Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-08T04:28:26.402Z Has data issue: false hasContentIssue false

12 - The foraging biology of the Gekkota: life in the middle

Published online by Cambridge University Press:  04 August 2010

Aaron M. Bauer
Affiliation:
Department of Biology Villanova University
Stephen M. Reilly
Affiliation:
Ohio University
Lance B. McBrayer
Affiliation:
Georgia Southern University
Donald B. Miles
Affiliation:
Ohio University
Get access

Summary

Introduction

Although the basic dichotomy in lizard foraging modes established by Pianka (1966) has become a paradigm supported by decades of subsequent research, not all lizards can be neatly characterized as either sit-and-wait predators or wide foragers. Although some (perhaps even most) lizard species may indeed fit relatively conveniently into one of these categories, the recognition that foraging mode can change in different habitats (Polynova and Lobachev, 1981; Ananjeva and Tsellarius, 1986), seasonally (Pietruszka, 1986; Nemes, 2002), with changing food abundance (Dunham, 1983; Durtsche, 1995), with ontogeny (Huey and Pianka, 1981), or even with different prey types (Greeff and Whiting, 2000) has shattered any expectation that it can be assumed to be an invariant characteristic of a species.

However, intraspecific variability in foraging mode does not preclude the existence of higher-order patterns of foraging mode distribution across lizards more broadly. Both Pietruszka (1986) and McLaughlin (1989) found, based on movement data, that the dichotomy between sit-and-wait and wide-foraging strategies was real. Perry et al. (1990), however, argued that the distribution is not bimodal and that intermediate modes, as defined by movement patterns, do exist. Indeed, Pianka (1971, 1974) argued that ambush and wide-foraging strategies were the ends of a continuum and Magnusson et al. (1985) recognized that species characterized by intermittent movements were not appropriately characterized by either of the recognized strategies.

Type
Chapter
Information
Lizard Ecology , pp. 371 - 404
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ananjeva, N. B. and Tsellarius, A. Yu. (1986). On the factors determining desert lizards' diet. In Studies in Herpetology, ed. Roček, Z., pp. 445–8. Prague: Charles University and Societas Europaea Herpetologica.Google Scholar
Anderson, R. A. and Karasov, W. H. (1988). Energetics of the lizard Cnemidophorus tigris and life history consequences of food-acquisition mode. Ecol. Monogr. 58, 79–110.CrossRefGoogle Scholar
Andrews, C. and Bertram, J. E. A. (1997). Mechanical work as a determinant of prey-handling behavior in the tokay gecko (Gekko gecko). Physiol. Zool. 70, 193–201.CrossRefGoogle Scholar
Andrews, R. M. and Pough, F. H. (1985). Metabolism of squamate reptiles: allometric and ecological relationships. Physiol. Zool. 58, 214–31.CrossRefGoogle Scholar
Angilletta, M. J. Jr. and Werner, Y. L. (1998). Australian geckos do not display diel variation in thermoregulatory behavior. Copeia 1998, 736–42.CrossRefGoogle Scholar
Angilletta, M. J. Jr., Montgomery, L. G. and Werner, Y. L. (1999). Temperature preference in geckos: diel variation in juveniles and adults. Herpetologica 55, 212–22.Google Scholar
Arad, Z. (1995). Physiological responses to increasing ambient temperature in three ecologically different, congeneric lizards (Gekkoninae: Ptyodactylus). Comp. Biochem. Physiol. 112A, 305–11.CrossRefGoogle Scholar
Arnold, E. N. (1984). Ecology of lowland lizards in the eastern United Arab Emirates. J. Zool. Lond. 204, 329–54.CrossRefGoogle Scholar
Arnold, E. N. (1993). Historical changes in the ecology and behaviour of semaphore geckos (Pristurus, Gekkonidae) and their relatives. J. Zool. Lond. 229, 353–84.CrossRefGoogle Scholar
Arnold, E. N. and Jones, C. G. (1994). The night geckos of the genus Nactus in the Mascarene Islands with a description of the distinctive population on Round Island. Dodo 30, 119–31.Google Scholar
Autumn, K. (1999). Secondarily diurnal geckos return to cost of locomotion typical of diurnal lizards. Physiol. Biochem. Zool. 72, 339–51.CrossRefGoogle ScholarPubMed
Autumn, K. and DeNardo, D. F. (1995). Behavioral thermoregulation increases growth rate in a nocturnal lizard. J. Herpetol. 29, 157–62.CrossRefGoogle Scholar
Autumn, K., Farley, C. T., Enshwiller, M. and Full, R. J. (1997). Low cost of locomotion in the banded gecko: a test of the nocturnality hypothesis. Physiol. Biochem. Zool. 70, 660–9.Google ScholarPubMed
Autumn, K., Jindrich, D., DeNardo, D. and Mueller, R. (1999). Locomotor performance at low temperature and the evolution of nocturnality in geckos. Evolution 53, 580–99.CrossRefGoogle ScholarPubMed
Autumn, K., Weinstein, R. B. and Full, R. J. (1994). Low cost of locomotion increases performance at low temperature in a nocturnal lizard. Physiol. Zool. 67, 238–62.CrossRefGoogle Scholar
Avery, R. A. (1981). Feeding ecology of the nocturnal gecko Hemidactylus brookii in Ghana. Amph.-Rept. 1, 269–76.CrossRefGoogle Scholar
Bauer, A. M. (1986). Systematics, biogeography and evolutionary morphology of the Carphodactylini (Reptilia: Gekkonidae). Ph.D. dissertation, University of California, Berkeley.
