Gautherot, J, Jacquemin, E, Ait-Slimane, T, et al. A missense mutation in ABCB4 gene involved in progressive familial intrahepatic cholestasis type 3 leads to a folding defect that can be rescued by low temperature. Hepatology 2009;49:1218–27.Google Scholar
Smit, JJ, Schinkel, AH, Oude Elferink, RP, Groen, AK, Wagenaar, E, van Deemter, L, Mol, CA, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993;75:451–62.Google Scholar
Fickert, P, Fuchsbichler, A, Wagner, M, Zollner, G, Kaser, A, Tilg, H, Krause, R, et al. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 2004;127:261–74.Google Scholar
Aagenaes, O. Hereditary cholestasis with lymphoedema (Aagenaes syndrome, cholestasis-lymphoedema syndrome). New cases and follow-up from infancy to adult age. Scand J Gastroenterol 1998;33:335–45.Google Scholar
Shah, S, Conlin, LK, Gomez, L, Aagenaes, O, Eiklid, K, Knisely, AS, Mennuti, MT, et al. CCBE1 mutation in two siblings, one manifesting lymphedema-cholestasis syndrome, and the other, fetal hydrops. PLoS One 2013;8:e75770.Google Scholar
Drivdal, M, Trydal, T, Hagve, TA, Bergstad, I, Aagenaes, O. Prognosis, with evaluation of general biochemistry, of liver disease in lymphoedema cholestasis syndrome 1 (LCS1/Aagenaes syndrome). Scand J Gastroenterol 2006;41:465–71.Google Scholar
Drivdal, M, Holven, KB, Retterstol, K, Aagenaes, O, Kase, BF. A nine year follow-up study of patients with lymphoedema cholestasis syndrome 1 (LCS1/Aagenaes syndrome). Scand J Clin Lab Invest 2018;78:566–74.Google Scholar
Gissen, P, Tee, L, Johnson, CA, Genin, E, Caliebe, A, Chitayat, D, Clericuzio, C, et al. Clinical and molecular genetic features of ARC syndrome. Hum Genet 2006;120:396409.Google Scholar
Gissen, P, Johnson, CA, Morgan, NV, Stapelbroek, JM, Forshew, T, Cooper, WN, McKiernan, PJ, et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC)syndrome. Nat Genet 2004;36:400–4.Google Scholar
Sambrotta, M, Strautnieks, S, Papouli, E, Rushton, P, Clark, BE, Parry, DA, Logan, CV, et al. Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet 2014;46:326–8.Google Scholar
Girard, M, Lacaille, F, Verkarre, V, Mategot, R, Feldmann, G, Grodet, A, Sauvat, F, et al. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology 2014;60:301–10.Google Scholar
Qiu, YL, Gong, JY, Feng, JY, Wang, RX, Han, J, Liu, T, Lu, Y, et al. Defects in myosin VB are associated with a spectrum of previously undiagnosed low gamma-glutamyltransferase cholestasis. Hepatology 2017;65:1655–69.Google Scholar
Esteve, C, Francescatto, L, Tan, PL, Bourchany, A, De Leusse, C, Marinier, E, Blanchard, A, et al. Loss-of-function mutations in UNC45A cause a syndrome associating cholestasis, diarrhea, impaired hearing, and bone fragility. Am J Hum Genet 2018;102:364–74.Google Scholar
Carlton, VE, Harris, BZ, Puffenberger, EG, Batta, AK, Knisely, AS, Robinson, DL, Strauss, KA, et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 2003;34:91–6.Google Scholar
Drouin, E, Russo, P, Tuchweber, B, Mitchell, G, Rasquin-Weber, A. North American Indian cirrhosis in children: a review of 30 cases. J Pediatr Gastroenterol Nutr 2000;31:395404.Google Scholar
Freed, EF, Prieto, JL, McCann, KL, McStay, B, Baserga, SJ. NOL11, implicated in the pathogenesis of North American Indian childhood cirrhosis, is required for pre-rRNA transcription and processing. PLoS Genet 2012;8:e1002892.Google Scholar
Gomez-Ospina, N, Potter, CJ, Xiao, R, Manickam, K, Kim, MS, Kim, KH, Shneider, BL, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat Commun 2016;7:10713.Google Scholar

References

Alagille, DHE, Thomassin, N. L’atresie des voies biliaires intrahepatiques avec voies biliaires extrahepatiques permeables chez l’enfant. J Par Pediatr 1969;301–18.Google Scholar
Emerick, KM, Rand, EB, Goldmuntz, E, Krantz, ID, Spinner, NB, Piccoli, DA. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 1999;29:822–9.Google Scholar
Kamath, BM, Spinner, NB, Emerick, KM, Chudley, AE, Booth, C, Piccoli, DA, Krantz, ID. Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 2004;109:1354–8.Google Scholar
Crosnier, C, Lykavieris, P, Meunier-Rotival, M, Hadchouel, M. Alagille syndrome. The widening spectrum of arteriohepatic dysplasia. Clin Liver Dis 2000;4:765–78.Google Scholar
Kamath, BM, Bason, L, Piccoli, DA, Krantz, ID, Spinner, NB. Consequences of JAG1 mutations. J Med Genet 2003;40:891–5.Google Scholar
Li, L, Krantz, ID, Deng, Y, Genin, A, Banta, AB, Collins, CC, Qi, M, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 1997;16:243–51.Google Scholar
Oda, T, Elkahloun, AG, Pike, BL, Okajima, K, Krantz, ID, Genin, A, Piccoli, DA, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 1997;16:235–42.Google Scholar
Warthen, DM, Moore, EC, Kamath, BM, Morrissette, JJ, Sanchez, P, Piccoli, DA, Krantz, ID, et al. Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum Mutat 2006;27:436–43.Google Scholar
McDaniell, R, Warthen, DM, Sanchez-Lara, PA, Pai, A, Krantz, ID, Piccoli, DA, Spinner, NB. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 2006;79:169–73.Google Scholar
Alagille, D, Estrada, A, Hadchouel, M, Gautier, M, Odievre, M, Dommergues, JP. Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr 1987;110:195200.Google Scholar
Deprettere, A, Portmann, B, Mowat, AP. Syndromic paucity of the intrahepatic bile ducts: diagnostic difficulty; severe morbidity throughout early childhood. J Pediatr Gastroenterol Nutr 1987;6:865–71.Google Scholar
Hoffenberg, EJ, Narkewicz, MR, Sondheimer, JM, Smith, DJ, Silverman, A, Sokol, RJ. Outcome of syndromic paucity of interlobular bile ducts (Alagille syndrome) with onset of cholestasis in infancy. J Pediatr 1995;127:220–4.Google Scholar
Quiros-Tejeira, RE, Ament, ME, Heyman, MB, Martin, MG, Rosenthal, P, Hall, TR, McDiarmid, SV, et al. Variable morbidity in Alagille syndrome: a review of 43 cases. J Pediatr Gastroenterol Nutr 1999;29:431–7.Google Scholar
Hofmann, JJ, Zovein, AC, Koh, H, Radtke, F, Weinmaster, G, Iruela-Arispe, ML. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 2010;137:4061–72.Google Scholar
