Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-03T14:38:29.226Z Has data issue: false hasContentIssue false

Chapter 6 - Isotope Geochemistry of Oceanic Volcanics

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegre, C. J. (1982). Chemical geodynamics. Tectonophys. 81, 109–32.Google Scholar
Allegre, C. J. (1997). Limitation on the mass exchange between the upper and lower mantle: the evolving convection regime of the Earth. Earth Planet. Sci. Lett. 150, 16.CrossRefGoogle Scholar
Allegre, C. J., Ben Othman, D., Polve, M. and Richard, P. (1979). The Nd–Sr isotopic correlation in mantle materials and geodynamic consequences. Phys. Earth Planet. Inter. 19, 293306.CrossRefGoogle Scholar
Allegre, C. J., Brevart, O., Dupre, B. and Minster, J. F. (1980). Isotopic and chemical effects produced by a continuously differentiating convecting Earth mantle. Phil. Trans. Roy. Soc. Lond. A 297, 447–77.Google Scholar
Allegre, C. J., Dupre, B. and Lewin, E. (1986). Thorium/uranium ratio of the Earth. Chem. Geol. 56, 219–27.CrossRefGoogle Scholar
Allegre, C. J., Hamelin, B. and Dupre, B. (1984). Statistical analysis of isotopic ratios in MORB: the mantle blob cluster model and the convective regime of the mantle. Earth Planet. Sci. Lett. 71, 7184.CrossRefGoogle Scholar
Allegre, C. J., Hamelin, B., Provost, A. and Dupre, B. (1987). Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth Planet. Sci. Lett. 81, 319–37.CrossRefGoogle Scholar
Allegre, C. J. and Turcotte, D. L. (1986). Implications of a two-component marble-cake mantle. Nature 323, 123–7.Google Scholar
Andersen, M. B., Elliott, T., Freymuth, H. et al. (2015). The terrestrial uranium isotope cycle. Nature 517, 356–9.Google Scholar
Anderson, D. L. (1981). Hotspots, basalts, and the evolution of the mantle. Science 213, 82–9.CrossRefGoogle ScholarPubMed
Barling, J. and Goldstein, S. L. (1990). Extreme isotopic variations in Heard Island lavas and the nature of mantle reservoirs. Nature 348, 5962.Google Scholar
Batiza, R. (1984). Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity. Nature 309, 440–1.Google Scholar
Bell, K. and Tilton, G. R. (2001). Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. J. Petrol. 42, 1927–45.CrossRefGoogle Scholar
Ben Othman, D., White, W. M. and Patchett, J. (1989). The geochemistry of marine sediments, island arc magma genesis, and crust–mantle recycling. Earth Planet. Sci. Lett. 94, 121.Google Scholar
Bezard, R., Davidson, J. P., Turner, S. et al. (2014). Assimilation of sediments embedded in the oceanic arc crust: myth or reality? Earth Planet. Sci. Lett. 395, 5160.CrossRefGoogle Scholar
Bezard, R., Schaefer, B. F., Turner, S., Davidson, J. P. and Selby, D. (2015). Lower crustal assimilation in oceanic arcs: insights from an osmium isotopic study of the Lesser Antilles. Geochim.t Cosmochim. Acta 150, 330–44.Google Scholar
Bijwaard, H. and Spakman, W. (1999). Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet. Sci. Lett. 166, 121–6.CrossRefGoogle Scholar
Blichert-Toft, J., Zanda, B., Ebel, D. S. and Albarede, F. (2010). The solar system primordial lead. Earth Planet. Sci. Lett. 300, 152–63.CrossRefGoogle Scholar
Boyet, M. and Carlson, R. W. (2005). 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–81.Google Scholar
Boyet, M. and Carlson, R. W. (2006). A new geochemical model for the Earth's mantle inferred from 146Sm–142Nd systematics. Earth Planet. Sci. Lett. 250, 254–68.Google Scholar
Bunge, H. P., Richards, M. A. and Baumgardner, J. R. (1996). Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379, 436–8.Google Scholar
