Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-03T12:34:35.243Z Has data issue: false hasContentIssue false

Chapter 9 - The Lu–Hf, Ba–La–Ce and K–Ca Systems

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarede, F., Scherer, E. E., Blichert-Toft, J. et al. (2006). γ-ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochim. Cosmochim. Acta 70, 1261–70.Google Scholar
Albarede, F., Simonetti, A., Vervoort, J. D., Blichert-Toft, J. and Wafa, A. (1998). A Hf–Nd isotopic correlation in ferromanganese nodules. Geophys. Res. Lett. 25, 3895–8.Google Scholar
Amakawa, H., Ingri, J., Masuda, A. and Shimizu, H. (1991). Isotopic compositions of Ce, Nd and Sr in ferromanganese nodules from the Pacific and Atlantic Oceans, the Baltic and Barents Seas and the Gulf of Bothnia. Earth Planet. Sci. Lett. 105, 554–65.Google Scholar
Amakawa, H., Nozaki, Y. and Masuda, A. (1996). Precise determination of variations in the 138Ce/142Ce ratios of marine ferromanganese nodules. Chem. Geol. 131, 183–95.CrossRefGoogle Scholar
Amelin, Y. (2005). Meteorite phosphates show constant 176Lu decay rate since 4557 million years ago. Science 310, 839–41.Google Scholar
Amelin, Y. and Davis, W. J. (2005). Geochemical test for branching decay of 176Lu. Geochim. Cosmochim. Acta 69, 465–73.Google Scholar
Amelin, Y., Lee, D.-C., Halliday, A. N. and Pidgeon, R. T. (1999). Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–5.Google Scholar
Bau, M. and Koschinsky, A. (2006). Hafnium and neodymium isotopes in seawater and in ferromanganese crusts: the “element perspective”. Earth Planet. Sci. Lett. 241, 952–61.CrossRefGoogle Scholar
Bayon, G., Skonieczny, C., Delvigne, C. et al. (2016). Environmental Hf–Nd isotopic decoupling in World river clays. Earth Planet. Sci. Lett. 438, 2536.Google Scholar
Bell, E. A., Harrison, T. M., McCulloch, M. T. and Young, E. D. (2011). Early Archean crustal evolution of the Jack Hills Zircon source terrane inferred from Lu–Hf, 207Pb/206Pb, and δ18O systematics of Jack Hills zircons. Geochim. Cosmochim. Acta 75, 4816–29.Google Scholar
Bellot, N., Boyet, M., Doucelance, R. et al. (2015). Ce isotope systematics of island arc lavas from the Lesser Antilles. Geochim. Cosmochim. Acta 168, 261–79.Google Scholar
Bizimis, M., Griselin, M., Lassiter, J. C., Salters, V. J. and Sen, G. (2007). Ancient recycled mantle lithosphere in the Hawaiian plume: osmium–hafnium isotopic evidence from peridotite mantle xenoliths. Earth Planet. Sci. Lett. 257, 259–73.Google Scholar
Bizzarro, M., Baker, J. A., Haack, H., Ulfbeck, D. and Rosing, M. (2003). Early history of Earth's crust–mantle system inferred from hafnium isotopes in chondrites. Nature 421, 931–3.Google Scholar
Bizzarro, M., Connelly, J. N., Thrane, K. and Borg, L. E. (2012). Excess hafnium-176 in meteorites and the early Earth zircon record. Geochem. Geophys. Geosys. 13 (3), 110.Google Scholar
Blichert-Toft, J., Agranier, A., Andres, M. et al. (2005). Geochemical segmentation of the Mid-Atlantic Ridge north of Iceland and ridge–hot spot interaction in the North Atlantic. Geochem. Geophys. Geosys. 6 (1), 127.Google Scholar
Blichert-Toft, J. and Albarede, F. (1997). The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet. Sci. Lett. 148, 243–58.Google Scholar
Blichert-Toft, J. and Albarede, F. (2008). Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet. Sci. Lett. 265, 686702.Google Scholar
Blichert-Toft, J., Albarede, F. Rosing, M., Frei, R. and Bridgwater, D. (1999). The Nd and Hf isotopic evolution of the mantle through the Archean. Results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa. Geochim. Cosmochim. Acta 63, 3901–14.Google Scholar
