Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-11T20:03:23.052Z Has data issue: false hasContentIssue false

Chapter 17 - Control of Gram-Negative Multidrug-Resistant Pathogens

from Section 4 - Antimicrobial-Resistant Organisms

Published online by Cambridge University Press:  02 April 2018

Ebbing Lautenbach
Affiliation:
University of Pennsylvania School of Medicine
Preeti N. Malani
Affiliation:
University of Michigan, Ann Arbor
Keith F. Woeltje
Affiliation:
Washington University School of Medicine, St Louis
Jennifer H. Han
Affiliation:
University of Pennsylvania School of Medicine
Emily K. Shuman
Affiliation:
University of Michigan, Ann Arbor
Jonas Marschall
Affiliation:
Washington University School of Medicine, St Louis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

World Health Organization (WHO). www.who.int/drugresistance/documents/surveillancereport/en/. Accessed November 12, 2015.Google Scholar
Drees, M, Pineles, L, Harris, AD, Morgan, DJ. Variation in definitions and isolation procedures for multidrug-resistant Gram-negative bacteria: a survey of the Society for Healthcare Epidemiology of America Research Network. Infect Control Hosp Epidemiol. Apr 2014;35(4):362366.CrossRefGoogle Scholar
Magiorakos, AP, Srinivasan, A, Carey, RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. Mar 2012;18(3):268281.CrossRefGoogle ScholarPubMed
Tacconelli, E, Cataldo, MA, Dancer, SJ, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014;20 Suppl 1:155.CrossRefGoogle ScholarPubMed
World Health Organization (WHO). www.cdc.gov/nhsn/pdfs/ps-analysis-resources/phenotype_definitions.pdf. Accessed November 12, 2015.Google Scholar
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; approved standard. Twenty-fourth informational supplement. CLSI Document M100-S24. Wayne, PA: CLSI 2014.Google Scholar
Sievert, DM, Ricks, P, Edwards, JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013;34(1):114.CrossRefGoogle Scholar
Bush, K. The ABCD’s of B-lactamase nomenclature. J Infect Chemother. 2013; 19(4):549559.Google Scholar
Castanheira, M, Farrell, SE, Krause, KM, Jones, RN, Sader, HS. Contemporary diversity of beta-lactamases among Enterobacteriaceae in the nine U.S. census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent beta-lactamase groups. Antimicrob Agents Chemother. 2014;58(2):833838.Google Scholar
D’Andrea, MM, Arena, F, Pallecchi, L, Rossolini, GM. CTX-M-type beta-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol. Aug 2013;303(6–7):305317.CrossRefGoogle ScholarPubMed
Hidron, AI, Edwards, JR, Patel, J, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol. Nov 2008;29(11):9961011.CrossRefGoogle Scholar
Guh, AY, Bulens, SN, Mu, Y, et al. Epidemiology of carbapenem-resistant enterobacteriaceae in 7 US communities, 2012–2013. JAMA. 2015;314(14):14791487.CrossRefGoogle ScholarPubMed
Perez, F, Van Duin, D. Carbapenem-resistant Enterobacteriaceae: a menace to our most vulnerable patients. Cleve Clin J Med. Apr 2013;80(4):225233.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR. 2013;62(9):165170.Google Scholar
Borer, A, Saidel-Odes, L, Riesenberg, K, et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009;30(10):972976.CrossRefGoogle ScholarPubMed
Gupta, N, Limbago, BM, Patel, JB, Kallen, AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):6067.Google Scholar
Satlin, MJ, Jenkins, SG, Walsh, TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;58(9):12741283.Google Scholar
Munoz-Price, LS, Poirel, L, Bonomo, RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013; 13(9):785–96.Google Scholar
Nordmann, P, Naas, T, Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):17911798.CrossRefGoogle ScholarPubMed
Kitchel, B, Rasheed, JK, Patel, JB, et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother. 2009;53(8):33653370.CrossRefGoogle ScholarPubMed
Kaiser, RM, Castanheira, M, Jones, RN, Tenover, F, Lynfield, R. Trends in Klebsiella pneumoniae carbapenemase-positive K. pneumoniae in US hospitals: report from the 2007–2009 SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis. Jul 2013;76(3):356360.Google Scholar
Kumarasamy, KK, Toleman, MA, Walsh, TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancetl Infect Dis. 2010;10(9):597602.CrossRefGoogle Scholar