Burke, K., Steinberger, B., Torsvik, T. H. and Smethurst, M. A. (2008). Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 4960.Google Scholar
Burton, K. W., Cenki-Tok, B., Mokadem, F. et al. (2012). Unradiogenic lead in Earth's upper mantle. Nature Geosci. 5, 570–3.Google Scholar
Cabral, R. A., Jackson, M. G., Rose-Koga, E. F. et al. (2013). Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496, 490–3.CrossRefGoogle ScholarPubMed
Campbell, I. H. (2002). Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle. Geochim. Cosmochim. Acta 66, 1651–61.CrossRefGoogle Scholar
Caro, G. and Bourdon, B. (2010). Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle–crust system. Geochim. Cosmochim. Acta 74, 3333–49.CrossRefGoogle Scholar
Caro, G., Bourdon, B., Halliday, A. N. and Quitté, G. (2008). Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452, 336–9.Google Scholar
Castillo, P. (1988). The Dupal anomaly as a trace of the upwelling lower mantle. Nature 336, 667–70.CrossRefGoogle Scholar
Castillo, P. R. (2015). The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts. Lithos 216, 254–63.Google Scholar
Chase, C. G. (1981). Oceanic island Pb: Two-stage histories and mantle evolution. Earth Planet. Sci. Lett. 52, 277–84.Google Scholar
Chauvel, C., Goldstein, S. L. and Hofmann, A. W. (1995). Hydration and dehydration of oceanic crust controls Pb evolution in the mantle. Chem. Geol. 126, 6575.CrossRefGoogle Scholar
Chauvel, C., Hofmann, A. W. and Vidal, P. (1992). HIMU–EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99119.Google Scholar
Chen, C. Y. and Frey, F. A. (1983). Origin of Hawaiian tholeiite and alkalic basalt. Nature 302, 785–9.CrossRefGoogle Scholar
Christensen, U. R. and Hofmann, A. W. (1994). Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99 (B10), 19 867–84.CrossRefGoogle Scholar
Class, C., Goldstein, S. L., Altherr, R. and Bachelery, P. (1998). The process of plume– lithosphere interactions in the ocean basins – the case of Grande Comore. J. Petrol. 39, 937–52.CrossRefGoogle Scholar
Class, C., Goldstein, S. L. and Shirey, S. B. (2009). Osmium isotopes in Grande Comore lavas: a new extreme among a spectrum of EM-type mantle end-members. Earth Planet. Sci. Lett. 284, 219–27.Google Scholar
Cohen, R. S., Evensen, N. M., Hamilton, P. J. and O'Nions, R. K. (1980). U–Pb, Sm–Nd and Rb–Sr systematics of ocean ridge basalt glasses. Nature 283, 149–53.Google Scholar
Cohen, R. S. and O'Nions, R. K. (1982). Identification of recycled continental material in the mantle from Sr, Nd and Pb isotope investigations. Earth Planet. Sci. Lett. 61, 7384.Google Scholar
Collerson, K. D. and Kamber, B. S. (1999). Evolution of the continents and the atmosphere inferred from Th U Nb systematics of the depleted mantle. Science 283, 1519–22.Google Scholar
Collerson, K. D., Williams, Q., Ewart, A. E. and Murphy, D. T. (2010). Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: The role of CO2-fluxed lower mantle melting in thermochemical upwellings. Phys. Earth Planet. Inter. 181, 112–31.Google Scholar
Dasch, E. J., Hedge, C. E. and Dymond, J. (1973). Effect of seawater alteration on strontium isotope composition of deep-sea basalts. Earth Planet. Sci. Lett. 19, 177–83.Google Scholar
Davidson, J. P. (1983). Lesser Antilles isotopic evidence of the role of subducted sediment in island arc magma genesis. Nature 306, 253–6.Google Scholar
Davidson, J. P. (1987). Crustal contamination versus subduction zone enrichment: examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks. Geochim. Cosmochim. Acta 51, 2185–98.CrossRefGoogle Scholar
