Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-01T02:55:24.290Z Has data issue: false hasContentIssue false

2 - How isometries combine

from Part I - The plane

Published online by Cambridge University Press:  05 November 2012

S. G. Hoggar
Affiliation:
University of Glasgow
Get access

Summary

In Chapter 1 we combined two isometries g, h to produce a third by taking their compositions gh (do g, then h) and hg. There is another way to combine two isometries, of great practical use in the context of plane patterns, and which we will introduce in Section 2.3. We begin by highlighting two geometrical ways to find the composition (or product) of isometries. The first was already used in the proof of Theorem 1.18.

Method 1

  1. (A) Determine the sense of the composition from those of its parts (Remark 1.17).

  2. (B) Determine the effect of the composition on two convenient points P, Q.

  3. (C) Find an isometry with the right sense and effect on P, Q. This must be the one required by Theorem 1.10.

Notice that (C) is now made easier by our knowledge of the four isometry types (Theorem 1.18). This method can be beautifully simple and effective for otherwise tricky compositions, but the second approach, given by Theorem 2.1 and Corollary 2.2, is perhaps more powerful for getting general results and insights. With Theorems 1.15 and 1.16 it says that every isometry can be decomposed into reflections, and it tells us how to combine reflections.

Method 2 Decompose the given isometries into reflections, using the available freedom of choice, so that certain reflections in the composition cancel each other out. See Examples 2.3 to 2.7. We note for later:

Method 3 Use Cartesian coordinates (See Chapter 7).

Type
Chapter
Information
Mathematics of Digital Images
Creation, Compression, Restoration, Recognition
, pp. 23 - 42
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • How isometries combine
  • S. G. Hoggar, University of Glasgow
  • Book: Mathematics of Digital Images
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810787.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • How isometries combine
  • S. G. Hoggar, University of Glasgow
  • Book: Mathematics of Digital Images
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810787.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • How isometries combine
  • S. G. Hoggar, University of Glasgow
  • Book: Mathematics of Digital Images
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810787.005
Available formats
×