Mathers, AJ, Hazen, KC, Carroll, J, et al. First clinical cases of OXA-48-producing carbapenem-resistant Klebsiella pneumoniae in the United States: the “menace” arrives in the New World. J Clin Microbiol. 2013; 51(2)680683.Google Scholar
Centers for Disease Control (CDC). www.cdc.gov/hai/organisms/cre/definition.html. Accessed October 19, 2015.Google Scholar
Chea, N, Bulens, SN, Kongphet-Tran, T, et al. Improved phenotype-based definition for identifying carbapenemase producers among carbapenem-resistant Enterobacteriaceae. Emerg Infect Dis. 2015;21(9):16111616.Google Scholar
Hrabak, J, Chudackova, E, Papagiannitsis, CC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect. Sep 2014;20(9):839853.Google Scholar
Hombach, M, von Gunten, B, Gastelberg, C, et al. Evaluation of the RAPIDEC® CARBA NP test for the detection of carbapenemases in Enterobacteriaceae. J Clin Microbiol 2015 Sep 30. pii: JCM.02327–15. Epub ahead of print.Google ScholarPubMed
Nordmann, P, Poirel, L, Dortet, L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18(9):15031507.Google Scholar
Pseudomonas dermatitis/folliculitis associated with pool and hot tubs: Colorado and Maine, 1999–2000. MMW. 2000;49(48):10871091.Google Scholar
Dixon, RS, Sydnor, CH. Puncture wound pseudomonal osteomyelitis of the foot. J Foot Ankle Surg. 1993; 32(4):434442.Google Scholar
Wieland, M, Lederman, MM, Kline-King, C, et al. Left-sided endocarditis due to Pseudomonas aeruginosa: a report of 10 cases and review of the literature. Medicine (Baltimore). May 1986; 65(3):180189.Google Scholar
Livermore, DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002; 34(5):634640.CrossRefGoogle ScholarPubMed
Maragakis, LL and Perl, TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis 2008;46(8):12541263.Google Scholar
Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002–2004. MMWR. 2004;53(45):10631066.Google Scholar
Lolans, K, Rice, TW, Munoz-Price, LS, Quinn, JP. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother. 2006;50(9):29412945.CrossRefGoogle ScholarPubMed
Munoz-Price, LS, Arheart, K, Nordmann, P, et al. Eighteen years of experience with Acinetobacter baumannii in a tertiary care hospital. Crit Care Med. Dec 2013;41(12):27332742.Google Scholar
Thom, KA, Maragakis, LL, Richards, K, et al. Assessing the burden of Acinetobacter baumannii in Maryland: a statewide cross-sectional period prevalence survey. Infect Control Hosp Epidemiol. Sep 2012;33(9):883888.Google Scholar
Harris, AD, McGregor, JC, Furuno, JP. What infection control interventions should be undertaken to control multidrug-resistant gram-negative bacteria? Clin Infect Dis Sept 2006:43 Suppl 2:S57S61.Google Scholar
Williams, C, McGraw, P, Schneck, EE, et al. Impact of universal gowning and gloving on health care worker clothing contamination. Infect Control Hosp Epidemiol. 2015;36(4):431437.Google Scholar
Hayden, MK, Blom, DW, Lyle, EA, Moore, CG, Weinstein, RA. Risk of hand or glove contamination after contact with patients colonized with vancomycin-resistant enterococcus or the colonized patients’ environment. Infect Control Hosp Epidemiol. 2008;29(2):149154.Google Scholar
Snyder, GM, Thom, KA, Furuno, JP, et al. Detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect Control Hosp Epidemiol. 2008;29(7):583589.CrossRefGoogle ScholarPubMed
Morgan, DJ, Liang, SY, Smith, CL, et al. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect Control Hosp Epidemiol. 2010;31(7):716721.Google Scholar
Harris, AD, Perencevich, EN, Johnson, JK, et al. Patient-to-patient transmission is important in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae acquisition. Clin Infect Dis. 2007;45(10):13471350.Google Scholar
Harris, AD, Kotetishvili, M, Shurland, S, et al. How important is patient-to-patient transmission in extended-spectrum beta-lactamase Escherichia coli acquisition. Am J Infect Contrl. 2007;35(2):97101.Google Scholar
Rock, C, Thom, KA, Masnick, M, Johnson, JK, Harris, AD, Morgan, DJ. Frequency of Klebsiella pneumoniae carbapenemase (KPC)-producing and non-KPC-producing Klebsiella species contamination of healthcare workers and the environment. Infect Control Hosp Epidemiol. 2014;35(4):426429.Google Scholar