Blichert-Toft, J., Boyet, M., Telouk, P. and Albarede, F. (2002). 147Sm–143Nd and 176Lu–176Hf in eucrites and the differentiation of the HED parent body. Earth Planet. Sci. Lett. 204, 167–81.Google Scholar
Blichert-Toft, J., Frey, F. A. and Albarede, F. (1999). Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–82.Google Scholar
Bouvier, A., Blichert-Toft, J., Boyet, M. and Albarède, F. (2015). 147Sm–143Nd and 176Lu –176Hf systematics of eucrite and angrite meteorites. Meteoritics Planet. Sci. 50, 18961911.Google Scholar
Bouvier, A., Vervoort, J. D. and Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 4857.Google Scholar
Caro, G., Papanastassiou, D. A. and Wasserburg, G. J. (2010). 40K–40Ca isotopic constraints on the oceanic calcium cycle. Earth Planet. Sci. Lett. 296, 124–32.Google Scholar
DePaolo, D. J. (1981). Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature 291, 193–6.CrossRefGoogle Scholar
Dhuime, B., Hawkesworth, C. and Cawood, P. (2011). When continents formed. Science 331, 154–5.Google Scholar
Dickin, A. P. (1987a). La–Ce dating of Lewisian granulites to constrain the 138La β-decay half-life. Nature 325, 337–8.Google Scholar
Dickin, A. P. (1987b). Cerium isotope geochemistry of ocean island basalts. Nature 326, 283–4.Google Scholar
Dickin, A. P., Jones, N. W., Thirlwall, M. F. and Thompson, R. N. (1987). A Ce/Nd isotope study of crustal contamination processes affecting Palaeocene magmas in Skye, northwest Scotland. Contrib. Mineral. Petrol. 96, 455–64.Google Scholar
Dixon, D., McNair, A. and Curran, S. C. (1954). The natural radioactivity of lutetium. Phil. Mag. 45, 683–4.Google Scholar
Doucelance, R., Bellot, N., Boyet, M., Hammouda, T. and Bosq, C. (2014). What coupled cerium and neodymium isotopes tell us about the deep source of oceanic carbonatites. Earth and Planetary Science Letters, 407, 175–86.Google Scholar
Duchene, S., Blichert-Toft, J., Luais, B., Telouk, P. and Albarede, F. (1997). The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature 387, 586–9.Google Scholar
Eisele, J., Sharma, M., Galer, S. J. G. et al. (2002). The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197212.Google Scholar
Elderfield, H., Hawkesworth, C. J., Greaves, M. J. and Calvert, S. E. (1981). Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochim. Cosmochim. Acta 45, 513–28.Google Scholar
Fujimaki, H., Tatsumoto, M. and Aoki, K. (1984). Partition coefficients of Hf, Zr and REE between phenocryst phases and groundmass. Proc. 14th Lunar Planet. Sci. Conf., J. Geophys. Res. 89 (supp.), B662–72.Google Scholar
Goldberg, E. D., Koide, M., Schmitt, R. A. and Smith, R. H. (1963). Rare-earth distributions in the marine environment. J. Geophys. Res. 68 (14), 4209–17.Google Scholar
Gopalan, K. (2008). Conjunctive K–Ca and Rb–Sr dating of glauconies. Chem. Geol. 247, 119–23.Google Scholar
Graham, D. W., Blichert-Toft, J., Russo, C. J., Rubin, K. H. and Albarede, F. (2006). Cryptic striations in the upper mantle revealed by hafnium isotopes in southeast Indian ridge basalts. Nature 440, 199202.CrossRefGoogle ScholarPubMed
Hamelin, C., Bezos, A., Dosso, L. et al. (2013). Atypically depleted upper mantle component revealed by Hf isotopes at Lucky Strike segment. Chem. Geol. 341, 128–39.Google Scholar
Hanan, B. B. and Graham, D. W. (1996). Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–5.Google Scholar
Handley, H. K., Turner, S., Macpherson, C. G., Gertisser, R. and Davidson, J. P. (2011). Hf–Nd isotope and trace element constraints on subduction inputs at island arcs: limitations of Hf anomalies as sediment input indicators. Earth Planet. Sci. Lett. 304, 212–23.Google Scholar