Kamath, BM, Munoz, PS, Bab, N, Baker, A, Chen, Z, Spinner, NB, Piccoli, DA. A longitudinal study to identify laboratory predictors of liver disease outcome in Alagille syndrome. J Pediatr Gastroenterol Nutr;50:526–30.Google Scholar
Kamath, BM, Schwarz, KB, Hadzic, N. Alagille syndrome and liver transplantation. J Pediatr Gastroenterol Nutr 2010;50:1115.Google Scholar
Bhadri, VA, Stormon, MO, Arbuckle, S, Lam, AH, Gaskin, KJ, Shun, A. Hepatocellular carcinoma in children with Alagille syndrome. J Pediatr Gastroenterol Nutr 2005;41:676–8.Google Scholar
Wetli, SC, Gralla, ES, Schibli, S, Stranzinger, E. Hepatocellular carcinoma and regenerating nodule in a 3-year-old child with Alagille syndrome. Pediatr Radiol 2010;40:1696–8.Google Scholar
Alhammad, A, Kamath, BM, Chami, R, Ng, VL, Chavhan, GB. Solitary hepatic nodule adjacent to the right portal vein: a common finding of Alagille syndrome? J Pediatr Gastroenterol Nutr 2016;62:226–32.Google Scholar
Rapp, JB, Bellah, RD, Maya, C, Pawel, BR, Anupindi, SA. Giant hepatic regenerative nodules in Alagille syndrome. Pediatr Radiol 2017;47:197204.Google Scholar
Kahn, E. Paucity of interlobular bile ducts. Arteriohepatic dysplasia and nonsyndromic duct paucity. Perspect Pediatr Pathol 1991;14:168215.Google Scholar
Alagille, D, Odievre, M, Gautier, M, Dommergues, JP. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur. J Pediatr 1975;86:6371.Google Scholar
Treem, WR, Krzymowski, GA, Cartun, RW, Pedersen, CA, Hyams, JS, Berman, M. Cytokeratin immunohistochemical examination of liver biopsies in infants with Alagille syndrome and biliary atresia. J Pediatr Gastroenterol Nutr 1992;15:7380.Google Scholar
Dahms, BB, Petrelli, M, Wyllie, R, Henoch, MS, Halpin, TC, Morrison, S, Park, MC, et al. Arteriohepatic dysplasia in infancy and childhood: a longitudinal study of six patients. Hepatology 1982;2:350–8.Google Scholar
Watson, GH, Miller, V. Arteriohepatic dysplasia: familial pulmonary arterial stenosis with neonatal liver disease. Arch Dis Child 1973;48:459–66.Google Scholar
McElhinney, DB, Krantz, ID, Bason, L, Piccoli, DA, Emerick, KM, Spinner, NB, Goldmuntz, E. Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 2002;106:2567–74.Google Scholar
Bauer, RC, Laney, AO, Smith, R, Gerfen, J, Morrissette, JJ, Woyciechowski, S, Garbarini, J, et al. Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat 2010;31:594601.Google Scholar
Lykavieris, P, Crosnier, C, Trichet, C, Meunier-Rotival, M, Hadchouel, M. Bleeding tendency in children with Alagille syndrome. Pediatrics 2003;111:167–70.Google Scholar
Emerick, KM, Krantz, ID, Kamath, BM, Darling, C, Burrowes, DM, Spinner, NB, Whitington, PF, et al. Intracranial vascular abnormalities in patients with Alagille syndrome. J Pediatr Gastroenterol Nutr 2005;41:99107.Google Scholar
Baird, LC, Smith, ER, Ichord, R, Piccoli, DA, Bernard, TJ, Spinner, NB, Scott, RM, et al. Moyamoya syndrome associated with Alagille syndrome: outcome after surgical revascularization. J Pediatr 2015;166:470–3.Google Scholar
Kohaut, J, Pommier, R, Guerin, F, Pariente, D, Jacquemin, E, Martelli, H, Branchereau, S. Abdominal arterial anomalies in children with Alagille syndrome: surgical aspects and outcomes of liver transplantation. J Pediatr Gastroenterol Nutr 2017;64:888–91.Google Scholar
Kamath, BM, Loomes, KM, Oakey, RJ, Krantz, ID. Supernumerary digital flexion creases: an additional clinical manifestation of Alagille syndrome. Am J Med Genet 2002;112:171–5.Google Scholar
Bales, CB, Kamath, BM, Munoz, PS, Nguyen, A, Piccoli, DA, Spinner, NB, Horn, D, et al. Pathologic lower extremity fractures in children with Alagille syndrome. J Pediatr Gastroenterol Nutr 2010;51:6670.Google Scholar
Olsen, IE, Ittenbach, RF, Rovner, AJ, Leonard, MB, Mulberg, AE, Stallings, VA, Piccoli, DA, et al. Deficits in size-adjusted bone mass in children with Alagille syndrome. J Pediatr Gastroenterol Nutr 2005;40:7682.Google Scholar
Loomes, KM, Spino, C, Goodrich, NP, Hangartner, TN, Marker, AE, Heubi, JE, Kamath, BM, et al. Bone density in children with chronic liver disease correlates with growth and cholestasis. Hepatology 2019;69:245–57.Google Scholar
Kamath, BM, Loomes, KM, Oakey, RJ, Emerick, KE, Conversano, T, Spinner, NB, Piccoli, DA, et al. Facial features in Alagille syndrome: specific or cholestasis facies? Am J Med Genet 2002;112:163–70.Google Scholar
Kamath, BM, Bauer, RC, Loomes, KM, Chao, G, Gerfen, J, Hutchinson, A, Hardikar, W, et al. NOTCH2 mutations in Alagille syndrome. J Med Genet 2012;49:138–44.Google Scholar
Rennie, CA, Chowdhury, S, Khan, J, Rajan, F, Jordan, K, Lamb, RJ, Vivian, AJ. The prevalence and associated features of posterior embryotoxon in the general ophthalmic clinic. Eye 2005;19:396–9.Google Scholar
Hingorani, M, Nischal, KK, Davies, A, Bentley, C, Vivian, A, Baker, AJ, Mieli-Vergani, G, et al. Ocular abnormalities in Alagille syndrome. Ophthalmology 1999;106:330–7.Google Scholar
Nischal, KK, Hingorani, M, Bentley, CR, Vivian, AJ, Bird, AC, Baker, AJ, Mowat, AP, et al. Ocular ultrasound in Alagille syndrome: a new sign. Ophthalmology 1997;104:7985.Google Scholar
Strachan, D, Kamath, B, Wengraf, C. How we do it: use of a venous cannulation needle for endoscopic Teflon injection to the vocal folds. J Laryngol Otol 1995;109:1184–5.Google Scholar
Kamath, BM, Spinner, NB, Rosenblum, ND. Renal involvement and the role of Notch signalling in Alagille syndrome. Nat Rev Nephrol 2013;9:409–18.Google Scholar
Kamath, BM, Podkameni, G, Hutchinson, AL, Leonard, LD, Gerfen, J, Krantz, ID, Piccoli, DA, et al. Renal anomalies in Alagille syndrome: a disease-defining feature. Am J Med Genet A 2012;158A:85–9.Google Scholar
Kamath, BM, Yin, W, Miller, H, Anand, R, Rand, EB, Alonso, E, Bucuvalas, J. Outcomes of liver transplantation for patients with Alagille syndrome: the studies of pediatric liver transplantation experience. Liver Transpl 2012;18:940–8.Google Scholar