Bauer, A. M. (2002). Lizards. In Encyclopedia of Amphibians and Reptiles, ed. Halliday, T. and Adler, K., pp. 138–75. Abingdon, UK: Andromeda Oxford Ltd.CrossRefGoogle Scholar
Bauer, A. M. and Vindum, J. V. (1990). A checklist and key to the herpetofauna of New Caledonia, with remarks on biogeography. Proc. Calif. Acad. Sci. 47, 17–45.Google Scholar
Bauer, A. M., Russell, A. P. and Edgar, B. D. (1990 [1989]). Utilization of the termite Hodotermes mossambicus (Hagen) by gekkonid lizards near Keetmanshoop, South West Africa. S. Afr. J. Zool. 24, 239–43.CrossRefGoogle Scholar
Bogert, C. M. and Martin del Campo, R. (1956). The Gila monster and its allies. The relationships, habits, and behavior of the lizards of the family Helodermatidae. Bull. Amer. Mus. Nat. Hist. 109, 1–238.Google Scholar
Bonine, K. E., Gleeson, T. T. and Garland, T. Jr. (2001). Comparative analysis of fiber-type composition in the iliofibularis muscle of phrynosomatid lizards (Squamata). J. Morphol. 250, 265–80.CrossRefGoogle Scholar
Bradshaw, S. D., Gans, C. and Girons, Saint H. (1980). Behavioral thermoregulation in a pygopodid lizard. Copeia 1980, 738–43.CrossRefGoogle Scholar
Brillet, C. (1990). Rôle des informations olfactives et visuelles dans la discrimination du sexe chez deux espèces de geckos nocturnes: Eublepharis macularius et Paroedura pictus. Biol. Behav. 15, 1–22.Google Scholar
Brillet, C. (1991). Analyse comparative de la structure du comportement sexuel chez deux espèces de geckos nocturnes: Eublepharis macularius et Paroedura pictus (Sauria, Gekkonidae). Behaviour 117, 117–43.CrossRefGoogle Scholar
Bustard, H. R. (1967). Activity cycle and thermoregulation in the Australian gecko Gehyra variegata. Copeia 1967, 753–8.CrossRefGoogle Scholar
Bustard, H. R. (1968a). The ecology of the Australian gecko Gehyra variegata in northern New South Wales. J. Zool. Lond. 154, 113–38.CrossRefGoogle Scholar
Bustard, H. R. (1968b). The ecology of the Australian gecko Heteronotia binoei in northern New South Wales. J. Zool. Lond. 156, 483–97.CrossRefGoogle Scholar
Bustard, H. R. (1970). Australian Lizards. Brisbane: William Collins (Australia) Ltd.Google Scholar
Bustard, H. R. (1971). A population study of the eyed gecko, Oedura ocellata Boulenger, in northern New South Wales, Australia. Copeia 1971, 658–69.CrossRefGoogle Scholar
Camp., C. (1923). Classification of the lizards. Bull. Amer. Mus. Nat. Hist. 48, 289–481.Google Scholar
Castanzo, R. A. and Bauer, A. M. (1998). Comparative aspects of the ecology of Mabuya acutilabris (Squamata: Scincidae), a lacertid-like skink from arid south western Africa. J. Afr. Zool. 112, 109–22.Google Scholar
Chou, L. M., Leong, C. F. and Choo, B. L. (1988). The role of optic, auditory and olfactory senses in prey hunting by two species of geckos. J. Herpetol. 22, 349–51.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1994a). Chemical discrimination by tongue-flicking in lizards: a review with hypotheses on its origin and its ecological and phylogenetic relationships. J. Chem. Ecol. 20, 439–87.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1994b). Prey chemical discrimination, foraging mode, and phylogeny. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 95–116. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1995a). Prey chemical discrimination and foraging mode in gekkonoid lizards. Herpetol. Monogr. 9, 120–9.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1995b). Evolution and function of lingual shape in lizards, with emphasis on elongation, extensibility, and chemical sampling. J. Chem. Ecol. 21, 477–505.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1995c). Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim. Behav. 50, 973–85.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1996a). Preliminary reconstructions of nasal chemosensory evolution in Squamata. Amph.-Rept. 17, 395–415.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1996b). Variation and evolution of forked tongues in squamate reptiles. Herpetol. Nat. Hist. 4, 135–50.Google Scholar
