Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-03T02:45:59.140Z Has data issue: false hasContentIssue false

Chapter 4 - The Sm–Nd Method

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarede, F. and Goldstein, S. L. (1992). World map of Nd isotopes in sea-floor ferromanganese deposits. Geology 20, 761–3.Google Scholar
Alexander, B. W., Bau, M. and Andersson, P. (2009). Neodymium isotopes in Archean seawater and implications for the marine Nd cycle in Earth's early oceans. Earth Planet. Sci. Lett. 283, 144–55.Google Scholar
Allegre, C. J. and Rousseau, D. (1984). The growth of the continents through geological time studied by Nd isotope analysis of shales. Earth Planet. Sci. Lett. 67, 1934.CrossRefGoogle Scholar
Armstrong, R. L. (1981). Radiogenic isotopes: the case for crustal recycling on a near steady-state no-continental-growth Earth. Phil. Trans. Roy. Soc. Lond. A301, 443–72.Google Scholar
Armstrong, R. L. (1991). The persistent myth of crustal growth. Aust. J. Earth Sci. 38, 613–30.Google Scholar
Arndt, N. T. and Goldstein, S. L. (1987). Use and abuse of crust-formation ages. Geology 15, 893–5.2.0.CO;2>CrossRefGoogle Scholar
Awwiller, D. N. and Mack, L. E. (1991). Diagenetic modification of Sm–Nd model ages in Tertiary sandstones and shales, Texas Gulf Coast. Geology 19, 311–14.Google Scholar
Bacon, M. P. and Anderson, R. F. (1982). Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. J. Geophys. Res. 87 (C3), 2045–56.Google Scholar
Barovich, K. M. and Patchett, P. J. (1992). Behaviour of isotopic systematics during deformation and metamorphism: a Hf, Nd and Sr isotopic study of mylonitized granite. Contrib. Mineral. Petrol. 109, 386–93.Google Scholar
Baxter, E. F., Ague, J. J. and DePaolo, D. J. (2002). Prograde temperature–time evolution in the Barrovian type–locality constrained by Sm/Nd garnet ages from Glen Clova, Scotland. J. Geol. Soc. 159, 7182.Google Scholar
Bennett, V. C. and DePaolo, D. J. (1987). Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. Geol. Soc. America Bull. 99, 674–85.Google Scholar
Bennett, V. C. and Nutman, A. P. (1998). Extreme Nd-isotope heterogeneity in the early Archean – fact or fiction? Case histories from northern Canada and West Greenland – Comment. Chem. Geol. 148, 213–17.Google Scholar
Bennett, V. C., Nutman, A. P. and McCulloch, M. T. (1993). Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth. Earth Planet. Sci. Lett. 119, 299317.Google Scholar
Bertram, C. J. and Elderfield, H. (1993). The geochemical balance of the rare earth elements and Nd isotopes in the oceans. Geochim. Cosmochim. Acta 57, 1957–86.Google Scholar
Bock, B., McLennan, S. M. and Hanson, G. N. (1994). Rare earth element redistribution and its effects on the neodymium isotope system in the Austin Glen Member of the Normanskill Formation, New York, USA. Geochim. Cosmochim. Acta 58, 5245–53.Google Scholar
Boehnke, P. and Harrison, T. M. (2014). A meta-analysis of geochronologically relevant half-lives: what's the best decay constant?. Int. Geol. Rev 56, 905–14.CrossRefGoogle Scholar
Bouvier, A., Vervoort, J. D. and Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 4857.Google Scholar
Bowring, S. A. and Housh, T. (1995). The Earth's early evolution: Science 269, 1535–40.Google Scholar
Bowring, S. A. and Housh, T. (1996). Sm–Nd isotope data and Earth's evolution: Reply. Science 273, 1878–9.Google Scholar
Bowring, S. A., King, J. E., Housh, T. B., Isachsen, C. E. and Podosek, F. A. (1989). Neodymium and lead isotope evidence for enriched early Archean crust in North America. Nature 340, 222–5.Google Scholar
Bros, R., Stille, P., Gauthier-Lafaye, F., Weber, F. and Clauer, N. (1992). Sm–Nd isotopic dating of Proterozoic clay material: an example from the Francevillian sedimentary series, Gabon. Earth Planet. Sci. Lett. 113, 207–18.Google Scholar
Burton, K. W., Ling, H.-F. and O'Nions, R. K. (1997). Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature 386, 382–5.Google Scholar
Burton, K. W. and O'Nions, R. K. (1991). High-resolution garnet chronometry and the rates of metamorphic processes. Earth Planet. Sci. Lett. 107, 649–71.Google Scholar