Davies, G. F. (1977). Whole-mantle convection and plate tectonics. Geophys. J. Int. 49, 459–86.CrossRefGoogle Scholar
Delavault, H., Chauvel, C., Thomassot, E., Devey, C. W. and Dazas, B. (2016). Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proc. Nat. Acad. Sci. 113, 12 952–6.CrossRefGoogle ScholarPubMed
DePaolo, D. J. (1980). Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim. Cosmochim. Acta 44, 1185–96.Google Scholar
DePaolo, D. J. and Wasserburg, G. J. (1976). Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett. 3, 743–6.Google Scholar
DePaolo, D. J. and Wasserburg, G. J. (1979). Petrogenetic mixing models and Nd)Sr isotopic patterns. Geochim. Cosmochim. Acta 43, 615–27.CrossRefGoogle Scholar
Dewey, J. (1980). Episodicity, sequence and style at convergent plate boundaries. In: Strangway, D. W. (Ed.) The Continental Crust and its Mineral Deposits. Geol. Assoc. Canada Spec. Pap. 8, pp. 553–73.Google Scholar
Dickin, A. P. (2016). The chondritic moon: a solution to the 142Nd conundrum and implications for terrestrial mantle evolution. Geol. Mag. 153, 548–55.Google Scholar
Donnelly, K. E., Goldstein, S. L., Langmuir, C. H. and Spiegelman, M. (2004). Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett. 226, 347–66.Google Scholar
Douglass, J., Schilling, J. G. and Fontignie, D. (1999). Plume–ridge interactions of the Discovery and Shona mantle plumes with the southern Mid-Atlantic Ridge (40°–55° S). J. Geophys. Res. 104 (B2), 2941–62.Google Scholar
Dosso, L. and Murthy, V. R. (1980) A Nd isotope study of the Kerguelen islands: inferences on enriched oceanic mantle sources. Earth Planet. Sci. Lett. 48, 268–76.Google Scholar
Dupre, B. and Allegre, C. J. (1980). Pb–Sr–Nd isotopic correlation and the chemistry of the North Atlantic mantle. Nature 286, 1722.CrossRefGoogle Scholar
Dupre, B. and Allegre, C. J. (1983). Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142–6.Google Scholar
Dziewonski, A. M. (1984). Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. 89 (B7), 5929–52.Google Scholar
Eiler, J. M., Crawford, A., Elliott, T. I. M. et al. (2000). Oxygen isotope geochemistry of oceanic-arc lavas. J. Petrol. 41, 229–56.CrossRefGoogle Scholar
Eiler, J. M., Farley, K. A., Valley, J. W. et al. (1997). Oxygen isotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta 61, 2281–93.Google Scholar
Eiler, J. M., Farley, K. A., Valley, J. W., Hofmann, A. W. and Stolper, E. M. (1996). Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet. Sci. Lett. 144, 453–68.Google Scholar
Eiler, J. M., Farley, K. A., Valley, J. W. et al. (1995). Oxygen isotope evidence against bulk recycled sediment in the mantle source of Pitcairn Island lavas. Nature 377, 138–41.CrossRefGoogle Scholar
Eiler, J. M., McInnes, B., Valley, J. W., Graham, C. M. and Stolper, E. M. (1998). Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle. Nature 393, 777–81.CrossRefGoogle Scholar
Eiler, J. M., Schiano, P., Valley, J. W., Kita, N. T. and Stolper, E. M. (2007). Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem. Geophys. Geosys. 8 (9), 121.Google Scholar
Ellam, R. M. and Hawkesworth, C. J. (1988). Elemental and isotopic variations in subduction related basalts: evidence for a three component model. Contrib. Mineral. Petrol. 98, 7280.Google Scholar
Elliott, T., Blichert-Toft, J., Heumann, A., Koetsier, G. and Forjaz, V. (2007). The origin of enriched mantle beneath Sao Miguel, Azores. Geochim. Cosmochim. Acta 71, 219–40.Google Scholar
Elliott, T., Zindler, A. and Bourdon, B. (1999). Exploring the kappa conundrum: the role of recycling in the lead isotope evolution of the mantle. Earth Planet. Sci. Lett. 169, 129–45.Google Scholar