Cooper, W. E. Jr. (1997a). Independent evolution of squamate olfaction and vomerolfaction and correlated evolution of vomerolfaction and lingual structure. Amph.-Rept. 18, 85–105.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1997b). Correlated evolution of prey chemical discrimination with foraging, lingual morphology and vomeronasal chemoreceptor abundance in lizards. Behav. Ecol. Sociobiol. 41, 257–65.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1998). Prey chemical discrimination indicated by tongue-flicking in the eublepharid gecko Coleonyx variegatus. J. Exp. Zool. 281, 21–5.3.0.CO;2-E>CrossRefGoogle Scholar
Cooper, W. E. Jr. (2000a). Correspondence between diet and food chemical discriminations by omnivorous geckos (Rhacodactylus). J. Chem. Ecol. 26, 755–63.CrossRefGoogle Scholar
Cooper, W. E. Jr. (2000b). An adaptive difference in the relationship between foraging mode and responses to prey chemicals in two congeneric scincid lizards. Ethology 106, 193–206.CrossRefGoogle Scholar
Cooper, W. E. Jr. (2002). Convergent evolution of plant chemical discrimination by omnivorous and herbivorous scleroglossan lizards. J. Zool. Lond. 257, 53–66.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Habegger, J. J. (2000). Lingual and biting response to food chemicals by some eublepharid and gekkonid geckos. J. Herpetol. 34, 360–8.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Steele, L. J. (1997). Pheromonal discrimination of sex by male and female leopard geckos (Eublepharis macularius). J. Chem. Ecol. 23, 2967–77.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Steele, L. J. (1999). Lingually mediated discriminations among prey chemicals and control stimuli in cordyliform lizards: presence in a gerrhosaurid and absence in two cordylids. Herpetologica 55, 361–8.Google Scholar
Cooper, W. E. Jr. and Vitt, L. J. (2002). Distribution, extent, and evolution of plant consumption by lizards. J. Zool. Lond. 257, 487–517.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Whiting, M. J. (2000). Ambush and active foraging modes both occur in the scincid genus Mabuya. Copeia 2000, 112–18.CrossRefGoogle Scholar
Cooper, W. E. Jr., DePerno, C. S. and Steele, L. J. (1996a). Do lingual behaviors and locomotion by two gekkotan lizards after experimental loss of bitten prey indicate chemosensory search. Amph.-Rept. 17, 217–31.CrossRefGoogle Scholar
Cooper, W. E. Jr., DePerno, C. S. and Steele, L. J. (1996b). Effects of movement and eating on chemosensory tongue-flicking and on labial-licking in the leopard gecko (Eublepharis macularius). Chemoecology 7, 179–83.CrossRefGoogle Scholar
Cooper, W. E. Jr., Whiting, M. J. and Wyk, J. H. (1997). Foraging modes of cordyliform lizards. S. Afr. J. Zool. 32, 9–13.CrossRefGoogle Scholar
Cooper, W. E. Jr., Whiting, M. J., Wyk, J. H. and Mouton, P. leF. N. (1999). Movement- and attack-based indices of foraging mode and ambush foraging in some gekkonid and agamine lizards from southern Africa. Amph.-Rept. 20, 391–9.CrossRefGoogle Scholar
Dial, B. E. (1978a). Aspects of the behavioral ecology of two Chihuahuan desert geckos (Reptilia, Lacertilia, Gekkonidae). J. Herpetol. 12, 209–16.CrossRefGoogle Scholar
Dial, B. E. (1978b). The thermal ecology of two sympatric nocturnal Coleonyx (Lacertilia: Gekkonidae). Herpetologica 34, 194–201.Google Scholar