Arvay, JL, Zemel, BS, Gallagher, PR, Rovner, AJ, Mulberg, AE, Stallings, VA, Haber, BA. Body composition of children aged 1 to 12 years with biliary atresia or Alagille syndrome. J Pediatr Gastroenterol Nutr 2005;40:146–50.Google Scholar
Rovner, AJ, Schall, JI, Jawad, AF, Piccoli, DA, Stallings, VA, Mulberg, AE, Zemel, BS. Rethinking growth failure in Alagille syndrome: the role of dietary intake and steatorrhea. J Pediatr Gastroenterol Nutr 2002;35:495502.Google Scholar
Bucuvalas, JC, Horn, JA, Carlsson, L, Balistreri, WF, Chernausek, SD. Growth hormone insensitivity associated with elevated circulating growth hormone-binding protein in children with Alagille syndrome and short stature. J Clin Endocrinol Metab 1993;76:1477–82.Google Scholar
Kamath, BM, Piccoli, DA, Magee, JC, Sokol, RJ. Pancreatic insufficiency is not a prevalent problem in Alagille syndrome. J Pediatr Gastroenterol Nutr 2012;55:612–14.Google Scholar
Gliwicz, D, Jankowska, I, Wierzbicka, A, Miskiewicz-Chotnicka, A, Lisowska, A, Walkowiak, J. Exocrine pancreatic function in children with Alagille syndrome. Sci Rep 2016;6:35229.Google Scholar
Elisofon, SA, Emerick, KM, Sinacore, JM, Alonso, EM. Health status of patients with Alagille syndrome. J Pediatr Gastroenterol Nutr 2010;51(6):759–65.Google Scholar
Daniel, H, Leung, LGS, Wen, Y, Hawthorne, K, Binita, M, Kamath, VLN, et al. (ChiLDReN). Neurocognitive status in Alagille syndrome: results of a multi-center prospective observational study. Hepatology 2017;66:647–8.Google Scholar
Elisofon, SA, Emerick, KM, Sinacore, JM, Alonso, EM. Health status of patients with Alagille syndrome. J Pediatr Gastroenterol Nutr 2010;51:759–65.Google Scholar
Kamath, BM, Chen, Z, Romero, R, Fredericks, EM, Alonso, EM, Arnon, R, Heubi, J, et al. Quality of life and its determinants in a multicenter cohort of children with Alagille syndrome. J Pediatr 2015;167:390–6 e393.Google Scholar
Kamath, BM, Loomes, KM, Piccoli, DA. Medical management of Alagille syndrome. J Pediatr Gastroenterol Nutr 2010;50:580–6.Google Scholar
Kronsten, V, Fitzpatrick, E, Baker, A. Management of cholestatic pruritus in paediatric patients with Alagille syndrome: the King’s College Hospital experience. J Pediatr Gastroenterol Nutr 2013;57:149–54.Google Scholar
Narkewicz, M, Smith, D, Gregory, C, Lear, J, Osberg, I, Sokol, R. Effect of ursodeoxycholic acid therapy on hepatic function in children with intrahepatic cholestatic liver disease. J Pediatr Gastroenterol Nutr 1998;26:4955.Google Scholar
Kamath, BM, Loomes, KM, Piccoli, DA. Medical management of Alagille syndrome. J Pediatr Gastroenterol Nutr 2010;50:580–6.Google Scholar
Mayo, MJ, Handem, I, Saldana, S, Jacobe, H, Getachew, Y, Rush, AJ. Sertraline as a first-line treatment for cholestatic pruritus. Hepatology 2007;45:666–74.Google Scholar
Thebaut, A, Habes, D, Gottrand, F, Rivet, C, Cohen, J, Debray, D, Jacquemin, E, et al. Sertraline as an additional treatment for cholestatic pruritus in children. J Pediatr Gastroenterol Nutr 2017;64:431–5.Google Scholar
Whitington, P, Whitington, G. Partial external diversion of bile for the treatment of intractable pruritus associated with intrahepatic cholestasis. Gastroenterology 1988;95:130–6.Google Scholar
Wang, KS, Tiao, G, Bass, LM, et al. Analysis of surgical interruption of the enterohepatic circulation as a treatment for pediatric cholestasis. Hepatology 2017;65:1645–54.Google Scholar
Shneider, BL, Spino, C, Kamath, BM, Magee, JC, Bass, LM, Setchell, KD, Miethke, A, et al. Placebo-controlled randomized trial of an intestinal bile salt transport inhibitor for pruritus in Alagille syndrome. Hepatol Commun 2018;2:1184–98.Google Scholar
Kaye, AJ, Rand, EB, Munoz, PS, Spinner, NB, Flake, AW, Kamath, BM. Effect of Kasai procedure on hepatic outcome in Alagille syndrome. J Pediatr Gastroenterol Nutr 2010;51:319–21.Google Scholar
Fujishiro, J, Suzuki, K, Watanabe, M, Uotani, C, Takezoe, T, Takamoto, N, Hayashi, K. Outcomes of Alagille syndrome following the Kasai operation: a systematic review and meta-analysis. Pediatr Surg Int 2018;34:1073–7.Google Scholar
Wasserman, D, Zemel, BS, Mulberg, AE, John, HA, Emerick, KM, Barden, EM, Piccoli, DA, et al. Growth, nutritional status, body composition, and energy expenditure in prepubertal children with Alagille syndrome. J Pediatr 1999;134:172–7.Google Scholar
Razavi, RS, Baker, A, Qureshi, SA, Rosenthal, E, Marsh, MJ, Leech, SC, Rela, M, et al. Hemodynamic response to continuous infusion of dobutamine in Alagille’s syndrome. Transplantation 2001;72:823–8.Google Scholar
Kasahara, M, Kiuchi, T, Inomata, Y, Uryuhara, K, Sakamoto, S, Ito, T, Fujimoto, Y, et al. Living-related liver transplantation for Alagille syndrome. Transplantation 2003;75:2147–50.Google Scholar
Gurkan, A, Emre, S, Fishbein, TM, Brady, L, Millis, M, Birnbaum, A, Kim-Schluger, L, et al. Unsuspected bile duct paucity in donors for living-related liver transplantation: two case reports. Transplantation 1999;67:416–18.Google Scholar
Arnon, R, Annunziato, R, Miloh, T, Suchy, F, Sakworawich, A, Hiroshi, S, Kishore, I, et al. Orthotopic liver transplantation for children with Alagille syndrome. Pediatr Transplant 2010;14:622–8.Google Scholar
Gilbert, MA, Bauer, RC, Rajagopalan, R, Grochowski, CM, Chao, G, McEldrew, D, Nassur, JA, et al. Alagille syndrome mutation update: comprehensive overview of JAG1 and NOTCH2 mutation frequencies and insight into missense variant classification. Hum Mutat 2019;40:2197–220.Google Scholar
Byrne, JL, Harrod, MJ, Friedman, JM, Howard-Peebles, PN. del(20p) with manifestations of arteriohepatic dysplasia. Am J Med Genet 1986;24:673–8.Google Scholar
Spinner, NB, Colliton, RP, Crosnier, C, Krantz, ID, Hadchouel, M, Meunier-Rotival, M. Jagged1 mutations in Alagille syndrome. Hum Mutat 2001;17:1833.Google Scholar
Stenson, PD, Mort, M, Ball, EV, Evans, K, Hayden, M, Heywood, S, Hussain, M, et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017;136:665–77.Google Scholar
Warthen, DM, Moore, EC, Kamath, BM, Morrissette, JJ, Sanchez-Lara, PA, Piccoli, DA, Krantz, ID, et al. Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum Mutat 2006;27:436–43.Google Scholar