Farley, K. A., Natland, J. H. and Craig, H. (1992). Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett. 111, 183–99.CrossRefGoogle Scholar
Farquhar, J. and Wing, B. A. (2003). Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 113.CrossRefGoogle Scholar
Faure, G. and Hurley, P. M. (1963). The isotopic composition of strontium in oceanic and continental basalt. J. Petrol. 4, 3150.Google Scholar
Flower, M. F. J., Schmincke, H. U. and Thompson, R. N. (1975). Phlogopite stability and the 87Sr/86Sr step in basalts along the Reykjanes Ridge. Nature 254, 404–6.Google Scholar
Galer, S. J. G. and O'Nions, R. K. (1985). Residence time of thorium, uranium and lead in the mantle with implications for mantle convection. Nature 316, 778–82.CrossRefGoogle Scholar
Garnero, E. J. and Helmberger, D. V. (1995). A very slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific: evidence from core phases. Phys. Earth Planet. Inter. 91, 161–76.Google Scholar
Gast, P. W., Tilton, G. R. and Hedge, C. (1964). Isotopic composition of lead and strontium from Ascension and Gough Islands. Science 145, 1181–5.Google Scholar
Hanan, B. B. and Graham, D. W. (1996). Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–5.Google Scholar
Harmon, R. S. and Hoefs, J. (1995). Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib. Mineral. Petrol. 120, 95114.Google Scholar
Harris, C., Bell, J. D. and Atkins, F. B. (1983). Isotopic composition of lead and strontium in lavas and coarse-grained blocks from Ascension Island, South Atlantic – an addendum. Earth Planet. Sci. Lett. 63, 139–41.Google Scholar
Harris, P. G., Hutchison, R. and Paul, D. K. (1972). Plutonic xenoliths and their relation to the upper mantle. Phil. Trans. Roy. Soc. Lond. A 271, 313–23.Google Scholar
Hart, S. R. (1984). A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–7.Google Scholar
Hart, S. R. (1988). Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet. Sci. Lett. 90, 273–96.Google Scholar
Hart, S. R. and Gaetani, G. A. (2006). Mantle Pb paradoxes: the sulfide solution. Contrib. Mineral. Petrol. 152, 295308.Google Scholar
Hart, S. R., Gerlach, D. C. and White, W. M. (1986). A possible new Sr–Nd–Pb mantle array and consequences for mantle mixing. Geochim. Cosmochim. Acta 50, 1551–7.Google Scholar
Hart, S. R., Hauri, E. H., Oschmann, L. A. and Whitehead, J. A. (1992). Mantle plumes and entrainment: isotopic evidence. Science 256, 517–20.Google Scholar
Hart, S. R., Schilling, J-G. and Powell, J. L. (1973). Basalts from Iceland and along the Reykjanes Ridge: Sr isotope geochemistry. Nature Phys. Sci. 246, 104–7.Google Scholar
Harvey, J., Gannoun, A., Burton, K. W. et al. (2006). Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet. Sci. Lett. 244, 606–21.Google Scholar
Hauri, E. H., Shimizu, N., Dieu, J. J. and Hart, S. R. (1993). Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365, 221–7.Google Scholar
Hauri, E. H., Whitehead, J. A. and Hart, S. R. (1994). Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J. Geophys. Res. 99, 24275–300.Google Scholar
Hawkesworth, C. J., Hergt, J. M., McDermott, F. and Ellam, R. M. (1991). Destructive margin magmatism and the contributions from the mantle wedge and subducted crust. Aust. J. Earth Sci. 38, 577–94.Google Scholar
Hawkesworth, C. J., Norry, M. J., Roddick, J. C. and Vollmer, R. (1979). 143Nd/144Nd and 87Sr/86Sr ratios from the Azores and their significance in LIL element enriched mantle. Nature 280, 2831.Google Scholar
Hawkesworth, C. J., O'Nions, R. K., Pankhurst, R. J., Hamilton, P. J. and Evensen, N. M. (1977). A geochemical study of island-arc and back-arc tholeiites from the Scotia Sea. Earth Planet. Sci. Lett. 36, 253–62.Google Scholar