Burton, K. W. and Vance, D. (2000). Glacial–interglacial variations in the neodymium isotope composition of seawater in the Bay of Bengal recorded by planktonic foraminifera. Earth Planet. Sci. Lett. 176, 425–41.Google Scholar
Cattell, A., Krogh, T. E. and Arndt, N. T. (1984). Conflicting Sm–Nd whole rock and U–Pb zircon ages for Archean lavas from Newton Township, Abitibi Belt, Ontario. Earth Planet. Sci. Lett. 70, 280–90.Google Scholar
Chapman, H. J. and Moorbath, S. (1977). Lead isotope measurements from the oldest recognised Lewisian gneisses of north-west Scotland. Nature 268, 41–2.Google Scholar
Chase, C. G. and Patchett, P. J. (1988). Stored mafic/ultramafic crust and early Archean mantle depletion. Earth Planet. Sci. Lett. 91, 6672.Google Scholar
Chauvel, C., Dupre, B. and Jenner, G. A. (1985). The Sm–Nd age of Kambalda volcanics is 500 Ma too old! Earth Planet. Sci. Lett. 74, 315–24.Google Scholar
Chester, R., Griffiths, A. G. and Hirst, J. M. (1979). The influence of soil-sized atmospheric particulates on the elemental chemistry of deep sea sediments of the northeastern Atlantic. Marine Geol. 32, 141–54.Google Scholar
Claoue-Long, J. C., Thirlwall, M. F. and Nesbitt, R. W. (1984). Revised Sm–Nd systematics of Kambalda greenstones, Western Australia. Nature 307, 697701.Google Scholar
Compston, W., Williams, I. S., Campbell, I. H. and Gresham, J. J. (1985). Zircon xenocrysts from the Kambalda volcanics: age constraints and direct evidence for older continental crust below the Kambalda–Norseman greenstones. Earth Planet. Sci. Lett. 76, 299311.CrossRefGoogle Scholar
Cullers, R. L., Bock, B. and Guidotti, C. (1997). Elemental distributions and neodymium isotopic compositions of Silurian metasediments, western Maine, USA: Redistribution of rare earth elements. Geochim. Cosmochim. Acta 61, 1847–61.Google Scholar
Culshaw, N., Foster, J., Marsh, J., Slagstad, T. and Gerbi, C. (2016). Kiosk domain, Central Gneiss Belt, Grenville Province, Ontario: A Labradorian palimpsest preserved in the ductile deep crust. Precamb. Res. 280, 249–78.Google Scholar
DePaolo, D. J. (1981). Neodymium isotopes in the Colorado Front Range and implications for crust formation and mantle evolution in the Proterozoic. Nature 291, 193–7.Google Scholar
DePaolo, D. J., Linn, A. M. and Schubert, G. (1991). The continental crustal age distribution: Methods of determining mantle separation ages from Sm–Nd isotopic data and application to the southwestern United States. J. Geophys. Res. 96 (B2), 2071–88.Google Scholar
DePaolo, D. J. and Wasserburg, G. J. (1976a). Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 249–52.CrossRefGoogle Scholar
DePaolo, D. J. and Wasserburg, G. J. (1976b). Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett. 3, 743–6.Google Scholar
DePaolo, D. J. and Wasserburg, G. J. (1979). Sm–Nd age of the Stillwater complex and the mantle evolution curve for neodymium. Geochim. Cosmochim. Acta 43, 9991008.Google Scholar
DeWolf, C. P. and Mezger, K. (1994). Lead isotope analyses of leached feldspars: constraints on the early crustal history of the Grenville Orogen. Geochim. Cosmochim. Acta 58, 5537–50.Google Scholar
Dhuime, B., Hawkesworth, C. and Cawood, P. (2011). When continents formed. Science, 331, 154–5.Google Scholar
Dia, A., Allegre, C. J. and Erlank, A. J. (1990). The development of continental crust through geological time: the South African case. Earth Planet. Sci. Lett. 98, 7489.Google Scholar
Dickin, A. P. (2015). Model Ages (Sm–Nd). In: Rink, W. J. and Thompson, J. W. (Eds) Encyclopedia of Scientific Dating Methods, Springer, pp. 573–6.Google Scholar
Dickin, A., Hynes, E., Strong, J. and Wisborg, M. (2016). Testing a back-arc ‘aulacogen’ model for the Central Metasedimentary Belt of the Grenville Province. Geol. Mag. 153, 681–95.Google Scholar
Dickin, A. P. and McNutt, R. H. (1989). Nd model age mapping of the southeast margin of the Archean foreland in the Grenville province of Ontario. Geology 17, 299302.Google Scholar