Crosnier, C, Driancourt, C, Raynaud, N, Dhorne-Pollet, S, Pollet, N, Bernard, O, Hadchouel, M, et al. Mutations in JAGGED1 gene are predominantly sporadic in Alagille syndrome. Gastroenterology 1999;116:1141–8.Google Scholar
Kamath, BM, Thiel, BD, Gai, X, Conlin, LK, Munoz, PS, Glessner, J, Clark, D, et al. SNP array mapping of chromosome 20p deletions: genotypes, phenotypes, and copy number variation. Hum Mutat 2009;30:371–8.Google Scholar
Gridley, T. Notch signaling in vascular development and physiology. Development 2007;134:2709–18.Google Scholar
Crosnier, C, Attie-Bitach, T, Encha-Razavi, F, Audollent, S, Soudy, F, Hadchouel, M, Meunier-Rotival, M, et al. JAGGED1 gene expression during human embryogenesis elucidates the wide phenotypic spectrum of Alagille syndrome. Hepatology 2000;32:574–81.Google Scholar
McCright, B, Lozier, J, Gridley, T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 2002;129:1075–82.Google Scholar
Andersson, ER, Chivukula, IV, Hankeova, S, Sjoqvist, M, Tsoi, YL, Ramskold, D, Masek, J, et al. Mouse model of Alagille syndrome and mechanisms of Jagged1 missense mutations. Gastroenterology 2018;154:1080–95.Google Scholar
Thakurdas, SM, Lopez, MF, Kakuda, S, Fernandez-Valdivia, R, Zarrin-Khameh, N, Haltiwanger, RS, Jafar-Nejad, H. Jagged 1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology 2016;63:550–65.Google Scholar
Eldadah, ZA, Hamosh, A, Biery, NJ, Montgomery, RA, Duke, M, Elkins, R, Dietz, HC. Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet 2001;10:163–9.Google Scholar
Ryan, MJ, Bales, C, Nelson, A, Gonzalez, DM, Underkoffler, L, Segalov, M, Wilson-Rawls, J, et al. Bile duct proliferation in Jag1/fringe heterozygous mice identifies candidate modifiers of the Alagille syndrome hepatic phenotype. Hepatology 2008;48:1989–97.Google Scholar
Tsai, EA, Gilbert, MA, Grochowski, CM, Underkoffler, LA, Meng, H, Zhang, X, Wang, MM, et al. THBS2 is a candidate modifier of liver disease severity in Alagille syndrome. Cell Mol Gastroenterol Hepatol 2016;2:663–75 e662.Google Scholar
Strazzabosco, M, Fabris, L. Development of the bile ducts: essentials for the clinical hepatologist. J Hepatol 2012;56:1159–70.Google Scholar
Fabris, L, Fiorotto, R, Spirli, C, Cadamuro, M, Mariotti, V, Perugorria, MJ, Banales, JM, et al. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol 2019;16:497511.Google Scholar
Chen, HL, Li, HY, Wu, JF, Wu, SH, Chen, HL, Yang, YH, Hsu, YH, et al. Panel-based next-generation sequencing for the diagnosis of cholestatic genetic liver diseases: clinical utility and challenges. J Pediatr 2019;205:153–9 e156.Google Scholar
Shagrani, M, Burkholder, J, Broering, D, Abouelhoda, M, Faquih, T, El-Kalioby, M, Subhani, SN, et al. Genetic profiling of children with advanced cholestatic liver disease. Clin Genet 2017;92:5261.89.Google Scholar
Kamath, BM et al. Outcomes of childhood cholestasis in Alagille syndrome: results of a multicenter observational study. Hepatol Commun 2020;4:387–98. Available at: https://aasldpubs.onlinelibrary.wiley.com/doi/10.1002/hep4.1468 [last accessed July 18, 2020].Google Scholar

References

Carter, BA, Shulman, R.J. Mechanisms of disease: update on the molecular etiology and fundamentals of parenteral nutrition associated cholestasis. Nat Clin Pract Gastroenterol Hepatol 2007;4(5);277–87.Google Scholar
Kelly, DA. Intestinal failure-associated liver disease: what do we know today? Gastroenterology 2006;130(2 Suppl 1):S70–7.Google Scholar
Javid, PJ, et al. The role of enteral nutrition in the reversal of parenteral nutrition-associated liver dysfunction in infants. J Pediatr Surg 2005;40(6):1015–18.Google Scholar
Christensen, RD, et al. Identifying patients, on the first day of life, at high-risk of developing parenteral nutrition-associated liver disease. J Perinatol 2007;27(5):284–90.Google Scholar
Javid, PJ, et al. A contemporary analysis of parenteral nutrition-associated liver disease in surgical infants. J Pediatr Surg;46(10):1913–17.Google Scholar
Mullick, FG, Moran, CA, Ishak, KG. Total parenteral nutrition: a histopathologic analysis of the liver changes in 20 children. Mod Pathol 1994;7(2):190–4.Google Scholar
Sondheimer, JM, Asturias, E, Cadnapaphornchai, M. Infection and cholestasis in neonates with intestinal resection and long-term parenteral nutrition. J Pediatr Gastroenterol Nutr 1998;27(2):131–7.Google Scholar
Yeop, I, et al. Hepatocellular carcinoma in a child with intestinal failure-associated liver disease. J Pediatr Gastroenterol Nutr 2012;54(5):695–7.Google Scholar
Quiros-Tejeira, RE, et al. Long-term parenteral nutritional support and intestinal adaptation in children with short bowel syndrome: a 25-year experience. J Pediatr 2004;145(2):157–63.Google Scholar
Luman, W, Shaffer, JL. Prevalence, outcome and associated factors of deranged liver function tests in patients on home parenteral nutrition. Clin Nutr 2002;21(4):337–43.Google Scholar
Roslyn, JJ, et al. Increased risk of gallstones in children receiving total parenteral nutrition. Pediatrics 1983;71(5):784–9.Google Scholar
Zambrano, E, et al. Total parenteral nutrition induced liver pathology: an autopsy series of 24 newborn cases. Pediatr Dev Pathol 2004;7(5):425–32.Google Scholar
Naini, BV, Lassman, CR. Total parenteral nutrition therapy and liver injury: a histopathologic study with clinical correlation. Hum Pathol 2012;43(6):826–33.Google Scholar
Fitzgibbons, SC, et al. Relationship between biopsy-proven parenteral nutrition-associated liver fibrosis and biochemical cholestasis in children with short bowel syndrome. J Pediatr Surg 2010;45(1):95–9; discussion 99.Google Scholar
Soden, JS, et al. Failure of resolution of portal fibrosis during omega-3 fatty acid lipid emulsion therapy in two patients with irreversible intestinal failure. J Pediatr 2010;156(2):327–31.Google Scholar
Van Gossum, A, et al. Transient elastography (FibroScan) is not correlated with liver fibrosis but with cholestasis in patients with long-term home parenteral nutrition. J Parenter Enteral Nutr 2015;39(6):719–24.Google Scholar