Hofmann, A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–29.Google Scholar
Hofmann, A. W., Jochum, K. P., Seufert, M. and White, W. M. (1986). Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 3345.Google Scholar
Hofmann, A. W. and Hart, S. R. (1978). An assessment of local and regional isotopic equilibrium in the mantle. Earth Planet. Sci. Lett. 38, 4462.Google Scholar
Hofmann, A. W. and White, W. M. (1980). The role of subducted oceanic crust in mantle evolution. Carnegie Inst. Washington Yearbook 79, 477–83.Google Scholar
Hofmann, A. W. and White, W. M. (1982). Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–36.CrossRefGoogle Scholar
Jackson, M. G., Hart, S. R., Konter, J. G. et al. (2014). Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature 514, 355–8.Google Scholar
Jacobsen, S. B. and Wasserburg, G. J. (1979). The mean age of mantle and crustal reservoirs. J. Geophys. Res. 84, 7411–27.Google Scholar
Jego, S. and Dasgupta, R. (2014). The fate of sulfur during fluid-present melting of subducting basaltic crust at variable oxygen fugacity. J. Petrol. 55, 1019–50.Google Scholar
Jenner, F. E. and O'Neill, H. S. C. (2012). Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosys. 13 (2), 111.Google Scholar
Kamber, B. S. and Collerson, K. D. (1999). Origin of ocean island basalts: a new model based on lead and helium isotope systematics. J. Geophys. Res. 104, 25, 479–91.CrossRefGoogle Scholar
Kelemen, P. B. and Manning, C. E. (2015). Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Nat. Acad. Sci. 112, E39974006.Google Scholar
Kelley, K. A. and Cottrell, E. (2009). Water and the oxidation state of subduction zone magmas. Science 325, 605–7.Google Scholar
Kelley, K. A., Plank, T., Farr, L., Ludden, J. and Staudigel, H. (2005). Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett. 234, 369–83.Google Scholar
Kellogg, L. H., Hagar, B. H. and van der Hilst, R. D. (1999). Compositional stratification in the deep mantle. Science 283, 1881–4.Google Scholar
Kenyon, P. M. (1990). Trace element and isotopic effects arising from magma migration beneath mid-ocean ridges. Earth Planet. Sci. Lett. 101, 367–78.Google Scholar
Korenaga, J. (2009). A method to estimate the composition of the bulk silicate Earth in the presence of a hidden geochemical reservoir. Geochim. Cosmochim. Acta 73, 6952–64.Google Scholar
Kramers, J. D. and Tolstikhin, I. N. (1997). Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chem. Geol. 139, 75110.Google Scholar
Labanieh, S., Chauvel, C., Germa, A., Quidelleur, X. and Lewin, E. (2010). Isotopic hyperbolas constrain sources and processes under the Lesser Antilles arc. Earth Planet. Sci. Lett. 298, 3546.Google Scholar
Labidi, J., Cartigny, P. and Moreira, M. (2013). Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501, 208–11.Google Scholar
Lay, T. and Garnero, E. J. (2004). Core–mantle boundary structures and processes. In: Sparks, R. S. J. and Hawkesworth, C. J. (Eds) The State of the Planet: Frontiers and Challenges in Geophysics. Geophys. Monograph Series, American Geophys. Union, pp. 2541.Google Scholar
Lay, T., Hernlund, J., Garnero, E. J. and Thorne, M. S. (2006). A post-perovskite lens and D'' heat flux beneath the central Pacific. Science 314, 1272–6.Google Scholar
Liu, C. Z., Wu, F. Y., Chung, S. L. et al. (2014). A ‘hidden’ 18O-enriched reservoir in the sub-arc mantle. Scientific Reports 4 (4232), 16.Google Scholar
