Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-06T15:14:40.384Z Has data issue: false hasContentIssue false

18 - Faunal evidence for mid- and late Quaternary environmental change in southern Africa

Published online by Cambridge University Press:  05 June 2016

Jasper Knight
Affiliation:
University of the Witwatersrand, Johannesburg
Stefan W. Grab
Affiliation:
University of the Witwatersrand, Johannesburg
Get access

Summary

Abstract

Southern Africa is differentiated from other centres of aridity in Africa by the presence of an extended island of elevated, essentially treeless habitat in the central interior, known as the Highveld and the Karoo. This area coincides botanically with the Nama-Karoo and the Grassland Biomes. The large geographic extent of this habitat is unique to southern Africa, since it has no exact equivalent in modern-day east or north Africa. This uniqueness is reflected in the large herbivores of the central interior, the grazers and mixed feeders adapted to permanently available open habitat, which defines the endemic faunal character of the subregion. This contribution presents some of the faunal evidence for the appearance of permanently open habitat in central southern Africa, a process that formed part of a longer-term trend of faunal adaptation to aridification and global cooling that was initiated within the last 1 Ma, in a time known as the Cornelian Land Mammal Age (LMA). A secondary and overlapping theme deals with the appearance of lakes and wetlands on a subregional scale during the Florisian LMA, which lasted from c. 0.6 Ma to the end of the Pleistocene/early Holocene. The end of the Florisian LMA coincided with the regional extinction of wetland faunas in the interior and with the extinction of specialised grazing ungulates over the entire subregion, leading into the semi-arid conditions seen in the larger part of modern-day southern Africa.