Dial, B. E. and Schwenk, K. (1996). Olfaction and predator detection in Coleonyx brevis (Squamata: Eublepharidae), with comments on the functional significance of buccal pulsing in geckos. J. Exp. Zool. 276, 415–24.3.0.CO;2-Q>CrossRefGoogle Scholar
Doughty, P. (1996). Allometry of reproduction in two species of gekkonid lizards (Gehyra): effects of body size miniaturization on clutch and egg sizes. J. Zool. Lond. 240, 703–15.CrossRefGoogle Scholar
Doughty, P. (1997). The effects of “fixed” clutch sizes on lizard life-histories: reproduction in the Australian velvet gecko, Oedura lesueurii. J. Herpetol. 31, 266–72.CrossRefGoogle Scholar
Doughty, P. and Shine, R. (1995). Life in two dimensions: natural history of the southern leaf-tailed gecko, Phyllurus platurus. Herpetologica 51, 193–201.Google Scholar
Dunham, A. E. (1983). Realized niche overlap, resource abundance, and intensity of interspecific competition. In Lizard Ecology, Studies of a Model Organism, ed. Huey, R. B., Pianka, E. R. and Schoener, T. W., pp. 261–80. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Dunham, A. E. and Miles, D. B. (1985). Patterns of covariation in life history traits of squamate reptiles: the effects of size and phylogeny reconsidered. Am. Nat. 126, 231–57.CrossRefGoogle Scholar
Dunham, A. E., Miles, D. B. and Reznick, D. N. (1988). Life history patterns in squamate reptiles. In Biology of the Reptilia, vol. 16, ed. Gans, C. and Huey, R. B., pp. 441–522. New York: Alan R. Liss.Google Scholar
Durtsche, R. D. (1995). Foraging ecology of the fringe-toed lizard, Uma inornata, during periods of high and low food abundance. Copeia 1995, 915–26.CrossRefGoogle Scholar
Eifler, D. A. (1995). Patterns of plant visitation by nectar-feeding lizards. Oecologia 101, 228–33.CrossRefGoogle ScholarPubMed
Estes, R., de Queiroz, K. and Gauther, J. (1988). Phylogenetic relationships within Squamata. In Phylogenetic Relationships of the Lizard Families, ed. Estes, R. and Pregill, G., pp. 119–281. Stanford, CA: Stanford University Press.Google Scholar
Evans, L. T. (1967). Introduction. In Lizard Ecology: A Symposium, ed. Milstead, W. W., pp. 83–6. Columbia, MO: University of Missouri Press.Google Scholar
Fitch, H. S. (1970). Reproductive cycles in lizards and snakes. Misc. Publ. Univ. Kansas Nat. Hist. Mus. 52, 1–247.Google Scholar
Garland, T. Jr. (1994). Phylogenetic analyses of lizard endurance capacity in relation to body size and body temperature. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 237–59. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Garland, T. Jr. (1999). Laboratory endurance capacity predicts variation in field locomotor behaviour among lizard species. Anim. Behav. 58, 77–83.CrossRefGoogle ScholarPubMed
Garland, T. Jr. and Losos, J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In Ecological Morphology: Integrative Organismal Biology, ed. Wainwright, P. C. and Reilly, S. M., pp. 240–302. Chicago, IL: University of Chicago Press.Google Scholar
Gil, M. J., Guerrero, F. and Pérez-Mellado, V. (1994a). Seasonal variation in diet composition and prey selection in the Mediterranean gecko Tarentola mauritanica. Israel J. Zool. 40, 61–74.Google Scholar
Gil, M. J., Guerrero, F. and Pérez-Mellado, V. (1994b). Diel variation in preferred body temperatures of the Moorish gecko Tarentola mauritanica during summer. Herpetol. J. 4, 56–9.Google Scholar
Greeff, J. M. and Whiting, M. J. (2000). Foraging-mode plasticity in the lizard Platysaurus broadleyi. Herpetologica 56, 402–7.Google Scholar
Greer, A. E. (1967). The ecology and behavior of two sympatric Lygodactylus geckos. Breviora 268, 1–19.Google Scholar
Halpern, M. (1992). Nasal chemical senses in reptiles: structure and function. In Biology of the Reptilia, vol. 18, ed. Gans, C. and Crews, D., pp. 423–523. Chicago, IL: University of Chicago PressGoogle Scholar