Malaviarachchi, S. P., Makishima, A., Tanimoto, M., Kuritani, T. and Nakamura, E. (2008). Highly unradiogenic lead isotope ratios from the Horoman peridotite in Japan. Nature Geosci. 1, 859–63.Google Scholar
McCulloch, M. T. and Perfit, M. R. (1981). 143Nd/144Nd, 87Sr/86Sr and trace element constraints on the petrogenesis of Aleutian island arc magmas. Earth Planet. Sci. Lett. 56, 167–79.Google Scholar
McDermott, F., Defant, M. J., Hawkesworth, C. J., Maury, R. C. and Joron, J. L. (1993). Isotope and trace element evidence for three component mixing in the genesis of the North Luzon arc lavas (Philippines). Contrib. Mineral. Petrol. 113, 923.Google Scholar
McKenzie, D. (1979). Finite deformation during fluid flow. Geophys. J. Roy. Astr. Soc. 58, 689715.Google Scholar
McKenzie, D. P. and O'Nions, R. K. (1983). Mantle reservoirs and ocean island basalts. Nature 301, 229–31.Google Scholar
Meijer, A., Kwon, T. T. and Tilton, G. R. (1990). U–Th–Pb partitioning behavior during partial melting in the upper mantle: Implications for the origin of high Mu Components and the “Pb Paradox”. J. Geophys. Res. 95 (B1), 433–48.Google Scholar
Michard, A. and Albarede, F. (1985). Hydrothermal uranium uptake at ridge crests. Nature 317, 244–6.Google Scholar
Morgan, J. P. and Shearer, P. M. (1993). Seismic constraints on mantle flow and topography of the 660-km discontinuity: evidence for whole-mantle convection. Nature 365, 506–11.CrossRefGoogle Scholar
Morgan, W. J. (1971) Convection plumes in the lower mantle. Nature 230, 42–3.Google Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N. and Ohishi, Y. (2004). Post-perovskite phase transition in MgSiO3. Science 304, 855–8.Google Scholar
Neal, C. R., Mahoney, J. J. and ChazeyIII, W. J. (2002). Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: results from ODP Leg 183. J. Petrol. 43, 11771205.Google Scholar
Newsome, H. E., White, W. M., Jochum, K. P. and Hofmann, A. W. (1986). Siderophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth's core. Earth Planet. Sci. Lett. 80, 299313.Google Scholar
Niu, Y. and O'Hara, M. J. (2003). Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J. Geophys. Res. 108 (B4) 2209, ECV5, 119.Google Scholar
O'Hara, M. J. (1973). Non-primary magmas and dubious mantle plume beneath Iceland. Nature 243, 507–8.Google Scholar
O'Hara, M. J. (1975). Is there an Icelandic mantle plume? Nature 253, 708–10.Google Scholar
O'Hara, M. J. and Mathews, R. E. (1981). Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. J. Geol. Soc. Lond. 138, 237–77.Google Scholar
Olson, P. (1984). Mixing of passive heterogeneities by mantle convection. J. Geophys. Res. 89, B425–36.Google Scholar
O'Nions, R. K., Evensen, N. M. and Hamilton, P. J. (1979). Geochemical modelling of mantle differentiation and crustal growth. J. Geophys. Res. 84 6091–101.Google Scholar
O'Nions, R. K., Hamilton, P. J. and Evensen, N. M. (1977). Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet. Sci. Lett. 34, 1322.Google Scholar
O'Nions, R. K., Evensen, N. M. and Hamilton, P. J. (1980). Differentiation and evolution of the mantle. Phil. Trans. Roy. Soc. Lond. A 297, 479–93.Google Scholar
O'Nions, R. K. and Pankhurst, R. J. (1973). Secular variation in the Sr-isotope composition of Icelandic volcanic rocks. Earth Planet. Sci. Lett. 21, 1221.Google Scholar
Pearce, J. (1983). The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth, C. J. and Norry, M. J. (Eds) Continental Basalts and Mantle Xenoliths. Shiva, pp. 230–49.Google Scholar
Polve, M. and Allegre, C. J. (1980). Orogenic lherzolite complexes studied by 87Rb–87Sr: a clue to understanding the mantle convection process? Earth Planet. Sci. Lett. 51, 7193.Google Scholar
