Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T06:58:27.263Z Has data issue: false hasContentIssue false

Section 1 - Starting a New Laboratory and Training Protocols

Published online by Cambridge University Press:  07 August 2023

Markus H. M. Montag
Affiliation:
ilabcomm GmbH, St Augustin, Germany
Dean E. Morbeck
Affiliation:
Kindbody Inc, New York City
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Principles of IVF Laboratory Practice
Laboratory Set-Up, Training and Daily Operation
, pp. 1 - 74
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Swain, J. and Lagunov, A. IVF incubator handling, in Standard Operational Procedures in Reproductive Medicine Laboratory and Clinical Practice, ed. Rizk, B. and Montag, M. (Boca Raton, FL: CRC Press, 2017).Google Scholar
Swain, J. E. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online 2010; 21(1):616.CrossRefGoogle ScholarPubMed
Swain, J. E. Is there an optimal pH for culture media used in clinical IVF? Hum Reprod Update 2012; 18(3):333–9.CrossRefGoogle ScholarPubMed
Hall, J., et al. The origin, effects and control of air pollution in laboratories used for human embryo culture. Hum Reprod 1998; 13(Suppl. 4):146–55.CrossRefGoogle ScholarPubMed
Schimmel, T., et al. Removal of volatile organic compounds from incbuators used for gamete and embryo culture. Fertil Steril 1997; 68(Suppl. 1):S165.CrossRefGoogle Scholar
Morbeck, D. E. Air quality in the assisted reproduction laboratory: a mini-review. J Assist Reprod Genet 2015; 32(7):1019–24.CrossRefGoogle ScholarPubMed
Heitmann, R. J., et al. Live births achieved via IVF are increased by improvements in air quality and laboratory environment. Reprod Biomed Online, 2015; 31(3):364–71.CrossRefGoogle ScholarPubMed

References

Davey, R. X. Codes of ethics for laboratory medicine: definition, structure and procedures – a narrative review based on existing national codes. EJIFCC 2020; 31:262–73.Google ScholarPubMed
ESHRE Guideline Group on Good Practice in IVF Labs, De los Santos, M. J., Apter, S., Coticchio, G., et al. Revised guidelines for good practive in IVF laboratories (2015). Human Reprod 2016; 31:685–6.Google Scholar
Practical committee of the American Society for Reproductive Medicine. Minimum standards for practices offering assisted reproductive technologies: a committee opinion. Fertil Steril 2020; 113:536–41.Google Scholar
Human Fertilisation and Embryology Authority (HFEA). Update to the 9th edition of the Code of Practice. London: HFEA, 2009, revised 2019. https://portal.hfea.gov.uk/media/1605/2019-12-03-code-of-practice-december-2019.pdfGoogle Scholar
Code of Practice for Assisted Reproductive Technology Units (RTAC COP). ‘Australia and New Zealand’ RTAC, 1987, revised 2017; ‘International’ RTAC, 2014, revised 2018. www.fertilitysociety.com.au/code-of-practice/#copintGoogle Scholar
ESHRE Guidelines, Consensus Documents and Recommendations for Best Practice in Reproductive Medicine www.eshre.eu/Guidelines-and-LegalGoogle Scholar

References

ASRM Practice Committee. Recommended Practices for the Management of Embryology, Andrology, and Endocrinology Laboratories: a Committee Opinion (Birmingham, AL: American Society for Reproductive Medicine, 2014).Google Scholar
Centers for Medical and Medicaid Services. What do I need to do to assess personnel competency? www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/Downloads/CLIA_CompBrochure_508.pdf (accessed 30 September, 2015).Google Scholar

References

Johansson, L. Handling gametes and embryos: oocyte collection and embryo culture. In A Practical Guide to Selecting Gametes and Embryos, ed. Montag, M. (Boca Raton, FL: CRC Press, 2014).Google Scholar
Swain, J. E. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online 2010; 18(6):799810.CrossRefGoogle Scholar