Hojsak, I, et al. ESPGHAN Committee on Nutrition Position Paper. Intravenous lipid emulsions and risk of hepatotoxicity in infants and children: a systematic review and meta-analysis. J Pediatr Gastroenterol Nutr 2016;62(5):776–92.Google Scholar
Beale, EF, et al. Intrahepatic cholestasis associated with parenteral nutrition in premature infants. Pediatrics 1979;64(3):342–7.Google Scholar
Rangel, SJ, et al. Parenteral nutrition-associated cholestasis: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg 2012;47(1):225–40.Google Scholar
Balistreri, WF, Heubi, JE, Suchy, FJ. Immaturity of the enterohepatic circulation in early life: factors predisposing to “physiologic” maldigestion and cholestasis. J Pediatr Gastroenterol Nutr 1983;2(2):346–54.Google Scholar
Karpen, SJ. Nuclear receptor regulation of hepatic function. J Hepatol 2002;36(6):832–50.Google Scholar
Sokol, RJ, et al. Hepatic oxidant injury and glutathione depletion during total parenteral nutrition in weanling rats. Am J Physiol 1996;270(4 Pt 1):G691700.Google Scholar
Squires, RH, et al. Natural history of pediatric intestinal failure: initial report from the Pediatric Intestinal Failure Consortium. J Pediatr 2012;161(4):723–8.Google Scholar
Hermans, D, et al. Early central catheter infections may contribute to hepatic fibrosis in children receiving long-term parenteral nutrition. J Pediatr Gastroenterol Nutr 2007;44(4):459–63.Google Scholar
El Kasmi, KC, et al. Toll like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition. Hepatology 2012;55(5):1518–28.Google Scholar
Duro, D, et al. Risk factors for parenteral nutrition-associated liver disease following surgical therapy for necrotizing enterocolitis: a Glaser Pediatric Research Network Study. J Pediatr Gastroenterol Nutr 2011;52(5):595600.Google Scholar
Duro, D, Kamin, D, Duggan, C. Overview of pediatric short bowel syndrome. J Pediatr Gastroenterol Nutr 2008;47(Suppl 1):S33–6.Google Scholar
Steinbach, M, et al. Demographic and nutritional factors associated with prolonged cholestatic jaundice in the premature infant. J Perinatol 2008;28(2):129–35.Google Scholar
Forchielli, ML, et al. Aminosyn PF or trophamine: which provides more protection from cholestasis associated with total parenteral nutrition? J Pediatr Gastroenterol Nutr 1995;21(4):374–82.Google Scholar
Wright, K, et al. Increased incidence of parenteral nutrition-associated cholestasis with aminosyn PF compared to trophamine. J Perinatol 2003;23(6):444–50.Google Scholar
Guertin, F, et al. Effect of taurine on total parenteral nutrition-associated cholestasis. J Parenter Enteral Nutr 1991;15(3):247–51.Google Scholar
Tibboel, D, et al. Carnitine deficiency in surgical neonates receiving total parenteral nutrition. J Pediatr Surg 1990;25(4):418–21.Google Scholar
Wales, P.W., (2012). Intestinal failure-associated liver disease, in Duggan, CP and Jaksic, T, (Eds.), Clinical management of intestinal failure (pp. 247–63). K.M.G. Boca Raton, FL: CRC Press.Google Scholar
Buchman, AL, et al. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology 1995;22(5):1399–403.Google Scholar
Misra, S, et al. Plasma choline concentrations in children requiring long-term home parenteral nutrition: a case control study. J Parenter Enteral Nutr 1999;23(5):305–8.Google Scholar
Koletzko, B, et al. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 2005;41 (Suppl 2):S187.Google Scholar
Le, HD, et al. Innovative parenteral and enteral nutrition therapy for intestinal failure. Semin Pediatr Surg 2010;19(1):2734.Google Scholar
Colomb, V, et al. Role of lipid emulsions in cholestasis associated with long-term parenteral nutrition in children. J Parenter Enteral Nutr 2000;24(6):345–50.Google Scholar
Diamond, IR, et al. The role of parenteral lipids in the development of advanced intestinal failure-associated liver disease in infants: a multiple-variable analysis. J Parenter Enteral Nutr 2011;35(5):596602.Google Scholar
Cober, MP, et al. Intravenous fat emulsions reduction for patients with parenteral nutrition-associated liver disease. J Pediatr 2012;160(3):421–7.Google Scholar
Diamond, IR, et al. Changing the paradigm: omegaven for the treatment of liver failure in pediatric short bowel syndrome. J Pediatr Gastroenterol Nutr 2009;48(2):209–15.Google Scholar
Puder, M, et al. Parenteral fish oil improves outcomes in patients with parenteral nutrition-associated liver injury. Ann Surg 2009;250(3):395402.Google Scholar
Gura, KM, et al. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: implications for future management. Pediatrics 2006;118(1):e197201.Google Scholar
Lee, S, et al. Current clinical applications of omega-6 and omega-3 fatty acids. Nutr Clin Pract 2006;21(4):323–41.Google Scholar
Wanten, GJ, Calder, PC. Immune modulation by parenteral lipid emulsions. Am J Clin Nutr 2007;85(5):1171–84.Google Scholar
Schmocker, C, et al. Omega-3 fatty acids alleviate chemically induced acute hepatitis by suppression of cytokines. Hepatology 2007;45(4):864–9.Google Scholar
Diamond, IR, et al. The rationale for the use of parenteral omega-3 lipids in children with short bowel syndrome and liver disease. Pediatr Surg Int 2008;24(7):773–8.Google Scholar
Alwayn, IP, et al. Omega-3 fatty acid supplementation prevents hepatic steatosis in a murine model of nonalcoholic fatty liver disease. Pediatr Res 2005;57(3):445–52.Google Scholar
Clayton, PT, et al. Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology 1993;105(6):1806–13.Google Scholar
Iyer, KR, Spitz, L, Clayton, P. BAPS prize lecture: new insight into mechanisms of parenteral nutrition-associated cholestasis: role of plant sterols. British Association of Paediatric Surgeons. J Pediatr Surg 1998;33(1):16.Google Scholar
Van Aerde, JE, et al. Intravenous fish oil emulsion attenuates total parenteral nutrition-induced cholestasis in newborn piglets. Pediatr Res 1999;45(2):202–8.Google Scholar