Prinzhofer, A., Lewin, E. and Allegre, C. J. (1989). Stochastic melting of the marble cake mantle: evidence from local study of the East Pacific Rise at 12° 50' N. Earth Planet. Sci. Lett. 92, 189206.Google Scholar
Richard, P., Shimizu, N. and Allegre, C. J. (1976). 143Nd/144Nd, a natural tracer: an application to oceanic basalts. Earth Planet. Sci. Lett. 31, 269–78.Google Scholar
Richter, S., Eykens, R., Kühn, H. et al. (2010). New average values for the n (238 U)/n (235 U) isotope ratios of natural uranium standards. Int. J. Mass Spec. 295, 94–7.Google Scholar
Richter, F. M. and Ribe, N. M. (1979). On the importance of advection in determining the local isotopic composition of the mantle. Earth Planet. Sci. Lett. 43, 212–22.Google Scholar
Ringwood, A. E. (1982). Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J. Geol. 90, 611–43.Google Scholar
Schilling, J-G. (1973). Iceland mantle plume: geochemical study of Reykjanes Ridge. Nature 242, 565–71.Google Scholar
Schilling, J-G. and Noe Nygaard, A. (1974). Faeroe–Iceland plume; rare-earth evidence. Earth Planet. Sci. Lett. 24, 114.Google Scholar
Shearer, P. M. and Masters, T. G. (1992). Global mapping of topography on the 660-km discontinuity. Nature 355, 791–6.Google Scholar
Staudigel, H., Park, K-H., Pringle, M. et al. (1991). The longevity of the South Pacific isotopic and thermal anomaly. Earth Planet. Sci. Lett. 102, 2444.Google Scholar
Stracke, A. (2012). Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chem. Geol. 330, 274–99.Google Scholar
Stracke, A., Hofmann, A. W. and Hart, S. R. (2005). FOZO, HIMU, and the rest of the mantle zoo. Geochem. Geophys. Geosys. 6 (5), 120.Google Scholar
Sun, S. S. (1985). Ocean islands – plums or plumes? Nature 316, 103–4.Google Scholar
Sun, S. S. (1980). Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Phil. Trans. Roy. Soc. Lond. A 297, 409–45.Google Scholar
Sun, S. S., Tatsumoto, M. and Schilling, J-G. (1975). Mantle plume mixing along the Reykjanes ridge axis: lead isotopic evidence. Science 190, 143–7.Google Scholar
Tatsumoto, M. (1966). Genetic relations of oceanic basalts as indicated by lead isotopes. Science 153, 1094–101.Google Scholar
Tatsumoto, M. (1978). Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth Planet. Sci. Lett. 38, 6387.Google Scholar
Tolstikhin, I. and Hofmann, A. W. (2005). Early crust on top of the Earth's core. Phys. Earth Planet. Inter. 148, 109–30.Google Scholar
Turcotte, D. L. and Oxburgh, E. R. (1967). Finite amplitude convective cells and continental drift. J. Fluid. Mech. 28, 2942.Google Scholar
van der Hilst, R. D. and Karason, H. (1999). Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model. Science 283, 1885–8.Google Scholar
van der Hilst, R. D., Widiyantoro, S. and Engdahl, E. R. (1997). Evidence for deep mantle circulation from global tomography. Nature 386, 578–84.Google Scholar
Vidal, P. and Dosso, L. (1978). Core formation: catastrophic or continuous? Sr and Pb isotope geochemistry constraints. Geophys. Res. Lett. 5, 169–72.Google Scholar
Weaver, B. L. (1991). The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381–97.Google Scholar
Weis, D. and Frey, F. A. (2002). Submarine basalts of the northern Kerguelen Plateau: Interaction between the Kerguelen Plume and the Southeast Indian Ridge revealed at ODP Site 1140. J. Petrol. 43, 12871309.Google Scholar
Weis, D., Ingle, S., Damasceno, D. et al. (2001). Origin of continental components in Indian Ocean basalts: Evidence from Elan Bank (Kerguelen Plateau, ODP Leg 183, Site 1137). Geology 29, 147–50.Google Scholar