Harrison, T. M., Blichert-Toft, J., Muller, W. et al. (2005). Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947–50.Google Scholar
Harrison, T. M., Schmitt, A. K., McCulloch, M. T. and Lovera, O. M. (2008). Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–86.Google Scholar
Herr, W., Merz, E., Eberhardt, P. and Signer, P. (1958). Zur bestimmung der β halbwertszeit des 176Lu durch den nachweis von radiogenem 176Hf. Z. Natur. 13a, 268–73.Google Scholar
Hiess, J., Bennett, V. C., Nutman, A. P. and Williams, I. S. (2009). In situ U–Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: New insights to making old crust. Geochim. Cosmochim. Acta 73, 4489–516.Google Scholar
Hoffmann, J. E., Munker, C., Polat, A., Rosing, M. T. and Schulz, T. (2011). The origin of decoupled Hf–Nd isotope compositions in Eoarchean rocks from southern West Greenland. Geochim. Cosmochim. Acta 75, 6610–28.Google Scholar
Holden, P., Lanc, P., Ireland, T. R. et al. (2009). Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: the first 100,000 grains. Int. J. Mass Spec. 286, 5363.Google Scholar
Holmes, A. (1932). The origin of igneous rocks. Geol. Mag. 69, 543–58.Google Scholar
Johnson, C. J. and Beard, B. L. (1993). Evidence from hafnium isotopes for ancient sub-oceanic mantle beneath the Rio Grande rift. Nature 362, 441–4.Google Scholar
Kamber, B. S., Webb, G. E. and Gallagher, M. (2014). The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity. J. Geol. Soc. 171, 745–63.Google Scholar
Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J. et al. (2010). Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 4556.Google Scholar
Lee, D.-C., Halliday, A. N., Hein, J. R. et al. (1999). Hafnium isotope stratigraphy of ferromanganese crusts. Science 285, 1052–4.Google Scholar
Makishima, A. and Masuda, A. (1994). Ce isotope ratios of N-type MORB. Chem. Geol. 118, 18.Google Scholar
Makishima, A., Nakamura, E., Akimoto, S., Campbell, I. H. and Hill, R. I. (1993). New constraints on the 138La β-decay constant based on a geochronological study of granites from the Yilgarn Block, Western Australia. Chem. Geol. (Isot. Geosci. Sect.) 104, 293300.Google Scholar
Marshall, B. D. and DePaolo, D. J. (1982). Precise age determination and petrogenetic studies using the K–Ca method. Geochim. Cosmochim. Acta 46, 2537–45.Google Scholar
Marshall, B. D. and DePaolo, D. J. (1989). Calcium isotopes in igneous rocks and the origin of granite. Geochim. Cosmochim. Acta 53, 917–22.Google Scholar
Nakai, S., Shimizu, H. and Masuda, A. (1986). A new geochronometer using lanthanum-138. Nature 320, 433–5.Google Scholar
Nelson, D. R. and McCulloch, M. T. (1989). Petrogenetic applications of the 40K–40Ca radiogenic decay scheme – a reconnaissance study. Chem. Geol. (Isot. Geosci. Sect.) 79, 275–93.Google Scholar
Nir-El, Y. and Lavi, N. (1998). Measurement of the half-life of 176Lu. Appl. Radiat. Isot. 49, 1653–5.Google Scholar
Norman, E. B., Bertram, T., Kellogg, S. E., Wong, P. and Gil, S. (1985). Equilibration of 176Lug,m during the s-process. Astrophys. J. 291, 834–7.Google Scholar
Norman, E. B. and Nelson, M. A. (1983). Half-life and decay scheme of 138La. Phys. Rev. C 27, 1321–4.Google Scholar
Patchett, P. J. (1983). Hafnium isotope results from Mid-ocean ridges and Kerguelen. Lithos 16, 4751.Google Scholar
Patchett, P. J., Kouvo, O., Hedge, C. E. and Tatsumoto, M. (1981). Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contrib. Mineral. Petrol. 78, 279–97.Google Scholar
Patchett, P. J. and Tatsumoto, M. (1980a). A routine high-precision method for Lu–Hf isotope geochemistry and chronology. Contrib. Mineral. Petrol. 75, 263–7.Google Scholar