References

Aboulfotouh, I., Abou-Setta, A. M., Khattab, S., et al. Firm versus soft embryo transfer catheters under ultrasound guidance: does catheter choice really influence the pregnancy rates? Fertil Steril 2008; 89(5):1261–2.CrossRefGoogle ScholarPubMed
Halvaei, I., Khalili, M. A., Razi, M. H., Agha-Rahimi, A. and Nottola, S. A. Impact of different embryo loading techniques on pregnancy rates in in vitro fertlization/embryo transfer cycles. J Hum Reprod Sci 2013; 6(1):65–9.Google ScholarPubMed
De los Santos, M. J., Apter, S., Coticchio, G., et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod 2016; 31(4):685–6.Google ScholarPubMed
Ozturk Inal, Z. and Inal, H. A. The effect of embryo transfer technique on pregnancy rates in in vitro fertilization–intracytoplasmic sperm injection cycles: A prospective cohort study. Turk J Obstet Gyn 2021; 18(1):30–6.Google ScholarPubMed
Lopez, M. J., Garcia, D., Rodriguez, A., Colodron, M., Vassena, R. and Vernaeve, V. Individualized embryo transfer training: timing and performance. Hum Reprod 2014; 29(7):1432–7.CrossRefGoogle ScholarPubMed
Ramaiah, S. D., Ray, K. A. and Reindollar, R. H. Simulation training for embryo transfer: findings from the American Society for Reproductive Medicine Embryo Transfer Certificate Course. Fertil Steril 2021; 115(4):852–9.Google Scholar
Schoolcraft, W. B., Surrey, E. S. and Gardner, D. K. Embryo transfer: techniques and variables affecting success. Fertil Steril 2001; 76(5):863–70.Google Scholar
Pasqualini, R. S. and Quintans, C. J. Clinical practice of embryo transfer. Reprod Biomed Online 2002; 4(1):8392.CrossRefGoogle ScholarPubMed
Eytan, O., Elad, D. and Jaffa, A. J. Bioengineering studies of the embryo transfer procedure. Ann N Y Acad Sci 2007; 1101:2137.CrossRefGoogle ScholarPubMed
Mo, J., Yang, Q., Xia, L. and Niu, Z. Embryo location in the uterus during embryo transfer: An in vitro simulation. PLoS ONE 2020; 15(10):e0240142.CrossRefGoogle ScholarPubMed
Brown, J., Buckingham, K., Buckett, W. and Abou-Setta, A. M. Ultrasound versus ‘clinical touch’ for catheter guidance during embryo transfer in women. Cochrane Database System Rev 2016; 3:CD006107.Google ScholarPubMed
Practice Committee of the American Society for Reproductive M, Practice Committee of the Society for Assisted Reproductive T, Practice Committee of the Society of Reproductive B, Technologists. Electronic address aao. Minimum standards for practices offering assisted reproductive technologies: a committee opinion. Fertil Steril 2020; 113(3):536–41.Google Scholar

References

Katz, E., Watts, L. D., Wright, K. E., et al. Effect of incremental time experience on the results of in vitro fertilisation with intracytoplasmic sperm injection (ICSI). J Assist Reprod Genet 1996; 13 (6):501–4.CrossRefGoogle ScholarPubMed
Ebner, T., Yaman, C., Moser, M., et al. A prospective study on oocyte survival rate after ICSI: influence of injection technique and morphological features. J Assist Reprod Genet 2001; 18(12):623–8.CrossRefGoogle ScholarPubMed
Daniel, C. E., Hickman, C., Wilkinson, T., et al. Maximising success rates by improving ICSI technique: which factors affect outcome? Fertil Steril 2015; 104(3):e95–6.CrossRefGoogle Scholar
Dumoulin, J. M., Coonen, E., Bras, M., et al. Embryo development and chromosomal anomalies after ICSI: effect of the injection procedure. Hum Reprod 2001; 16(2):306–12.CrossRefGoogle ScholarPubMed
Tsai, M. Y., Huang, F. J., Kung, F. T., et al. Influence of polyvinylpyrrolidone on the outcome of intracytoplasmic sperm injection. J Reprod Med 2000; 45(2):115–20.Google ScholarPubMed
Nagy, Z. P., Liu, J., Joris, H., et al. The influence of the site of sperm deposition and mode of oolemma breakage at intracytoplasmic sperm injection on fertilization and embryo development rates. Hum Reprod 1995; 10 (12):3171–7.Google Scholar
Rubino, P., Viganò, P., Luddi, A. and Piomboni, P. The ICSI procedure from past to future: a systematic review of the more controversial aspects. Hum Reprod Update 2016; 22(2):194227.Google ScholarPubMed
Flaherty, S. P., Payne, D., Swann, N. J. and Mattews, C. D. Aetiology of failed and abnormal fertilization after intracytoplasmic sperm injection. Hum Reprod 1995; 10(10):2623–9.Google Scholar
Blake, M., Garrisi, J., Tomkin, G. and Cohen, J. Sperm deposition site during ICSI affects fertilization and development. Fertil Steril 2000; 73(1):31–7.CrossRefGoogle ScholarPubMed
Nagy, Z. P., Oliveira, S. A., Abdelmassih, V. and Abdelmassih, R. Novel use of laser to assist ICSI for patients with fragile oocytes: a case report. Reprod Biomed Online 2002; 4(1):2731.CrossRefGoogle ScholarPubMed