Cohen, CC, Cohen, B, Shang, J. Effectiveness of contact precautions against multidrug-resistant organism transmission in acute care: a systematic review of the literature. J Hosp Infect. 2015;90(4):275284.Google Scholar
Kho, AN, Dexter, PR, Warvel, JS, et al. An effective computerized reminder for contact isolation of patients colonized or infected with resistant organisms. Int J Med Informatics. 2008;77(3):194198.Google Scholar
Palmore, TN, Henderson, DK. Managing transmission of carbapenem-resistant enterobacteriaceae in healthcare settings: a view from the trenches. Clin Infect Dis. 2013;57(11):15931599.Google Scholar
Schwaber, MJ, Lev, B, Israeli, A, et al. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis. 1 2011;52(7):848855.Google Scholar
Lucet, JC, Decre, D, Fichelle, A, et al. Control of a prolonged outbreak of extended-spectrum beta-lactamase-producing enterobacteriaceae in a university hospital. Clin Infect Dis. 1999;29(6):14111418.CrossRefGoogle ScholarPubMed
Tamma, PD, Savard, P, Pal, T, Sonnevend, A, Perl, TM, Milstone, AM. An outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. Infect Control Hosp Epidemiol. 2012;33(6):631634.Google Scholar
Munoz-Price, LS, Hayden, MK, Lolans, K, et al. Successful control of an outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae at a long-term acute care hospital. Infect Control Hosp Epidemiol. 2010;31(4):341347.CrossRefGoogle Scholar
Munoz-Price, LS, Quinn, JP. Deconstructing the infection control bundles for the containment of carbapenem-resistant Enterobacteriaceae. Curr Op Infect Dis. 2013;26(4):378387.Google Scholar
Schwaber, MJ, Carmeli, Y. An ongoing national intervention to contain the spread of carbapenem-resistant enterobacteriaceae. Clin Infect Dis. Mar 2014;58(5):697703.Google Scholar
Kramer, A, Schwebke, I, Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006;6:130.Google Scholar
Denton, M, Wilcox, MH, Parnell, P, et al. Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. Intensive Crit Care Nurs. Ar 2005;21(2):9498.Google Scholar
Carling, PC, Parry, MF, Bruno-Murtha, LA, Dick, B. Improving environmental hygiene in 27 intensive care units to decrease multidrug-resistant bacterial transmission. Crit Care Med. Apr 2010;38(4):10541059.Google Scholar
Contamination, Hota B., disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis. Oct 2004;39(8):11821189.Google Scholar
Boyce, JM. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect. Jun 2007;65, Suppl 2:5054.Google Scholar
Jawad, A, Seifert, H, Snelling, AM, Heritage, J, Hawkey, PM. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol. 1998;36(7):19381941.Google Scholar
Levin, AS, Gobara, S, Mendes, CM, Cursino, MR, Sinto, S. Environmental contamination by multidrug-resistant Acinetobacter baumannii in an intensive care unit. Infect Control Hosp Epidemiol. Nov 2001;22(11):717720.Google Scholar
Catalano, M, Quelle, LS, Jeric, PE, Di Martino, A, Maimone, SM. Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. J Hosp Infect. 1999;42(1):2735.Google Scholar
Das, I, Lambert, P, Hill, D, Noy, M, Bion, J, Elliott, T. Carbapenem-resistant Acinetobacter and role of curtains in an outbreak in intensive care units. J Hosp Infect. 2002;50(2):110114.Google Scholar
Aygun, G, Demirkiran, O, Utku, T, et al. Environmental contamination during a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit. J Hosp Infect. 2002;52(4):259262.CrossRefGoogle Scholar
Anaissie, EJ, Penzak, SR, Dignani, MC. The hospital water supply as a source of nosocomial infections: a plea for action. Arch Intern Med. 2002;162(13):14831492.Google Scholar
Bonten, MJ, Weinstein, RA. Transmission pathways of Pseudomonas aeruginosa in intensive care units: don’t go near the water. Crit Care Med. 2002;30(10):23842385.Google Scholar
Epstein, L, Hunter, JC, Arwady, MA, et al. New Delhi metallo-beta-lactamase-producing carbapenem-resistant Escherichia coli associated with exposure to duodenoscopes. JAMA. 2014;312(14):14471455.Google Scholar
Ha, J, Son, BK. Current Issues in duodenoscope-associated infections: now is the time to take action. Clin Endoscopy. 2015;48(5):361363.Google Scholar