Han, D., Zhou, K. and Bauer, A. M. (2004). Phylogenetic relationships among the higher taxonomic categories of gekkotan lizards inferred from C-mos nuclear DNA sequences. Biol. J. Linn. Soc. 83, 353–68.CrossRefGoogle Scholar
Harris, D. J., Marshall, J. C. and Crandall, K. A. (2001). Squamate relationships based on C-mos nuclear DNA sequences: increased taxon sampling improves bootstrap support. Amph.-Rept. 22, 235–42.CrossRefGoogle Scholar
Harris, D. J., Sinclair, E. A., Mercader, N. L., Marshall, J. C. and Crandall, K. A. (1999). Squamate relationships based on C-mos nuclear DNA sequences. Herpetol. J. 9, 147–51.Google Scholar
Henkel, F. W. and Schmidt, W. (2003). Professional Breeders Series: Geckos. Frankfurt-am-Main: Edition Chimaira.Google Scholar
Henle, K. (1990a). Population ecology and life history of three terrestrial geckos in arid Australia. Copeia 1990, 759–81.CrossRefGoogle Scholar
Henle, K. (1990b). Population ecology and life history of the arboreal gecko Gehyra variegata in arid Australia. Herpetol. Monogr. 4, 30–60.CrossRefGoogle Scholar
Henle, K. (1990c). Life-history-Evolution von Echsen. In Evolutionsprozesse im Tierreich, ed. Streit, B., pp. 181–99. Basel: Birkhäuser.Google Scholar
Henle, K. (1991). Life history patterns in lizards of the arid and semiarid zone of Australia. Oecologia 88, 347–58.CrossRefGoogle Scholar
Herrel, A., Aerts, P. and Vree, F. (2000). Cranial kinesis in geckoes: functional implications. J. Exp. Biol. 203, 1415–23.Google ScholarPubMed
Herrel, A., Vree, F., Delheusy, V. and Gans, C. (1999). Cranial kinesis in gekkonid lizards. J. Exp. Biol. 202, 3687–98.Google ScholarPubMed
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.CrossRefGoogle Scholar
Huey, R. B. and Pianka, E. R. (1983). Temporal separation of activity and interspecific dietary overlap. In Lizard Ecology, Studies of a Model Organism, ed. Huey, R. B., Pianka, E. R. and Schoener, T. W., pp. 281–90. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Huey, R. B. and Slatkin, M. (1976). Cost and benefits of lizard thermoregulation. Quart. Rev. Biol. 51, 363–84.CrossRefGoogle ScholarPubMed
Huey, R. B., Niewiarowski, P. H., Kaufmann, J. and Herron, J. C. (1989). Thermal biology of nocturnal ectotherms: is sprint performance of geckos maximal at low body temperatures?Physiol. Zool. 62, 488–504.CrossRefGoogle Scholar
Huey, R. B., Pianka, E. R., and Vitt, L. J. (2001). How often do lizards “run on empty”?Ecology 82, 1–7.Google Scholar
Kingsbury, B. A. (1989). Factors influencing activity in Coleonyx variegatus. J. Herpetol. 23, 399–404.CrossRefGoogle Scholar
Kluge, A. G. (1987). Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, i–iv, 1–54.Google Scholar
Kluge, A. G. (2001). Gekkotan lizard taxonomy. Hamadryad 26, 1–209.Google Scholar
Lee, M. S. Y. (1998). Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biol. J. Linn. Soc. 65, 369–453.CrossRefGoogle Scholar
Lord, J. M. and Marshall, J. (2001). Correlations between growth form, habitat, and fruit colour in the New Zealand flora, with reference to frugivory by lizards. New Zealand J. Bot. 39, 567–76.CrossRefGoogle Scholar
Losos, J. B. (1990). Thermal sensitivity of sprinting and clinging performance in the tokay gecko (Gekko gecko). Asiatic Herpetol. Res. 3, 54–9.Google Scholar
Macey, J. R., Larson, A., Ananjeva, N. B. and Papenfuss, T. J. (1997). Replication slippage may cause parallel evolution in the secondary structures of mitochondrial transfer RNAs. Mol. Biol. Evol. 14, 30–9.CrossRefGoogle ScholarPubMed
Magnusson, W. E., Paiva, Junqueira L., da Rocha, Moreira R.et al. (1985). The correlates of foraging mode in a community of Brazilian lizards. Herpetologica 41, 324–32.Google Scholar