Kurvinen, A, et al. Parenteral plant sterols and intestinal failure associated liver disease in neonates: a prospective nationwide study. J Pediatr Gastroenterol Nutr 2012;54(6):803–11.Google Scholar
Tazuke, Y, et al. Hepatic P-glycoprotein changes with total parenteral nutrition administration. J Parenter Enteral Nutr 2004;28(1):16.Google Scholar
Tazuke, Y, Teitelbaum, DH. Alteration of canalicular transporters in a mouse model of total parenteral nutrition. J Pediatr Gastroenterol Nutr 2009;48(2):193202.Google Scholar
Carter, BA, et al. Stigmasterol, a soy lipid-derived phytosterol, is an antagonist of the bile acid nuclear receptor FXR. Pediatr Res 2007;62(3):301–6.Google Scholar
El Kasmi, K, et al. Soy lipid-derived phytosterols are responsible for parenteral nutrition associated liver injury (PNALI) in a mouse model. Hepatology 2011;54(4):89A.Google Scholar
El Kasmi, KC, et al. Macrophage-derived IL-1beta/NF-kappaB signaling mediates parenteral nutrition-associated cholestasis. Nat Commun 2018;9(1):1393.Google Scholar
Lee, WS, Sokol, RJ. Intestinal microbiota, lipids, and the pathogenesis of intestinal failure-associated liver disease. J Pediatr 2015;167(3):519–26.Google Scholar
Lavoie, JC, et al. Reduced bile flow associated with parenteral nutrition is independent of oxidant load and parenteral multivitamins. J Pediatr Gastroenterol Nutr 2005;41(1):108–14.Google Scholar
Blaszyk, H, et al. Hepatic copper in patients receiving long-term total parenteral nutrition. J Clin Gastroenterol 2005;39(4):318–20.Google Scholar
Fell, JM, et al. Manganese toxicity in children receiving long-term parenteral nutrition. Lancet 1996;347(9010):1218–21.Google Scholar
Frem, J, et al. Copper supplementation in parenteral nutrition of cholestatic infants. J Pediatr Gastroenterol Nutr 2010;50(6):650–4.Google Scholar
Oliveira, C, et al. Ethanol locks to prevent catheter-related bloodstream infections in parenteral nutrition: a meta-analysis. Pediatrics 2012;129(2):318–29.Google Scholar
Jensen, AR, et al. The association of cyclic parenteral nutrition and decreased incidence of cholestatic liver disease in patients with gastroschisis. J Pediatr Surg 2009;44(1):183–9.Google Scholar
Gura, KM, et al. Safety and efficacy of a fish-oil-based fat emulsion in the treatment of parenteral nutrition-associated liver disease. Pediatrics 2008;121(3):e678–86.Google Scholar
Cheung, HM, et al. Rescue treatment of infants with intestinal failure and parenteral nutrition-associated cholestasis (PNAC) using a parenteral fish-oil-based lipid. Clin Nutr 2009;28(2):209–12.Google Scholar
Goulet, O, et al. A new intravenous fat emulsion containing soybean oil, medium-chain triglycerides, olive oil, and fish oil: a single-center, double-blind randomized study on efficacy and safety in pediatric patients receiving home parenteral nutrition. J Parenter Enteral Nutr 2010;34(5):485–95.Google Scholar
Lapillonne, A, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: lipids. Clin Nutr 2018;37(6 Pt B):2324–36.Google Scholar
Nandivada, P, et al. Lipid emulsions in the treatment and prevention of parenteral nutrition-associated liver disease in infants and children. Am J Clin Nutr 2016;103(2):629S–34S.Google Scholar
Nandivada, P, et al. Long-term fish oil lipid emulsion use in children with intestinal failure-associated liver disease. J Parenter Enteral Nutr 2017;41(6):930–7.Google Scholar
Gura, KM, Heme Biosynthesis and the Porphyrias in Children Calkins, KL, Puder, M. Use of fish oil intravenous lipid emulsions as monotherapy in the pediatric intestinal failure patient: beyond the package insert. Nutr Clin Pract 2020;35(1):108–18.Google Scholar
Ong, ML, et al. Two-year neurodevelopment and growth outcomes for preterm neonates who received low-dose intravenous soybean oil. J Parenter Enteral Nutr 2018;42(2):352–60.Google Scholar
Diamond, IR, et al. Preventing the progression of intestinal failure-associated liver disease in infants using a composite lipid emulsion: a pilot randomized controlled trial of SMOFlipid. J Parenter Enteral Nutr 2017;41(5):866–77.Google Scholar
Belza, C, et al. An observational study of Smoflipid vs Intralipid on the evolution of intestinal failure-associated liver disease in infants with intestinal failure. J Parenter Enteral Nutr 2020;44(4):688–96.Google Scholar
Wang, C, et al. Long-term outcomes in children with intestinal failure-associated liver disease treated with 6 months of intravenous fish oil followed by resumption of intravenous soybean oil. J Parenter Enteral Nutr 2019;43(6):708–16.Google Scholar
Heubi, JE, et al. Tauroursodeoxycholic acid (TUDCA) in the prevention of total parenteral nutrition-associated liver disease. J Pediatr 2002;141(2):237–42.Google Scholar
Teitelbaum, DH, et al. Use of cholecystokinin-octapeptide for the prevention of parenteral nutrition-associated cholestasis. Pediatrics 2005;115(5):1332–40.Google Scholar
Abu-Elmagd, KM, et al. Five hundred intestinal and multivisceral transplantations at a single center: major advances with new challenges. Ann Surg 2009;250(4):567–81.Google Scholar

Websites for Further Information

Oley Foundation: https://oley.org/default.aspx

American Society for Parenteral and Enteral Nutrition: www.nutritioncare.org/

Short Bowel Syndrome Foundation: http://shortbowelfoundation.org/

GI Kids (NASPGHAN Foundation): https://gikids.org/digestive-topics/short-bowel-syndrome/

References

Langman, J. (1981). The digestive system. In: Langman’s medical embryology, 3rd ed. (pp. 217–20). Baltimore: Williams & Wilkins.Google Scholar
Subramaniam, P, Knisely, A, Portmann, B, et al. Diagnosis of Alagille syndrome – 25 years of experience at King’s College Hospital. J Pediatr Gastroenterol Nutr 2011;52(1):84–9.Google Scholar
Copeland-Halperin, LR, Kapoor, K, Piper, JB. Complicated triple gallbladder: clinical presentation and surgical approach. BMJ Case Rep 2016; 2016:bcr2016215901. doi: 10.1136/bcr-2016-215901Google Scholar