Muscarella, LF. Risk of transmission of carbapenem-resistant Enterobacteriaceae and related “superbugs” during gastrointestinal endoscopy. World J Gastrointest Endoscopy. 2014;6(10):457474.Google Scholar
Calfee, D, Jenkins, SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol. 2008;29(10):966968.Google Scholar
Snitkin, ES, Zelazny, AM, Thomas, PJ, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Translational Med. 2012;4(148):148ra116.Google Scholar
Akduman, B, Akduman, D, Tokgoz, H, et al. Long-term fluoroquinolone use before prostate biopsy may increase the risk of sepsis caused by resistant microorganisms. Urology. 2011; 78(2):250255.Google Scholar
Boucher, HW, Talbot, GH, Bradley, JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009; 48(1):112.Google Scholar
Hsu, AJ and Tamma, PD. Treatment of multidrug-resistant Gram-negative infections in children. Clin Infect Dis May 2014; 58(10):14391448.Google Scholar
Centers for Disease Control and Prevention (CDC). Centers for Disease Control (CDE). www.cdc.gov/drugresistance/pdf/ar-threats-2013–508.pdf. Accessed November 13, 2015.Google Scholar
Tamma, PD and Cosgrove, SE. Antimicrobial stewardship. Infec Dis Clin North Am 2011; 25(1):245260.Google Scholar
Marchaim, D, Chopra, T, Bhargava, A, et al. Recent exposure to antimicrobials and carbapenem-resistant Enterobacteriaceae: the role of antimicrobial stewardship. Infect Control Hosp Epidemiol. 2012;33(8):817830.Google Scholar
Carmeli, Y, Lidji, SK, Shabtai, E, Navon-Venezia, S, Schwaber, MJ. The effects of group 1 versus group 2 carbapenems on imipenem-resistant Pseudomonas aeruginosa: an ecological study. Diagn Microbiol Infect Dis. 2011;70(3):367372.Google Scholar
Dortch, MJ, Fleming, SB, Kauffmann, RM, Dossett, LA, Talbot, TR, May, AK. Infection reduction strategies including antibiotic stewardship protocols in surgical and trauma intensive care units are associated with reduced resistant gram-negative healthcare-associated infections. Surg Infecti. 2011;12(1):1525.Google Scholar
Rahal, JJ, Urban, C, Horn, C, et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA. 1998;280(14):12331237.Google Scholar
Ntagiopoulos, PG, Paramythiotou, E, Antoniadou, A, et al. Impact of an antibiotic restriction policy on the antibiotic resistance patterns of Gram-negative microorganisms in an intensive care unit in Greece. Int J Antimicrob Agents. 2007; 30:360365.Google Scholar
Altunsoy, A, Aypak, C, Azap, A, et al. The impact of a nationwide antibiotic restriction program on antibiotic usage and resistance against nosocomial pathogens in Turkey. Int J Med Sci. 2011;4:339344.Google Scholar
Davey, P, Brown, E, Charani, E, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Systematic Review Apr 20134:CD003543. doi:10.1002/14651858.CD003543.pub3.Google Scholar
Roquilly, A, Marret, E, Abraham, E, Asehnoune, K. Pneumonia prevention to decrease mortality in intensive care unit: a systematic review and meta-analysis. Clin Infect Dis. 2015;60(1):6475.Google Scholar
Price, R, MacLennan, G, Glen, J, Su, DC. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ. 2014;348:g2197.Google Scholar
de Smet, AM, Kluytmans, JA, Blok, HE, et al. Selective digestive tract decontamination and selective oropharyngeal decontamination and antibiotic resistance in patients in intensive-care units: an open-label, clustered group-randomised, crossover study. Lancet Infect Dis. 2011;11(5):372380.Google Scholar
Oostdijk, EA, Kesecioglu, J, Schultz, MJ, et al. Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: a randomized clinical trial. JAMA. 2014;312(14):14291437.Google Scholar
Lin, MY, Lolans, K, Blom, DW, et al. The effectiveness of routine daily chlorhexidine gluconate bathing in reducing Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae skin burden among long-term acute care hospital patients. Infect Control Hosp Epidemiol. 2014;35(4):440442.Google Scholar
Septimus, EJ, Hayden, MK, Kleinman, K, et al. Does chlorhexidine bathing in adult intensive care units reduce blood culture contamination? A pragmatic cluster-randomized trial. Infect Control Hosp Epidemiol. 2014; 35 Suppl 3:S17S22.Google Scholar