Patchett, P. J. and Tatsumoto, M. (1980b). Lu–Hf total-rock isochron for the eucrite meteorites. Nature 288, 571–4.Google Scholar
Patchett, P. J. and Tatsumoto, M. (1980c). Hafnium isotope variations in oceanic basalts. Geophys. Res. Lett. 7, 1077–80.Google Scholar
Patchett, P. J. and Tatsumoto, M. (1981). Lu/Hf in chondrites and definition of a chondritic hafnium growth curve. Lunar Planet. Sci. XII, 822–4.Google Scholar
Patchett, P. J., White, W. M., Feldmann, H., Kielinczuk, S. and Hofmann, A. W. (1984). Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle. Earth Planet. Sci. Lett. 69, 365–78.Google Scholar
Piotrowski, A. M., Lee, D.-C., Christensen, J. N. et al. (2000). Changes in erosion and ocean-circulation recorded in the Hf isotopic compositions of North Atlantic and Indian Ocean ferromanganese crusts. Earth Planet. Sci. Lett. 181, 315–25.Google Scholar
Rickli, J., Frank, M., Baker, A. R. et al. (2010). Hafnium and neodymium isotopes in surface waters of the eastern Atlantic Ocean: Implications for sources and inputs of trace metals to the ocean. Geochim. Cosmochim. Acta 74, 540–57.Google Scholar
Rickli, J., Frank, M. and Halliday, A. N. (2009). The hafnium–neodymium isotopic composition of Atlantic seawater. Earth Planet. Sci. Lett. 280, 118–27.Google Scholar
Russell, W. A., Papanastassiou, D. A. and Tombrello, T. A. (1978). Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42, 1075–90.Google Scholar
Salters, V. J., Blichert-Toft, J., Fekiacova, Z., Sachi-Kocher, A. and Bizimis, M. (2006). Isotope and trace element evidence for depleted lithosphere in the source of enriched Ko'olau basalts. Contrib. Mineral. Petrol. 151, 297312.Google Scholar
Salters, V. J. and Hart, S. R. (1991). The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection. Earth Planet. Sci. Lett. 104, 364–80.CrossRefGoogle Scholar
Salters, V. J., Mallick, S., Hart, S. R., Langmuir, C. E. and Stracke, A. (2011). Domains of depleted mantle: New evidence from hafnium and neodymium isotopes. Geochem. Geophys. Geosys. 12 (8), 118.Google Scholar
Salters, V. J. M. and White, W. M. (1998). Hf isotope constraints on mantle evolution. Chem. Geol. 145, 447–60.Google Scholar
Salters, V. J. M. and Zindler, A. (1995). Extreme 176Hf/177Hf in the sub-oceanic mantle. Earth Planet. Sci. Lett. 129, 1330.Google Scholar
Sanborn, M. E., Carlson, R. W. and Wadhwa, M. (2015). 147,146Sm–143,142Nd, 176Lu–176Hf, and 87Rb–87Sr systematics in the angrites: Implications for chronology and processes on the angrite parent body. Geochim. Cosmochim. Acta 171, 8099.Google Scholar
Sato, J. and Hirose, T. (1981). Half-life of 138La. Radiochem. Radioanal. Lett. 46, 145–52.Google Scholar
Scherer, E. E., Cameron, K. L. and Blichert-Toft, J. (2000). Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. Geochim. Cosmochim. Acta 64, 3413–32.CrossRefGoogle Scholar
Scherer, E. E., Cameron, K. L., Johnson, C. M. et al. (1997). Lu–Hf geochronology applied to dating Cenozoic events affecting lower crustal xenoliths from Kilburn Hole, New Mexico. Chem. Geol. 142, 6378.CrossRefGoogle Scholar
Scherer, E., Munker, C. and Mezger, K. (2001). Calibration of the lutetium–hafnium clock. Science 293, 683–8.Google Scholar
Söderlund, U., Patchett, P. J., Vervoort, J. D. and Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 219, 311–24.Google Scholar
Stracke, A., Snow, J. E., Hellebrand, E. et al. (2011). Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth Planet. Sci. Lett. 308, 359–68.CrossRefGoogle Scholar
Tanaka, T. and Masuda, A. (1982). The La–Ce geochronometer: a new dating method. Nature 300, 515–18.Google Scholar
Tanaka, T., Shimizu, H., Kawata, Y. and Masuda, A. (1987). Combined La–Ce and Sm–Nd isotope systematics in petrogenetic studies. Nature 327, 113–17.Google Scholar