Type
Chapter
Information
Quaternary Environmental Change in Southern Africa
Physical and Human Dimensions
, pp. 284 - 305
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atwell, C. A. M. (1977). Reproduction and population ecology of the blue wildebeest (Connochaetes taurinus taurinus) in Zululand. Unpublished PhD dissertation, University of Natal, 303pp.Google Scholar
Axelrod, D. I. and Raven, P. H. (1978). Late Cretaceous and Tertiary vegetation history of Africa. In Biogeography and Ecology of Southern Africa, ed. Werger, M. J. A.. The Hague: W. Junk, pp. 77130.CrossRefGoogle Scholar
Balinsky, B. I. (1962). Patterns of animal distribution on the African continent. Annals of the Cape Provincial Museums, 2, 299310.Google Scholar
Behrensmeyer, A. K. (2006). Climate change and human evolution. Science, 311, 476478.CrossRefGoogle ScholarPubMed
Bernor, R., Armour-Chelu, M. J., Gilbert, H., Kaiser, T. M. and Schultz, E. (2010). Equidae. In Cenozoic Mammals of Africa, eds. Werdelin, L. and Saunders, W. J.. Berkeley: University of California Press, pp. 685722.Google Scholar
Bigalke, R. C. (1978). Present-day mammals of Africa. In Evolution of African Mammals, eds. Maglio, V. and Cooke, H. S. B.. Cambridge: Harvard University Press, pp. 116.Google Scholar
Bigalke, R. C. and Willan, K. (1984). Effects of Fire Regime on Faunal Composition and Dynamics. In Ecological Effects of Fire in Southern African Ecosystems, eds. Booysen, P. de V. and Tainton, N. M.. Berlin: Springer-Verlag, pp. 255271.CrossRefGoogle Scholar
Bobe, R. (2006). The evolution of arid ecosystems in East Africa. Journal of Arid Environments, 66, 564584.CrossRefGoogle Scholar
Braun, D. R., Levin, N. E., Stynder, D., Herries, A. I. R., Archer, W., Forrest, F., Roberts, D. L., Bishop, L. C., Matthews, T., Lehmann, S. B., Pickering, R. and Fitzsimmons, K. E. (2013). Mid-Pleistocene Hominin occupation at Elandsfontein, Western Cape, South Africa. Quaternary Science Reviews, 82, 145166.CrossRefGoogle Scholar
Brink, J. S. (1987). The Archaeozoology of Florisbad, Orange Free State. Bloemfontein: Memoirs van die Nasionale Museum, 24, 151pp.Google Scholar
Brink, J. S. (1993). Postcranial evidence for the evolution of the black wildebeest, Connochaetes gnou: an exploratory study. Palaeontologia Africana, 30, 6169.Google Scholar
Brink, J. S. (1994). An ass, Equus (Asinus) sp., from late Quaternary mammalian assemblages of Florisbad and Vlakkraal, central Southern Africa. South African Journal of Science, 90, 497500.Google Scholar
Brink, J. S. (1999). Preliminary report on a caprine from the Cape mountains, South Africa. Archaeozologia, 10, 1126.Google Scholar
Brink, J. S. (2005). The Evolution of the Black Wildebeest (Connochaetes gnou) and Modern Large Mammal Faunas of Central Southern Africa. Unpublished DPhil dissertation, University of Stellenbosch, 485pp.Google Scholar
Brink, J. S. and Lee-Thorp, J. A. (1992). The feeding niche of an extinct springbok, Antidorcas bondi (Antilopini, Bovidae), and its palaeoenvironmental meaning. South African Journal of Science, 88, 227229.Google Scholar
Brink, J. S., Herries, A. I. R., Moggi-Cecchi, J., Gowlett, J. A. J., Bousman, C. B., Hancox, J. P., Grün, R., Eisenmann, V., Adams, J. W. and Rossouw, L. (2012). First hominine remains from a ~1.0 million year old bone bed at Cornelia-Uitzoek, Free State Province, South Africa. Journal of Human Evolution, 63, 527535.CrossRefGoogle ScholarPubMed
Brink, J. S., de Beer, F., Hoffman, J. and Bam, L. (2013). The evolutionary meaning of Raphicerus-like morphology in the dentitions and postcrania of Antidorcas bondi (Antilopini). Zitteliana, 31 (Series B), 21.Google Scholar
Brink, J. S., Bousman, C. B. and Grün, R. (2015). A reconstruction of the skull of Megalotragus priscus (Broom, 1909), based on a find from Erfkroon, Modder River, South Africa, with notes on the chronology and biogeography of the species. Palaeoecology of Africa, 33, 7194.Google Scholar
Chazan, M., Ron, H., Matmon, A., Porat, N., Goldberg, P., Yates, R., Avery, M., Sumner, A., Horwitz, L. K. (2008). Radiometric dating of the Earlier Stone Age sequence in Excavation I at Wonderwerk Cave, South Africa: preliminary results. Journal of Human Evolution, 55, 111.CrossRefGoogle ScholarPubMed
Codron, D. and Brink, J. S. (2007). Trophic ecology of two savanna grazers, blue wildebeest Connochaetes taurinus and black wildebeest Connochaetes gnou. European Journal of Wildlife Research, 53, 9099.CrossRefGoogle Scholar
Codron, D., Brink, J. S., Rossouw, L. and Clauss, M. (2008). The evolution of ecological specialization in southern African ungulates: Competition- or physical environmental turnover? Oikos, 117, 344353.CrossRefGoogle Scholar
Cooke, H. B. S. (1952). Mammals, ape-men and stone age men in Southern Africa. South African Archaeological Bulletin, 7 (26), 5969.CrossRefGoogle Scholar
Cooke, H. B. S. (1967). The Pleistocene sequence in South Africa and problems of correlation. In Background to evolution in Africa, eds. Bishop, W. W. and Clark, J. D.. Chicago: University of Chicago Press, pp. 175184.Google Scholar