Park, JE, Choi, YH, Cheon, JE, et al. Gallbladder wall edema and ascites are independent predictors of progression to hepatic venoocclusive disease for children with hematopoietic stem cell transplantation. Eur Radiol 2018;28(6):2291–8.Google Scholar
Ternberg, JL, Keating, JP. Acute acalculous cholecystitis. Arch Surg 1975;110:543–7.Google Scholar
Wong, ML, Kaplan, S, Dunkle, LM, et al. Leptospirosis: a childhood disease. J Pediatr 1977;90:532–7.Google Scholar
Holcomb, GW Jr, O’Neill, JA, Holcomb, GW III. Cholecystitis cholelithiasis and common duct stones in children and adolescents. Ann Surg 1980;191:626–35.Google Scholar
Mateos-Corral, D, Garza-Luna, U, Gutierrez-Martin, A. Two reports of acute neonatal acalculous cholecystitis (necrotizing cholecystitis) in a two-week-old premature infant and a term infant. J Pediatr Surg 2006;41(3):e3e5.Google Scholar
Sanders, R. The significance of sonographic gallbladder wall thickening. J Clin Ultrasound 1980;8:143–6.Google Scholar
Patriquin, HB, DiPietro, M, Barber, FE, et al. Sonography of thickened gallbladder wall: causes in children. AJR 1983;141:5760.Google Scholar
Jeffrey, RB Jr, Sommer, FG. Follow-up sonography in suspected acalculous cholecystitis: preliminary clinical experience. J Ultrasound Med 1993;12:183–7.Google Scholar
Thampy, R, Khan, A, Zaki, IH, et al. Acute acalculous cholecystitis in hospitalized patients with hematologic malignancies and prognostic importance of gallbladder ultrasound findings. J Ultrasound Med 2019;38(1):5161.Google Scholar
Swayne, LC. Acute acalculous cholecystitis: sensitivity in detection using technetium-99 m imiodiacetic acid cholescintigraphy. Radiology 1986;160:33–8.Google Scholar
Imamoglu, M, Sarihan, H, Sari, A, Ahmetoglu, A. Acute acalculous cholecystitis in children: diagnosis and treatment. J Pediatr Surg 2002;37:36–9.Google Scholar
Dumont, RC, Caniano, DA. Hypokinetic gallbladder disease: a cause of chronic abdominal pain in children and adolescents. J Pediatr Surg 1999;34:858–61.Google Scholar
Vegunta, RK, Raso, M, Pollock, J, Misra, S, Wallace, LJ, Torres, A Jr., Pearl, RH.. Biliary dyskinesia: the most common indication for cholecystectomy in children. Surgery 2005;138:726–31.Google Scholar
Snajdauf, J, Petru, O, Pycha, K, et al. Porcelain gallbladder with extrahepatic bile duct obstruction in a child. Pediatr Surg I 2006;22(3):293–6.Google Scholar
Kim, SC. Six-year-old girl with porcelain gallbladder. J Ultrasound Med 2019;38(1):5161.Google Scholar
Beauregard, WG, Ferguson, WT. Milk of calcium cholecystitis. J Pediatr 1980;96:876–7.Google Scholar
Palasciano, G, Portincasa, P, Vinciguerra, V, et al. Gallstone prevalence and gallbladder volume in children and adolescents: an epidemiological ultrasonographic survey and relationship to body mass index. Am J Gastroenterol 1989;84:1378–82.Google Scholar
Barbara, L, Sama, C, Labate, AMM, et al. A population study on the prevalence of gallstone disease: the Sirmione Study. Hepatology 1987;7:913–17.Google Scholar
Nilsson, S. Gallbladder disease and sex hormones. Acta Chir Scand 1966;132:275–9.Google Scholar
Jorgensen, T. Prevalence of gallstones in a Danish population. Am J Epidemiol 1987;126:912–21.Google Scholar
Shaffer, EA, Small, DM. Gallstone disease: pathogenesis and management. Curr Probl Surg 1976;13:172.Google Scholar
Holcomb, GW Jr, O’Neill, JA, Holcomb, GW III. Cholecystitis cholelithiasis and common duct stones in children and adolescents. Ann Surg 1980;191:626–35.Google Scholar
Takiff, H, Funkalsrud, EW. Gallbladder disease in childhood. Am J Dis Child 1984;138: 565–8.Google Scholar
Friesen, CA, Roberts, CC. Cholelithiasis: clinical characteristics in children. Clin Pediatr 1989;7:294–8.Google Scholar
Stringer, MD, Soloway, RD, Taylor, DR, et al. Calcium carbonate gallstones in children. J Pediatr Surg 2007;42(10):1677–82.Google Scholar
Sears, HF, Golden, GT, Horsley, JS III. Cholecystitis in adolescents. Arch Surg 1973;106:651–3.Google Scholar
Holcomb, GW Jr, Holcomb, GW. Cholelithiasis in infants, children and adolescents. Pediatr Rev 1991;11:268–74.Google Scholar
Pokorny, WJ, Saleem, M, O’Gorman, RB, et al. Cholelithiasis and cholecystitis in childhood. Am J Surg 1984;148:742–4.Google Scholar
MacMillan, RW, Schullinger, JN, Santulli, RV. Cholelithiasis in childhood. Am J Surg 1974;127:689–92.Google Scholar
Harned, RK, Babbit, DP. Cholelithiasis in childhood. Radiology 1975;117:391–3.Google Scholar
Andrassy, RJ, Treadwell, TA, Ratner, IA. Gallbladder disease in childhood and adolescents. Am J Surg 1976;132:1921.Google Scholar
Odom, FC, Oliver, BB, Kline, M. Gallbladder disease in patients 20 years of age and younger. South Med J 1976;69:12991300.Google Scholar
Grace, N, Rogers, B. Cholecystitis in childhood. Clin Pediatr 1977;16:179–81.Google Scholar
Reif, S, Sloven, DG, Lebenthal, E. Gallstones in children. Am J Dis Child 1991;145:105–8.Google Scholar
Goodman, DB. Cholelithiasis in persons under 25 years old. JAMA 1976;236:1731–2.Google Scholar
MacMillan, RW, Schullinger, JN, Santuli, TV. Cholelithiasis in childhood. Am J Surg 1974;127:689–92.Google Scholar
Bailey, PV, Connors, RH, Tracy, TF Jr, et al. Changing spectrum of cholelithiasis and cholecystitis in infants and children. Am J Surg 1989;158:585–8.Google Scholar
Strauss, RT. Cholelithiasis in childhood. Am J Dis Child 1969;117:689–92.Google Scholar
Bond, LR, Hatty, SR, Horn, MEC, et al. Gallstones in sickle cell disease in the United Kingdom. Br J Med 1987;295:234–6.Google Scholar
Schubert, TT. Hepatobiliary system in sickle cell disease. Gastroenterology 1986;90:2013–21.Google Scholar
Sarnaik, S, Slovis, TL, Corbett, DP, et al. Incidence of cholelithiasis in sickle-cell anemia using the ultrasonic gray-scale technique. J Pediatrics 1980;96:1005–8.Google Scholar
Matos, C, Avni, EF, Van Gansbeke, D, et al. Total parenteral nutrition (TPN) and gallbladder diseases in neonates. J Ultrasound Med 1987;6:243–8.Google Scholar
King, DR, Ginn-Pease, ME, Lloyd, TV, et al. Parenteral nutrition with associated cholelithiasis: another iatrogenic disease of infants and children. J Pediatr Surg 1987;22:593–6.Google Scholar