Weiss, Y., Class, C., Goldstein, S. L. and Hanyu, T. (2016). Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature 537, 666–70.Google Scholar
Wen, L. and Helmberger, D. V. (1998). Ultra-low velocity zones near the core–mantle boundary from broadband PKP precursors. Science 279, 1701–3.Google Scholar
White, W. M. (1981). European Colloquium of Geochronology, Cosmochronology and Isotope Geology VII, meeting abstract.Google Scholar
White, W. M. (1985). Sources of oceanic basalts: radiogenic isotopic evidence. Geology 13, 115–18.Google Scholar
White, W. M. (1993). 238U/204Pb in MORB and open system evolution of the depleted mantle. Earth Planet. Sci. Lett. 115, 211–26.Google Scholar
White, W. M. (2015). Probing the Earth's deep interior through geochemistry. Geochem. Perspectives 4 (2), 95247.Google Scholar
White, W. M. and Dupre, B. (1986). Sediment subduction and magma genesis in the Lesser Antilles: isotopic and trace element constraints. J. Geophys. Res. 91, 5927–41.Google Scholar
White, W. M., Dupre, B. and Vidal, P. (1985). Isotope and trace element geochemistry of sediments from the Barbados Ridge–Demerara Plain region, Atlantic Ocean. Geochim. Cosmochim. Acta 49, 1875–86.Google Scholar
White, W. M. and Hofmann, A. W. (1982). Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–5.Google Scholar
White, W. M., Tapia, M. D. M. and Schilling, J-G. (1979). The petrology and geochemistry of the Azores islands. Contrib. Mineral. Petrol. 69, 201–13.Google Scholar
White, W. M., Schilling, J-G. and Hart, S. R. (1976). Evidence for the Azores mantle plume from strontium isotope geochemistry of the Central North Atlantic. Nature 263, 659–63.Google Scholar
Widom, E., Carlson, R. W., Gill, J. B. and Schmincke, H.-U. (1997). Th–Sr–Nd–Pb isotope and trace element evidence for the origin of the Sao Miguel, Azores, enriched mantle source. Chem. Geol. 140, 4968.Google Scholar
Widom, E., Hoernle, K. A., Shirey, S. B. and Schmincke, H. U. (1999). Os isotope systematics in the Canary Islands and Madeira: lithospheric contamination and mantle plume signatures. J. Petrol. 40, 279–96.Google Scholar
Woodhead, J. D., Greenwood, P., Harmon, R. S. and Stoffers, P. (1993). Oxygen isotope evidence for recycled crust in the source of EM-type ocean island basalts. Nature 362, 809–13.Google Scholar
Workman, R. K., Eiler, J. M., Hart, S. R. and Jackson, M. G. (2008). Oxygen isotopes in Samoan lavas: Confirmation of continent recycling. Geology 36, 551–4.Google Scholar
Workman, R. K. and Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 5372.Google Scholar
Wyllie, P. J. (1984). Constraints imposed by experimental petrology on possible and impossible magma sources and products. Phil. Trans. Roy. Soc. Lond. A 310, 439–56.Google Scholar
Zartman, R. E. and Haines, S. M. (1988). The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs – a case for bi-directional transport. Geochim. Cosmochim. Acta 52, 1327–39.Google Scholar
Zartman, R. E. and Richardson, S. H. (2005). Evidence from kimberlitic zircon for a decreasing mantle Th/U since the Archean. Chem. Geol. 220, 263–83.Google Scholar
Zindler, A. and Hart, S. R. (1986). Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493571.Google Scholar
Zindler, A., Jagoutz, E. and Goldstein, S. (1982). Nd, Sr and Pb isotopic systematics in a three-component mantle: a new perspective. Nature 298, 519–23.Google Scholar
Zindler, A., Staudigel, H. and Batiza, R. (1984). Isotope and trace element geochemistry of young Pacific seamounts: Implications for the scale of upper mantle heterogeneity. Earth Planet. Sci. Lett. 70, 175–95.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×