Cooke, H. B. S. (1974). The fossil mammals of Cornelia, O.F.S., South Africa. Memoirs van die Nasionale Museum, Bloemfontein, 9, 6384.Google Scholar
Corbet, S. W. and Robinson, T. J. (1991). Genetic divergence in South African wildebeest: comparative cytogenetics and analysis of mitochondrial DNA. Journal of Heredity, 82, 447452.CrossRefGoogle ScholarPubMed
Corbet, S. W., Grant, W. S. and Robinson, T. J. (1994). Genetic divergence in South African wildebeest: analysis of allozyme variability. Journal of Heredity, 85, 479183.CrossRefGoogle ScholarPubMed
De Ruiter, D. (2003). Revised faunal lists for Members 1–3 of Swartkrans, South Africa. Annals of the Transvaal Museum, 40, 2941.Google Scholar
Deacon, H. J. and Deacon, J. (1999). Human Beginnings in South Africa. Cape Town: David Philip, 224pp.Google Scholar
Deacon, H. J., Deacon, J., Scholtz, A., Thackeray, J. F., Brink, J. S. and Vogel, J. C. (1984). Correlation of palaeoenvironmental data from the Late Pleistocene and Holocene deposits at Boomplaas Cave, southern Cape. In Late Cainozoic Palaeoclimates of the Southern Hemisphere, ed. Vogel, J. C.. Rotterdam: Balkema, pp. 339352.Google Scholar
deMenocal, P. B. and Bloemendal, J. (1995). Plio-Pleistocene climatic variability in subtropical Africa and the paleoenvironment of hominid evolution: A combined data-model approach. In Paleoclimate and Evolution, with Emphasis on Human Origins, eds. Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H.. New Haven: Yale University Press, pp. 262288.Google Scholar
Dupont, L. M. and Leroy, S. A. G. (1995). Steps towards drier climatic conditions in northwestern Africa during the upper Pliocene. In Paleoclimate and Evolution, with Emphasis on Human Origins, eds. Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H.. New Haven: Yale University Press, pp. 289298.Google Scholar
Ewer, R. F. and Cooke, H. S. B. (1964). The Pleistocene mammals of southern Africa. Monographiae Biologicae, 14, 3538.Google Scholar
Faith, J. T. (2013). Taphonomic and paleoecological change in the large mammal sequence from Boomplaas Cave, western Cape, South Africa. Journal of Human Evolution, 65, 715730.CrossRefGoogle ScholarPubMed
Faith, J. T. (2014). Late Pleistocene and Holocene mammal extinctions on continental Africa. Earth-Science Reviews, 128, 105121.CrossRefGoogle Scholar
Gentry, A. W. (1980). Fossil bovidae (Mammalia) from Langebaanweg, South Africa. Annals of the South African Museum, 79, 213337.Google Scholar
Gentry, A. W. (2010). Bovidae. In Cenozoic Mammals of Africa, eds. Werdelin, L. and Saunders, W. J.. Berkeley: University of California Press, pp. 741796.Google Scholar
Gentry, A. W. and Gentry, A. (1978). Fossil Bovidae (Mammalia) of Olduvai Gorge, Tanzania. Part I. Bulletin of the British Museum (Natural History), 29, 290446.Google Scholar
Geraads, D. (1981). Bovidae et Giraffidae (Artiodactyla, Mammalia) du Pléistocène de Ternifine (Algérie). Bulletin Muséum national d'Histoire naturelle, Paris, 4 (3), 4786.Google Scholar
Gilbert, W. H. (2008). Introduction. In Homo Erectus: Pleistocene Evidence from the Middle Awash, Ethiopia, eds. Gilbert, W. H. and Asfaw, B.. Berkeley and Los Angeles: University of California Press, pp. 112.Google Scholar
Grobler, N. J. and Loock, J. C. (1988). Morphological development of the Florisbad deposit. Palaeoecology of Africa, 19, 163168.Google Scholar
Grün, R., Brink, J. S., Spooner, N. A., Taylor, L., Stringer, C. B., Franciscus, R. B. and Murray, A. (1996). Direct dating of the Florisbad hominid. Nature, 382, 500501.CrossRefGoogle ScholarPubMed
Harris, J. M. and White, T. (1979). Evolution of the Plio-Pleistocene African Suidae. Transactions of the American Philosophical Society, 69, 1128.CrossRefGoogle Scholar
Hendey, Q. B. (1974). Faunal dating of the late Cenozoic of southern Africa, with special reference to the Carnivora. Quaternary Research, 4, 149161.CrossRefGoogle Scholar
Herries, A. I. R., Reed, K. E., Kuykendall, K. L. and Latham, A. G. (2006). Speleology and magnetobiostratigraphic chronology of the Buffalo Cave fossil site, Makapansgat, South Africa. Quaternary Research, 66, 233245.CrossRefGoogle Scholar
Herries, A. I. R., Hopley, P. J., Adams, J. W., Curnoe, D. and Maslin, M. A. (2009). Geochronology and palaeoenvironments of the South African early hominin bearing sites – a reply to Wrangham et al., 2009: “Shallow-Water Habitats as Sources of Fallback Foods for Hominins”. American Journal of Physical Anthropology, 143, 640646.CrossRefGoogle Scholar
Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F. and Wefer, G. (2013). The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nature Geoscience, 6, 10271030.CrossRefGoogle Scholar
Kingdon, J. (1997). The Kingdon Field Guide to African Mammals. London: Academic Press, 496pp.Google Scholar