Roslyn, JJ, Berquist, WE, Pitt, HA, et al. Increased risk of gallstones in children receiving total parenteral nutrition. Pediatrics 1983;71:784–9.Google Scholar
Messing, B, Bories, C, Kunstlinger, F, et al.Does total parenteral nutrition induce gallbladder sludge formation and lithiasis? Gastroenterology 1983;84:1012–19.Google Scholar
Mashako, NNL, Cezard, J-P, Borge, N, et al. The effect of artificial feeding on cholestasis, gallbladder sludge and lithiasis in infants: correlation with plasma cholecystokinin levels. Clin Nutr 1991;10:320–7.Google Scholar
Odievre, M, Gautier, M, Hadchouel, M, et al. Severe familial intrahepatic cholestasis. Arch Dis Child 1973;48:806–12.Google Scholar
Schaad, UB, Suter, S, Gianella-Borradovi, A, et al. A comparison of ceftriaxone and cefuroxime for the treatment of bacterial meningitis in children. N Engl J Med 1990;522:141–7.Google Scholar
Mahmond, H, Schell, M, Pui, C-H. Cholelithiasis after treatment for childhood cancer. Cancer 1991;67:1439–42.Google Scholar
Percy, AK, Lane, JB. Rett syndrome: model of neurodevelopmental disorders. J Clin Neurol 2005;20:718–21.Google Scholar
Sakopoulos, AG, Gundry, S, Razzouk, AJ, Andrews, HG, Bailey, LL. Cholelithiasis in infant and pediatric heart transplant patients. Pediatr Transplant 2002;6:231–4.Google Scholar
Treem, WR, Malet, PF, Gourley, GR, Hyams, JS. Bile and stone analysis in two infants with brown pigment gallstones and infected bile. Gastroenterology 1989;96(2 Pt 1):519–23. doi: 10.1016/s0016-5085(89)91579-5Google Scholar
Admirand, WH, Small, DM. The physico-chemical basis of cholesterol gallstone formation in man. J Clin Invest 1968;47:1043–52.Google Scholar
Carey, MC, Small, DM. The physical chemistry of cholesterol solubility in bile: relationship to gallstone formation and dissolution in man. J Clin Invest 1978;61:9981026.Google Scholar
Lee, SP, LaMont, JT, Carey, MC. Role of gallstone mucous hypersecretion in the evolution of cholesterol gallstone: studies in a prairie dog. J Clin Invest 1981;67:1712–23.Google Scholar
Cirillo, DJ, Wallace, RB, Rodabough, RJ, et al. Effect of estrogen therapy on gallbladder disease. JAMA 2005;293(3):330–9.Google Scholar
Bennion, LJ, Knowler, WC, Mott, DM, et al. Development of lithogenic bile during puberty in Pima Indians. N Engl J Med 1979;300:873–6.Google Scholar
von Bergmann, K, Becker, M, Leiss, O. Biliary cholesterol saturation in non-obese women and non-obese men before and after puberty. Eur J Clin Invest 1986;16:531–5.Google Scholar
Koebnick, C, Smith, N, Black, MH, et al. Pediatric obesity and gallstone disease. J Pediatr Gastroenterol Nutr. 2012. 55(3):328–33.Google Scholar
Fradin, K, Racine, AD, and Belamarich, PF. Obesity and symptomatic cholelithiasis in childhood: epidemiologic and case-control evidence for a strong relation. J Pediatr Gastroenterol Nutr. 2014. 58(1):102–6.Google Scholar
Angelico, M, Gandin, C, Canuzzi, P. Gallstones in cystic fibrosis: a critical reappraisal. Hepatology 1991;14:768–75.Google Scholar
Honore, LH. Cholesterol cholelithiasis in adolescent females. Arch Surg 1980;114:62–4.Google Scholar
Buimsohn, A, Albu, E, Geist, PH, et al. Cholelithiasis and teenage mothers. J Adolesc Health Care 1990;11:339–42.Google Scholar
Katiska, D, et al. Genetic and environmental influences on symptomatic gallstone disease: a Swedish study of 43,141 twin pairs. Hepatology 2005;41:1139–43.Google Scholar
He, J, et al. PXR prevents cholesterol gallstone disease by regulating biosynthesis and transport of bile salts. Gastroenterology 2011;140:2095–106.Google Scholar
Buch, S, et al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat Genet 2007;39:995–9.Google Scholar
Grunhage, F, et al. Increased gallstone risk in humans conferred by common variant of hepatic ATP-binding cassette transported for cholesterol. Hepatology 2007;46:793801.Google Scholar
Kuo, KK, et al. Significant association of ABCG5 604Q and ABCG8 D19H polymorphisms with gallstone disease. Br J Surg 2008;95:1005–11.Google Scholar
Katsika, D, et al. Gallstone disease in Swedish twins: risk is associated with ABCG8 D19H genotype. J Intern Med 2010;267(3):279–85.Google Scholar
Joshi, AD, Andersson, C, Buch, S, et al. Four susceptibility loci for gallstone disease identified in a meta-analysis of genome-wide association studies. Gastroenterology 2016;151(2):351–63.Google Scholar
Ferkingstad, E, Oddsson, A, Gretarsdottir, S, et al. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease. Nat Commun 2018;9(1):5101.Google Scholar
Renner, O, et al. A variant of the SLC10A2 gene encoding the apical sodium-dependent bile acid transporter is a risk factor for gallstone disease. PLoS One 2009;4:e7321.Google Scholar
Vasavda, N, et al. The linear effects of alpha-thalassemia, the UGT1A1 and HMOX1 polymorphisms on cholelithiasis in sickle cell disease. Br J Haematol 2007;138:263–70.Google Scholar
Wasmuth, HE, et al. Coinheritance of Gilbert syndrome-associated UGT1A1 mutation increases gallstone risk in cystic fibrosis. Hepatology 2006;43:738–41.Google Scholar
Gracie, WA, Ransohoff, DF. The natural history of silent gallstones. The innocent gallstone is not a myth. N Engl J Med 1982;307:798800.Google Scholar
Comfort, MW, Gray, HK, Wilson, JM. The silent gallstone: a ten to twenty year follow-up of 112 cases. Ann Surg 1948;128:931–7.Google Scholar
Newman, KD, Marmon, LM, Attorri, R, et al. Laparoscopic cholecystectomy in pediatric patients. J Pediatr Surg 1991;26:1184–5.Google Scholar
Esposito, C, Gonzales Sabin, MA, Corcione, F, Sacco, R, Esposito, G, Settimi, A. Results and complications of laparoscopic cholecystectomy in childhood. Surg Endoosc 2001;15:890–2.Google Scholar
Sackmann, M, Ippisch, E, Sauerbruch, T, et al. Early gallstone recurrence rate after successful shock-wave therapy. Gastroenterology 1990;98:392–6.Google Scholar
Bogue, C, et al. Risk factors, complications, and outcomes of gallstones in children: a single-center review. J Pediatr Gastroenterol Nutr 2010;50(3):303–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×