Marquet, P. A., Bozinović, F., Medel, R. G., Werner, Y. L. and Jaksić, F. M. (1990). Ecology of Garthia gaudichaudi, a gecko endemic to the semiarid region of Chile. J. Herpetol. 24, 431–4.CrossRefGoogle Scholar
Mason, R. T. and Gutzke, W. H. N. (1990). Sex recognition in leopard gecko, Eublepharis macularius (Sauria: Gekkonidae): possible mediation by skin-derived semiochemicals. J. Chem. Ecol. 16, 27–36.CrossRefGoogle ScholarPubMed
McLaughlin, R. L. (1989). Search modes of birds and lizards: evidence for alternative movement patterns. Amer. Nat. 133, 654–70.CrossRefGoogle Scholar
Mirwald, M. and Perry, S. F. (1991). Muscle fiber types in ventilatory and locomotor muscles of the tokay, Gekko gecko: a histochemical study. Comp. Biochem. Physiol. 98A, 407–11.CrossRefGoogle Scholar
Moermond, T. C. (1979). The influence of habitat structure on Anolis foraging behavior. Behaviour 70, 147–67.CrossRefGoogle Scholar
Murray, B. A., Bradshaw, S. D. and Edward, D. H. (1991). Feeding behavior and the occurrence of caudal luring in Burton's pygopodid Lialis burtoni (Sauria: Pygopodidae). Copeia 1991, 509–16.CrossRefGoogle Scholar
Nemes, S. (2002). Foraging mode of the sand lizard, Lacerta agilis, at the beginning of its yearly activity period. Russ. J. Herpetol. 9, 57–62.Google Scholar
O'Brien, W. J., Evans, B. I. and Browman, H. I. (1989). Flexible search tactics and efficient foraging in salutatory searching animals. Oecologia 80, 100–10.CrossRefGoogle Scholar
Olesen, J. M. and Valido, A. (2003). Lizards as pollinators and seed dispersers: an island phenomenon. Trends Ecol. Evol. 18, 177–80.CrossRefGoogle Scholar
Patchell, F. C. and Shine, R. (1986). Food habits and reproductive biology of the Australian legless lizards (Pygopodidae). Copeia 1986, 30–9.CrossRefGoogle Scholar
Paulissen, M. A. and Buchanan, T. M. (1991). Observations on the natural history of the Mediterranean gecko, Hemidactylus turcicus (Sauria: Gekkonidae) in northwestern Arkansas. Proc. Arkansas Acad. Sci. 45, 81–3.Google Scholar
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Amer. Nat. 153, 98–109.CrossRefGoogle ScholarPubMed
Perry, G. and Brandeis, M. (1992). Variation in stomach contents of the gecko Ptyodactylus hasselquistii guttatus in relation to sex, age, season and locality. Amph.-Rept. 13, 275–82.CrossRefGoogle Scholar
Perry, G. and Pianka, E. R. (1997). Animal foraging: past, present and future. Trends Ecol. Evol. 12, 360–4.CrossRefGoogle ScholarPubMed
Perry, G., Lampl, I., Lerner, A.et al. (1990). Foraging mode in lacertid lizards: variation and correlates. Amph.-Rept. 11, 373–84.CrossRefGoogle Scholar
Peterson, C. C. (1990). Paradoxically low metabolic rate of the diurnal gecko Rhoptropus afer. Copeia 1990, 233–7.CrossRefGoogle Scholar
Petren, K. and Case, T. J. (1996). An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–32CrossRefGoogle Scholar
Pianka, E. R. (1966). Convexity, desert lizards, and spatial heterogeneity. Ecology 47, 1055–9.CrossRefGoogle Scholar
Pianka, E. R. (1971). Lizard species density in the Kalahari Desert. Ecology 52, 1024–9.CrossRefGoogle Scholar
Pianka, E. R. (1974). Evolutionary Ecology. New York: Harper and Row.Google Scholar
Pianka, E. R. (1986). Ecology and Natural History of Desert Lizards. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Pianka, E. R. and Huey, R. B. (1978). Comparative ecology, resource utilization and niche segregation among gekkonid lizards in the southern Kalahari. Copeia 1978, 691–701.CrossRefGoogle Scholar
Pianka, E. R. and Pianka, H. D. (1976). Comparative ecology of twelve species of nocturnal lizards (Gekkonidae) in the Western Australian Desert. Copeia 1976, 125–42.CrossRefGoogle Scholar
Pietruszka, R. D. (1986). Search tactics of desert lizards: how polarized are they? Anim. Behav. 34, 1742–58.CrossRefGoogle Scholar
