Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T06:48:15.029Z Has data issue: false hasContentIssue false

15 - Optogenetic Approaches to Investigating Brain Circuits

from Part III - Optogenetics in Neurobiology, Brain Circuits, and Plasticity

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 206 - 223
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atasoy, D., Aponte, Y., Su, H.H. et al. (2008). A FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. The Journal of Neuroscience 28, 70257030.CrossRefGoogle ScholarPubMed
Berndt, A., Lee, S.Y., Ramakrishnan, C. et al. (2014). Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344, 420424.CrossRefGoogle ScholarPubMed
Berndt, A., Yizhar, O., Gunaydin, L.A. et al. (2009). Bi-stable neural state switches. Nature Neuroscience 12, 229234.CrossRefGoogle ScholarPubMed
Chow, B.Y., Han, X., Dobry, A.S. et al. (2010). High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98102.CrossRefGoogle ScholarPubMed
Chuong, A.S., Miri, M.L., Busskamp, V. et al. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience 17, 11231129.CrossRefGoogle ScholarPubMed
Gradinaru, V., Thompson, K.R., and Deisseroth, K. (2008). eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biology 36, 129139.CrossRefGoogle ScholarPubMed
Gradinaru, V., Zhang, F., Ramakrishnan, C. et al. (2010). Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154165.CrossRefGoogle ScholarPubMed
Gunaydin, L.A., Yizhar, O., Berndt, A. et al. (2010). Ultrafast optogenetic control. Nature Neuroscience 13, 387392.CrossRefGoogle Scholar
Herman, A.M., Huang, L., Murphey, D.K. et al. (2014). Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing channelrhodopsin-2. eLife 3, e01481.CrossRefGoogle ScholarPubMed
Klapoetke, N.C., Murata, Y., Kim, S.S. et al. (2014). Independent optical excitation of distinct neural populations. Nature Methods 11, 338346.CrossRefGoogle ScholarPubMed
Lin, J.Y. (2011). A user’s guide to channelrhodopsin variants: features, limitations and future developments. Experimental Physiology 96, 1925.CrossRefGoogle ScholarPubMed
Lin, J.Y., Knutsen, P.M., Muller, A. et al. (2013). ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience 16, 14991508.CrossRefGoogle Scholar
Mastakov, M.Y., Baer, K., Symes, C.W. et al. (2002). Immunological aspects of recombinant adeno-associated virus delivery to the mammalian brain. Journal of Virology 76, 84468454.CrossRefGoogle Scholar
Mattis, J., Tye, K.M., Ferenczi, E.A. et al. (2012). Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods 9, 159172.CrossRefGoogle Scholar
Miyashita, T., Shao, Y.R., Chung, J. et al. (2013). Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Frontiers in Neural Circuits 7, 8.Google ScholarPubMed
Nagel, G., Szellas, T., Huhn, W. et al. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. PNAS 100, 1394013945.CrossRefGoogle ScholarPubMed
Nathanson, J.L., Jappelli, R., Scheeff, E.D. et al. (2009). Short promoters in viral vectors drive selective expression in mammalian inhibitory neurons, but do not restrict activity to specific inhibitory cell-types. Frontiers in Neural Circuits 3, 19.CrossRefGoogle Scholar
Osakada, F., Mori, T., Cetin, A.H. et al. (2011). New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71, 617631.CrossRefGoogle ScholarPubMed
Prakash, R., Yizhar, O., Grewe, B. et al. (2012). Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nature Methods 9, 11711179.CrossRefGoogle ScholarPubMed
Rajasethupathy, P., Sankaran, S., Marshel, J.H. et al. (2015). Projections from neocortex mediate top-down control of memory retrieval. Nature 526, 653659.CrossRefGoogle ScholarPubMed
Schobert, B., and Lanyi, J.K. (1982). Halorhodopsin is a light-driven chloride pump. The Journal of Biological Chemistry 257, 1030610313.CrossRefGoogle ScholarPubMed
Schwarz, L.A., Miyamichi, K., Gao, X.J. et al. (2015). Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature 524, 8892.CrossRefGoogle ScholarPubMed
Shaner, N.C., Steinbach, P.A., and Tsien, R.Y. (2005). A guide to choosing fluorescent proteins. Nature Methods 2, 905909.CrossRefGoogle ScholarPubMed
Shemiakina, II, Ermakova, G.V., Cranfill, P.J. et al. (2012). A monomeric red fluorescent protein with low cytotoxicity. Nature Communications 3, 1204.CrossRefGoogle ScholarPubMed
Soudais, C., Laplace-Builhe, C., Kissa, K. et al. (2001). Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB Journal 15, 22832285.CrossRefGoogle ScholarPubMed
Takatoh, J., Nelson, A., Zhou, X. et al. (2013). New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking. Neuron 77, 346360.CrossRefGoogle ScholarPubMed
Tighilet, B., Hashikawa, T., and Jones, E.G. (1998). Cell- and lamina-specific expression and activity-dependent regulation of type II calcium/calmodulin-dependent protein kinase isoforms in monkey visual cortex. The Journal of Neuroscience 18, 21292146.CrossRefGoogle ScholarPubMed
Wickersham, I.R., Lyon, D.C., Barnard, R.J. et al. (2007). Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639647.CrossRefGoogle ScholarPubMed
Yizhar, O., Fenno, L.E., Prigge, M. et al. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171178.CrossRefGoogle ScholarPubMed
Zhang, F., Wang, L.P., Brauner, M. et al. (2007). Multimodal fast optical interrogation of neural circuitry. Nature 446, 633639.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×