Tanaka, T., Usui, A. and Masuda, A. (1986). Oceanic Ce and continental Nd: multiple sources of REE in oceanic ferromanganese nodules. Terra Cognita 6, 114 (abstract).Google Scholar
Tatsumoto, M., Unruh, D. M. and Patchett, P. J. (1981). U–Pb and Lu–Hf systematics of Antarctic meteorites. Nat. Inst. Polar Res. Tokyo.<Au: full reference?>>Google Scholar
Taylor, D. J., McKeegan, K. D. and Harrison, T. M. (2009). Lu–Hf zircon evidence for rapid lunar differentiation. Earth Planet. Sci. Lett. 279, 157–64.Google Scholar
Tazoe, H., Obata, H., Amakawa, H., Nozaki, Y. and Gamo, T. (2007). Precise determination of the cerium isotopic compositions of surface seawater in the Northwest Pacific Ocean and Tokyo Bay. Marine Chem. 103, 114.Google Scholar
Thrane, K., Connelly, J. N., Bizzarro, M. and Meyer, B. S. (2010). Origin of excess 176Hf in meteorites. Astrophys. J. 717, 861–7.Google Scholar
van de Flierdt, T., Frank, M., Lee, D. C. and Halliday, A. N. (2002). Glacial weathering and the hafnium isotope composition of seawater. Earth Planet. Sci. Lett. 201, 639–47.Google Scholar
van de Flierdt, T., Frank, M., Lee, D. C. et al. (2004). New constraints on the sources and behavior of neodymium and hafnium in seawater from Pacific Ocean ferromanganese crusts. Geochim. Cosmochim. Acta 68, 3827–43.Google Scholar
van de Flierdt, T., Goldstein, S. L., Hemming, S. R. et al. (2007). Global neodymium–hafnium isotope systematics – revisited. Earth Planet. Sci. Lett. 259, 432–41.Google Scholar
Vervoort, J. D. and Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63, 533–56.Google Scholar
Vervoort, J. D. and Kemp, A. I. (2016). Clarifying the zircon Hf isotope record of crust–mantle evolution. Chem. Geol. 425, 6575.Google Scholar
Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. and Albarede, F. (1999). Relationships between Lu Hf and Sm Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 168, 7999.Google Scholar
Vervoort, J. D., Patchett, P. J., Gehrels, G. E. and Nutman, A. P. (1996). Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379, 624–7.Google Scholar
White, W. M. and Patchett, J. (1984). Hf–Nd–Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust–mantle evolution. Earth Planet. Sci. Lett. 67, 167–85.Google Scholar
White, W. M., Patchett, J. and Ben Othman, D. (1986). Hf isotope ratios of marine sediments and Mn nodules: evidence for a mantle source of Hf in seawater. Earth Planet. Sci. Lett. 79, 4654.Google Scholar
Willbold, M. (2007). Determination of Ce isotopes by TIMS and MC-ICPMS and initiation of a new, homogeneous Ce isotopic reference material. J. Anal. Atomic Spectrom. 22, 1364–72.Google Scholar
Wimpenny, J., Amelin, Y. and Yin, Q. Z. (2015). The Lu isotopic composition of achondrites: closing the case for accelerated decay of 176Lu. Astrophys. J. Lett. 812 (L3), 15.Google Scholar
Woodhead, J., Hergt, J., Shelley, M., Eggins, S. and Kemp, R. (2004). Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol. 209, 121–35.Google Scholar
Zeh, A., Stern, R. A. and Gerdes, A. (2014). The oldest zircons of Africa – their U–Pb–Hf–O isotope and trace element systematics, and implications for Hadean to Archean crust–mantle evolution. Precamb. Res. 241, 203–30.Google Scholar
Zhao, W., Sun, Y., Balsam, W. et al. (2015). Clay-sized Hf–Nd–Sr isotopic composition of Mongolian dust as a fingerprint for regional to hemispherical transport. Geophys. Res. Lett. 42, 5661–9.Google Scholar
Zimmermann, B., Porcelli, D., Frank, M. et al. (2009). The hafnium isotope composition of Pacific Ocean water. Geochim. Cosmochim. Acta 73, 91101.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×