Polynova, G. V. and Lobachev, V. S. (1981). Territorial relationships in Phrynocephalus mystaceus [in Russian]. Zool. Zh. 60, 1649–57.Google Scholar
Ratnam, J. (1993). Status and natural history of the Andaman day gecko, Phelsuma andamanensis. Dactylus 2(2), 59–66.Google Scholar
Regal, P. J. (1978). Behavioral differences between reptiles and mammals: an analysis of activity and mental capabilities. In Behavior and Neurology of Lizards, an Interdisciplinary Colloquium, ed. Greenberg, N. and MacLean, P. D., pp. 183–202. Rockville, MD: U.S. Department of Health, Education, and Welfare.CrossRefGoogle Scholar
Regal, P. J. (1983). The adaptive zone and behavior of lizards. In Lizard Ecology, Studies of a Model Organism, ed. Huey, R. B., Pianka, E. R. and Schoener, T. W., pp. 105–18. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Rieppel, O. (1984). The structure of the skull and jaw adductor musculature in the Gekkota, with comments on the phylogenetic relationships of the Xantusiidae (Reptilia: Lacertilia). Zool. J. Linn. Soc. 82, 291–318.CrossRefGoogle Scholar
Rieppel, O. (1994). Studies on skeleton formation in reptiles. Patterns of ossification in the limb skeleton of Gehyra oceanica (Lesson) and Lepidodactylus lugubris (Dumeril & Bibron). Ann. Sci. Nat., Zool. 13(15), 83–92.Google Scholar
Rösler, H. (2000). Kommentierte Liste der rezent, subrezent und fossil bekannten Geckotaxa (Reptilia: Gekkonomorpha). Gekkota 2, 28–153.Google Scholar
Saint, K. M., Austin, C. C., Donnellan, S. C. and Hutchinson, M. N. (1998). C-mos, a nuclear marker useful for squamate phylogenetic analysis. Mol. Phylogenet. Evol. 10, 259–63.CrossRefGoogle ScholarPubMed
Schwenk, K. (1993a). Are geckos olfactory specialists? J. Zool. Lond. 229, 289–302.CrossRefGoogle Scholar
Schwenk, K. (1993b). The evolution of chemoreception in squamate reptiles: a phylogenetic approach. Brain Behav. Evol. 41, 124–37.CrossRefGoogle Scholar
Schwenk, K. (1994). Comparative biology and the importance of cladistic classification: a case study from the sensory biology of squamate reptiles. Biol. J. Linn. Soc. 52, 69–82.CrossRefGoogle Scholar
Schwenk, K. (2000). Feeding in lepidosaurs. In Feeding, ed. Schwenk, K., pp. 175–291. San Diego, CA: Academic Press.Google Scholar
Semenov, D. V. and Borkin, L. J. (1992). On the ecology of Przewalski's gecko (Teratoscincus przewalskii) in the Transaltai Gobi, Mongolia. Asiatic Herpetol. Res. 4, 99–112.Google Scholar
Shenbrot, G. I., Rogovin, K. A. and Surov, A. V. (1991). Comparative analysis of spatial organization of desert lizard communities in Middle Asia and Mexico. Oikos 61, 157–68.CrossRefGoogle Scholar
Simon, C. A. (1983). A review of lizard chemoreception. In Lizard Ecology, Studies of a Model Organism, ed. Huey, R. B., Pianka, E. R. and Schoener, T. W., pp. 119–33. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Stamps, J. A. (1977). Social behavior and spacing patterns in lizards. In Biology of the Reptilia, vol. 7, ed. Gans, C. and Tinkle, D. W., pp. 265–334. London: Academic Press.Google Scholar
Stanner, M., Thirakhupt, K., Werner, N. and Werner, Y. L. (1998). Observations and comments on the tokay in Thailand and China as predator and as prey (Reptilia: Sauria: Gekkonidae: Gekko gecko). Dactylus 3(2), 69–84.Google Scholar
Teixeira, R. L. (2001). Comunidade de lagartos da restinga de Guriri, São Mateus-Es sudeste do Brasil. Atlantica 23, 77–84.Google Scholar
Underwood, G. (1951). Reptilian retinas. Nature 167, 183.CrossRefGoogle ScholarPubMed
Underwood, G. (1971). A modern appreciation of Camp's “Classification of the lizards.” In Classification of the Lizards, Camp, C. L., pp. vii–xvii. Lawrence, KS: Society for the Study of Amphibians and Reptiles.Google Scholar