Klein, R. G. (1983). Paleoenvironmental implications of Quaternary large mammals in the Fynbos region. In Fynbos Palaeoecology: A Preliminary Synthesis, eds. Deacon, H. J., Hendey, Q. B. and Lambrechts, J. J. N.. Pretoria: South African National Scientific Programmes Report 75, pp. 116138.Google Scholar
Klein, R. G. (1984). The large mammals of southern Africa: Late Pliocene to recent. In Southern African Prehistory and Palaeoenvironments, ed. Klein, R. G.. Rotterdam: A.A. Balkema, pp. 107146.Google Scholar
Klein, R. G., Cruz-Uribe, K. and Beaumont, P. B. (1991). Environmental, ecological, and paleoanthropological implications of the late Pleistocene mammalian fauna from Equus Cave, northern Cape Province, South Africa. Quaternary Research, 36, 94119.CrossRefGoogle Scholar
Klein, R. G., Avery, G., Cruz-Uribe, K. and Steele, T. E. (2007). The mammalian fauna associated with an archaic hominin skullcap and later Acheulean artifacts at Elandsfontein, Western Cape Province, South Africa. Journal of Human Evolution, 52, 164186.CrossRefGoogle ScholarPubMed
Lacruz, R. S., Brink, J. S., Hancox, P. J., Skinner, A. R., Herries, A., Schmid, P. and Berger, L. R. (2002). Palaeontology and geological context of a Middle Pleistocene faunal assemblage from the Gladysvale Cave, South Africa. Palaeontologia Africana, 38, 99114.Google Scholar
Loock, J. C. and Grobler, N. J. (1988). The Regional Geology of Florisbad. Navorsinge van die Nasionale Museum, Bloemfontein, 5, 489497.Google Scholar
Lorenzen, E. D., Heller, R. and Siegismuld, H. R. (2012). Comparative phylogeography of African savannah ungulates. Molecular Ecology, 21, 36563670.CrossRefGoogle ScholarPubMed
McCarthy, T. S. (2013). The Okavango delta and its place in the geomorphological evolution of southern Africa. South African Journal of Geology, 116, 154.CrossRefGoogle Scholar
Mucina, L. and Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute, 807pp.Google Scholar
Partridge, T. C. and Maud, R. R. (2000). Macro-scale geomorphic evolution of southern Africa. In The Cenozoic of Southern Africa, eds. Partridge, T. C. and Maud, R. R.. Oxford: Oxford University Press, pp. 318.Google Scholar
Pickford, M. and Senut, B. (1999). Geology and Palaeobiology of the Namib Desert. Windhoek: Memoir of the Geological Survey of Namibia, 18, 155pp.Google Scholar
Plug, I. and Engela, R. (1992). The macrofaunal remains from recent excavations at Rose Cottage Cave, Orange Free State. South African Archaeological Bulletin, 47, 1625.CrossRefGoogle Scholar
Porat, N., Chazan, M., Grün, R., Aubert, M., Eisenmann, V. and Horwitz, L. K. (2010). New radiometric ages for the Fauresmith industry from Kathu Pan, southern Africa: Implications for the Earlier to Middle Stone Age transition. Journal of Archaeological Science, 37, 269283.CrossRefGoogle Scholar
Reynolds, S. C. and Kibii, J. M. (2011). Sterkfontein at 75: Review of palaeoenvironments, fauna, dating and archaeology from the hominin site of Sterkfontein (Gauteng Province, South Africa). Palaeontologia Africana, 46, 5988.Google Scholar
Savage, D. E. and Russel, D. E. (1983). Mammalian Paleofaunas of the World. Reading (Massachusetts): Addison Wesley, 462pp.Google Scholar
Skinner, J. and Smithers, R. H. (1990). The Mammals of the Southern African Subregion, 2nd Ed. Pretoria: University of Pretoria, 768pp.Google Scholar
Thackeray, J. F. (1984). Man, Animals and Extinctions: The Analysis of Holocene Faunal Remains from Wonderwerk Cave, South Africa. Unpublished PhD dissertation, Yale University, 293pp.Google Scholar
Thackeray, J. F. and Brink, J. S. (2004). Damaliscus niro horns from Wonderwerk Cave and other Pleistocene sites: Morphological and chronological considerations. Palaeontologia Africana, 40, 8993.Google Scholar
Tinker, T., de Wit, M. J. and Brown, R. (2008). Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track themochronology. Tectonophysics, 455, 7793.CrossRefGoogle Scholar
Van Hoepen, E. C. N. (1932). Voorlopige beskrywing van Vrystaatse soogdiere. Paleontologiese navorsinge van die Nasionale Museum, Bloemfontein, 2, 6365.Google Scholar
Van Hoepen, E. C. N. (1947). A preliminary description of new Pleistocene mammals of South Africa. Paleontologiese navorsinge van die Nasionale Museum, Bloemfontein, 2, 103106.Google Scholar
Visser, J. J. N. and Joubert, A. (1991). Cyclicity in the late Pleistocene to Holocene spring and lacustrine deposits at Florisbad, Orange Free State. South African Journal of Geology, 94, 123131.Google Scholar
Vrba, E. S. (1995). On the connections between paleoclimate and evolution. In Paleoclimate and Evolution, with Emphasis on Human Origins, eds. Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H.. New Haven: Yale University Press, pp. 2445.Google Scholar
Wells, L. H. (1962). Pleistocene faunas and the distribution of mammals in Southern Africa. Annals of the Cape Provincial Museums, 2, 3740.Google Scholar
Werdelin, L. and Peigné, S. (2010). Carnivora. In Cenozoic Mammals of Africa, eds. Werdelin, L. and Saunders, W. J.. Berkeley: University of California Press, pp. 603658.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×