References

McLaren, A. Can mouse blastocysts stimulate a uterine response before losing the zona pellucida? J Reprod Fertil 1969; 19:199201.CrossRefGoogle ScholarPubMed
Gonzales, D. S. and Bavister, B. D. Zona pellucida escape by hamster blastocysts in vitro is delayed and morphologically different compared with zona escape in vivo. Biol Reprod 1995; 52(2):470–80.CrossRefGoogle ScholarPubMed
Montag, M., Koll, B., Holmes, P. and van der Ven, H. Significance of the number of embryonic cells and the state of the zona pellucida for hatching of mouse blastocysts in vitro versus in vivo. Biol Reprod 2000; 62 (6):1738–44.CrossRefGoogle ScholarPubMed
Malter, H. E. and Cohen, J. Blastocyst formation and hatching in vitro following zona drilling of mouse and human embryos. Gamete Res 1989; 24:6780.CrossRefGoogle ScholarPubMed
Cohen, J., Alikani, M., Trowbridge, J. and Rosenwaks, Z. Implantation enhancement by selective assisted hatching using zona drilling of human embryos with poor prognosis. Hum Reprod 1992; 7:685–91.Google Scholar
Cohen, J. Assisted hatching: indications and techniques. Acta Eur Fertil 1993; 24:215–19.Google ScholarPubMed
Schimmel, T., Cohen, J., Saunders, H. and Alikani, M. Laser-assisted zona pellucida thinning does not facilitate hatching and may disrupt the in vitro hatching process: a morphokinetic study in the mouse. Hum Reprod 2014; 29:2670–9.CrossRefGoogle Scholar
Cohen, J. and Feldberg, D. Effects of the size and number of zona pellucida openings on hatching and trophoblast outgrowth in the mouse embryo. Mol Reprod Dev 1991; 30:70–8.CrossRefGoogle ScholarPubMed
Carney, S. K., Das, S., Blake, D., et al. Assisted hatching on assisted conception (in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI)). Cochrane Database Syst Rev 2012; 12:CD001894.Google ScholarPubMed
Martins, W. P., Rocha, I. A., Ferriani, R. A. and Nastri, C. O. Assisted hatching of human embryos: a systematic review and meta-analysis of randomized controlled trials. Hum Reprod Update 2011; 17:438–53.CrossRefGoogle ScholarPubMed
Practice Committee of the American Society for Reproductive Medicine and Practice Committee of the Society for Assisted Reproductive Technology. Role of assisted hatching in in vitro fertilization: a guideline. Fertil Steril 2014; 102:348–51.Google Scholar
Ge, H. S., Zhou, W., Zhang, W. and Lin, J.J. Impact of assisted hatching on fresh and frozen-thawed embryo transfer cycles: a prospective, randomized study. Reprod Biomed Online 2008; 16:589–96.CrossRefGoogle ScholarPubMed
Cohen, J. and Alikani, M. Evidence-based medicine and its application in clinical preimplantation embryology. Reprod Biomed Online 2013; 27:547–61.CrossRefGoogle ScholarPubMed
Chailert, C., Sanmee, U., Piromlertamorn, W., Samchimchom, S. and Vutyavanich, T. Effects of partial or complete laser-assisted hatching on the hatching of mouse blastocysts and their cell numbers. Reprod Biol Endocrinol 2013; 11:21.CrossRefGoogle ScholarPubMed
Singh, H., Nardo, L., Kimber, S. J. and Aplin, J. D. Early stages of implantation as revealed by an in vitro model. Reproduction 2010; 139:905–14.CrossRefGoogle ScholarPubMed
Vajta, G., Rienzi, L. and Bavister, B. D. Zona-free embryo culture: is it a viable option to improve pregnancy rates? Reprod Biomed Online 2010; 21(1):1725.Google Scholar
Douglas-Hamilton, D. H. and Conia, J. Thermal effects in laser-assisted pre- embryo zona drilling. J Biomed Opt 2001; 6 (2):205–13.CrossRefGoogle ScholarPubMed