Valakos, E. and Vlachopanos, A. (1989). Note on the ecology of Cyrtodactylus kotschyi (Reptilia – Gekkonidae) in an insular ecosystem of the Aegean. Biol. Gallo-hellenica 15, 179–84.Google Scholar
Damme, R. and Vanhooydonck, B. (2001). Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202.CrossRefGoogle Scholar
Vitt, L. J. (1983). Tail loss in lizards: the significance of foraging and predator escape modes. Herpetologica 39, 151–62.Google Scholar
Vitt, L. J. (1986). Reproductive tactics of sympatric gekkonid lizards with a comment on the evolutionary and ecological consequences of invariant clutch size. Copeia 1986, 773–86.CrossRefGoogle Scholar
Vitt, L. J. (1990). The influence of foraging mode and phylogeny on seasonality of tropical lizard reproduction. Pap. Avulsos Zool. 37, 107–23.Google Scholar
Vitt, L. J. and Congdon, J. D. (1978). Body shape, reproductive effort, and relative clutch mass in lizards: resolution of a paradox. Amer. Nat. 112, 595–608.CrossRefGoogle Scholar
Vitt, L. J. and Price, H. J. (1982). Ecological and evolutionary determinants of relative clutch mass in lizards. Herpetologica 38, 237–55.Google Scholar
Vitt, L. J. and Zani, P. A. (1996). Organization of a taxonomically diverse lizard assemblage in Amazonian Ecuador. Can. J. Zool. 74, 1313–35.CrossRefGoogle Scholar
Vitt, L. J. and Zani, P. A. (1998a). Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil. J. Trop. Ecol. 14, 63–86.CrossRefGoogle Scholar
Vitt, L. J. and Zani, P. A. (1998b). Prey use among sympatric lizard species in lowland rain forest of Nicaragua. J. Trop. Ecol. 14, 537–59.CrossRefGoogle Scholar
Vitt, L. J., Pianka, E. R., Cooper, W. E. Jr. and Schwenk, K. (2003). History and the global ecology of squamate reptiles. Amer. Nat. 162, 44–60.CrossRefGoogle ScholarPubMed
Vitt, L. J., Souza, R. A., Sartorius, S. S., Avila-Pires, T. C. S. and Espósito, M. C. (2000). Comparative ecology of sympatric Gonatodes (Squamata: Gekkonidae) in the western Amazon of Brazil. Copeia 2000, 83–95.CrossRefGoogle Scholar
Vitt, L. J., Zani, P. A. and Monteiro de Barros, A. A. (1997). Ecological variation among populations of the gekkonid lizard Gonatodes humeralis in the Amazon Basin. Copeia 1997, 32–43.CrossRefGoogle Scholar
Webb, J. K. and Shine, R. (1994). Feeding habits and reproductive biology of Australian pygopodid lizards of the genus Aprasia. Copeia 1994, 390–8.CrossRefGoogle Scholar
Werner, Y. L. (1989). Egg size and egg shape in Near-Eastern gekkonid lizards. Israel J. Zool. 35, 199–213.Google Scholar
Werner, Y. L. (1998). Preliminary observations on foraging mode in a community of house geckos on Tahiti and a comment on competition. Trop. Ecol. 39, 89–96.Google Scholar
Werner, Y. L. and Chou, L. M. (2002). Observations on the ecology and foraging mode of the arrhythmic equatorial gecko Cnemaspis kendallii in Singapore (Sauria: Gekkoninae). Raffles Bull. Zool. 50, 185–96.Google Scholar
Werner, Y. L., Bouskila, A., Davies, S. J. J. F. and Werner, N. (1997a). Observations and comments on active foraging in geckos. Russ. J. Herpetol. 4, 34–9.Google Scholar
Werner, Y. L., Okada, S., Ota, H., Perry, G. and Tokunaga, S. (1997b). Varied and fluctuating foraging modes in nocturnal lizards of the family Gekkonidae. Asiatic Herpetol. Res. 7, 153–65.Google Scholar
Werner, Y. L., Takahashi, H., Yasukawa, Y. and Ota, H. (2004). The varied foraging mode of the subtropical eublepharid gecko Goniurosaurus kuroiwae orientalis. J. Nat. Hist. 38, 119–34.CrossRefGoogle Scholar
Zug, G. R., Vitt, L. J., Caldwell, J. P. (2001). Herpetology: An Introductory Biology of Amphibians and Reptiles, 2nd edn. San Diego, CA: Academic Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×