Milstone, AM, Elward, A, Song, X, et al. Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial. Lancet. 2013;381(9872):10991106.CrossRefGoogle ScholarPubMed
Climo, MW, Yokoe, DS, Warren, DK, et al. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med. Feb 7 2013;368(6):533542.Google Scholar
Climo, MW, Sepkowitz, KA, Zuccotti, G, et al. The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: results of a quasi-experimental multicenter trial. Crit Care Med. 2009;37(6):18581865.CrossRefGoogle ScholarPubMed
Hayden, MK, Lin, MY, Lolans, K, et al. Prevention of colonization and infection by Klebsiella pneumoniae carbapenemase-producing enterobacteriaceae in long-term acute-care hospitals. Clin Infect Dis. 2015;60(8):11531161.Google Scholar
Brooks, SE, Walczak, MA, Hameed, R, et al. Chlorhexidine resistance in antibiotic-resistant bacteria isolated from the surfaces of dispensers of soap containing chlorhexidine. Infect Control Hosp Epidemiol. 2002; 23(11):692695.Google Scholar
Tattawasart, U, Maillard, JY, Furr, JR, Russell, AD. Outer membrane changes in Pseudomonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. Int J Antimicrob Agents. 2000;16(3):233238.Google Scholar
Thomas, L, Maillard, JY, Lambert, RJ, Russell, AD. Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a “residual” concentration. J Hosp Infect. 2000;46(4):297303.Google Scholar
Higgins, CS, Murtough, SM, Williamson, E, et al. Resistance to antibiotics and biocides among non-fermenting Gram-negative bacteria. Clin Microbiol Infect. 2001;7(6):308315.Google Scholar
Hilty, M, Betsch, BY, Bogli-Stuber, K, et al. Transmission dynamics of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin Infect Dis. 2012;55(7):967975.Google Scholar
Madigan, T, Johnson, JR, Clabots, C, et al. Extensive household outbreak of urinary tract infection and intestinal colonization due to extended-spectrum beta-lactamase-producing Escherichia coli sequence type 131. Clin Infect Dis. 2015;61(1):e512.Google Scholar
Doi, Y, Park, YS, Rivera, JI, et al. Community-associated extended-spectrum beta-lactamase-producing Escherichia coli infection in the United States. Clin Infect Dis. 2013;56(5):641648.Google Scholar
Gould, CV, Rothenberg, R, Steinberg, JP. Antibiotic resistance in long-term acute care hospitals: the perfect storm. Infect Control Hosp Epidemiol. 2006;27(9):920925.Google Scholar
O’Fallon, E, Pop-Vicas, A, The Emerging, D’Agata E. Threat of multidrug-resistant gram-negative organisms in long-term care facilities. J Ger Ser A. 2009; 64(1):138141.Google Scholar
Mills, JP, Talati, NJ, Alby, K, Han, JH. The epidemiology of carbapenem-resistant Klebsiella pneumoniae colonization and infection among long-term acute care hospital residents. Infect Control Hosp Epidemiol. 12 2015:16.Google Scholar
Lin, MY, Lyles-Banks, RD, Lolans, K, et al. The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis. 2013;57(9):12461252.CrossRefGoogle ScholarPubMed
O’Fallon, E, Gautam, S, D’ Agata, EM. Colonization with multidrug-resistant gram-negative bacteria: prolonged duration and frequent colonization. Clin Infect Dis. 2009;48(10):13751381.Google Scholar
Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L, Healthcare Infection Control Practices Advisory C: management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control. 2007;35(10 Suppl 2):S165S193.Google Scholar
Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L, Health Care Infection Control Practices Advisory C. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. Am J Infect Control. 2007;35(10 Suppl 2):S65S164.Google Scholar
Centers for Disease Control and Prevention (CDC). ww.cdc.gov/hai/organisms/cre/cre-toolkit/index.html. Accessed November 13th, 2015.Google Scholar
Feldman, N, Adler, A, Molshatzki, N, et al. Gastrointestinal colonization by KPC-producing Klebsiella pneumoniae following hospital discharge: duration of carriage and risk factors for persistent carriage. Clin Microbiol Infect. 2013;19(4):E190196.Google Scholar
Oren, I, Sprecher, H, Finkelstein, R, et al. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: a prospective controlled trial. Am J Infecti Control. 2013;41(12):11671172.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×