References

Hassold, T. and Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001; 2: 280–91.CrossRefGoogle Scholar
Sato, T., Sugiura-Ogasawara, M., Ozawa, F., et al. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum Reprod 2020; 35(1):255. http://doi.org/10.1093/humrep/dez289.CrossRefGoogle ScholarPubMed
Handyside, A. H., Kontogianni, E. H., Hardy, K., et al. Pregnancies from biopsied human preimplantation embryos sexed by Y‐specific DNA amplification. Nature 1990; 344(6268):768–70.CrossRefGoogle ScholarPubMed
Hardy, K., Martin, K. L., Leese, H. J., et al. Human preimplantation development in vitro is not adversely affected by biopsy at the 8‐cell stage. Hum Reprod 1990; 5(6):708–14.CrossRefGoogle ScholarPubMed
Fragouli, E., Alfarawati, S., Spath, K., et al. Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts. Hum Genet 2017; 136:805–19.CrossRefGoogle ScholarPubMed
Capalbo, A., Ubaldi, F. M., Cimadomo, D., et al. Consistent and reproducible outcomes of blastocyst biopsy and aneuploidy screening across different biopsy practitioners: a multicentre study involving 2586 embryo biopsies. Hum Reprod 2016; 31(1):199208.CrossRefGoogle ScholarPubMed
Gardner, D. K. and Schoolcraft, W. B. In vitro culture of human blastocysts, in Toward Reproductive Certainty: Fertility and Genetics Beyond, ed. Jansen, R. and Mortimer, D., pp. 378–88 (Carnforth, UK: Parthenon, 1999).Google Scholar
Kort, J. D., Lathi, R. B., Brookfield, K., et al. Aneuploidy rates and blastocyst formation after biopsy of morulae and early blastocysts on day 5. J Assist Reprod Genet 2015; 32(6):925–30.CrossRefGoogle ScholarPubMed
Zhang, S., Luo, K., Cheng, D., et al. Number of biopsied trophectoderm cells is likely to affect the implantation potential of blastocysts with poor trophectoderm quality. Fertil Steril 2016; 105(5):1222–7.CrossRefGoogle ScholarPubMed

References

Rienzi, L., Gracia, C., Maggiulli, R., et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod 2017; 23:139–55.Google Scholar
Kuwayama, M., Vatja, G., Ieda, S. and Kato, O. Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online 2005; 11:608–14.CrossRefGoogle ScholarPubMed
Vanderzwalmen, P., Zech, N., Greindl, A.-J., Ectors, F. and Lejeune, B. Cryopreservation of human embryos by vitrification. Gyn Obstet & Fert 2006; 34:760–9.Google ScholarPubMed
Cai, H., Niringiyumukiza, J. D., Li, Y., et al. Open versus closed vitrification system of human oocytes and embryos: a systematic review and meta-analysis of embryologic and clinical outcomes. Reprod Biol Endocrinol 2018; 16:111.CrossRefGoogle ScholarPubMed
Seki, S. and Mazur, P. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 2009; 59:7582.CrossRefGoogle ScholarPubMed
Vanderzwalmen, P., Lejeune, B., Stecher, A., et al. Survival of day 3 and day 5 embryos following vitrification in aseptic and non-aseptic conditions: a prospective randomized analysis. Fertil Steril 2005; 84 (Suppl):S175.CrossRefGoogle Scholar
Camus, A., Clairaz, P., Ersham, A., et al. Principe de la vitrification: cinétiques comparatives. The comparison of the process of vitrification of five different vitrification devices. Gyn Obstet & Fertil 2006; 34:737–45.Google Scholar
Larman, M. and Gardner, D. Vitrification of mouse embryos with super-cooled air. Fert Steril 2011; 95:1462–6.CrossRefGoogle ScholarPubMed
Gunst, J., Vynck, M. and Van de Vijver, A. Slow developing embryos undergoing compaction or cavitation on day 5 substantially contribute to live birth rate after single day 6 vitrified-warmed blastocyst transfer. Hum Reprod 2020; 35 (Suppl. 1):i201.Google Scholar
Alpha Scientists in Reproductive Medicine. The Alpha consensus meeting on cryopreservation key performance indicators and benchmarks: proceedings of an expert meeting. Reprod Biomed Online 2012; 25:146–67.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×