Dickin, A. P. and McNutt, R. H. (2007). The Central Metasedimentary Belt (Grenville Province) as a failed back-arc rift zone: Nd isotope evidence. Earth Planet. Sci. Lett. 259, 97106.Google Scholar
Dickin, A. P., McNutt, R. H., Martin, C. and Guo, A. (2010). The extent of juvenile crust in the Grenville Province: Nd isotope evidence. Geol. Soc. America Bull. 122, 870–83.Google Scholar
Frank, M., O'Nions, R. K., Hein, J. R. and Banakar, V. K. (1999a). 60 Ma records of major elements and Pb–Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochim. Cosmochim. Acta 63, 16891708.Google Scholar
Frank, M., Reynolds, B. C. and O'Nions, R. K. (1999b). Nd and Pb isotopes in Atlantic and Pacific water masses before and after closure of the Panama gateway. Geology 27, 1147–50.Google Scholar
Frei, R., Bridgwater, D., Rosing, M. and Stecher, O. (1999). Controversial Pb–Pb and Sm–Nd isotope results in the early Archean Isua (West Greenland) oxide iron formation: Preservation of primary signatures versus secondary disturbances. Geochim. Cosmochim. Acta 63, 473–88.CrossRefGoogle Scholar
Frei, R. and Polat, A. (2007). Source heterogeneity for the major components of ∼3.7 Ga banded iron formations (Isua Greenstone Belt, Western Greenland): tracing the nature of interacting water masses in BIF formation. Earth Planet. Sci. Lett. 253, 266–81.Google Scholar
Galer, S. J. G. and Goldstein, S. L. (1991). Early mantle differentiation and its thermal consequences. Geochim. Cosmochim. Acta 55, 227–39.Google Scholar
Goldberg, E. D., Koide, M., Schmidt, R. A. and Smith, R. H. (1963). Rare earth distributions in the marine environment. J. Geophys. Res. 68, 4209–17.Google Scholar
Goldstein, S. L. and Jacobsen, S. B. (1987). The Nd and Sr isotopic systematics of river-water dissolved material: implications for the sources of Nd and Sr in seawater. Chem. Geol. (Isot. Geosci. Sect.) 66, 245–72.Google Scholar
Goldstein, S. L. and Jacobsen, S. B. (1988). Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett. 87, 249–65.Google Scholar
Goldstein, S. L., O'Nions, R. K. and Hamilton, P. J. (1984). A Sm–Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett. 70, 221–36.Google Scholar
Green, T. H., Brunfeldt, A. O. and Heier, K. S. (1969). Rare earth element distribution in anorthosites and associated high grade metamorphic rocks, Lofoten-Vesteraalen, Norway. Earth Planet. Sci. Lett. 7, 93–8.CrossRefGoogle Scholar
Griffin, W. L. and Brueckner, H. K. (1980). Caledonian Sm–Nd ages and a crustal origin for Norwegian eclogites. Nature 285, 319–20.Google Scholar
Guitreau, M., Blichert-Toft, J. and Billström, K. (2014). Hafnium isotope evidence for early-Proterozoic volcanic arc reworking in the Skellefte district (northern Sweden) and implications for the Svecofennian orogen. Precam. Res. 252, 3952.Google Scholar
Hamilton, P. J., O'Nions, R. K., Evensen, N. M. and Tarney, J. (1979). Sm–Nd systematics of Lewisian gneisses: Implications for the origin of granulites. Nature 277, 25–8.Google Scholar
Hamilton, P. J., O'Nions, R. K., Bridgwater, D. and Nutman, A. (1983). Sm–Nd studies of Archean metasediments and metavolcanics from West Greenland and their implications for the Earth's early history. Earth Planet. Sci. Lett. 62, 263–72.CrossRefGoogle Scholar
Hanson, G. N. (1978). The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet. Sci. Lett. 38, 2643.Google Scholar
Haskin, L. A., Frey, F. A., Schmidt, P. A. and Smith, R. H. (1966). Meteoritic, solar and terrestrial rare-earth distributions. Phys. Chem. Earth 7, 167321.Google Scholar
Hastie, A. R., Fitton, J. G., Bromiley, G. D., Butler, I. B. and Odling, N. W. (2016). The origin of Earth's first continents and the onset of plate tectonics. Geology 44, 855–8.Google Scholar
Horie, K., Nutman, A. P., Friend, C. R. and Hidaka, H. (2010). The complex age of orthogneiss protoliths exemplified by the Eoarchaean Itsaq Gneiss Complex (Greenland): SHRIMP and old rocks. Precamb. Res. 183, 2543.Google Scholar
Hurley, P. M., Hughes, H., Faure, G., Fairbairn, H. W. and Pinson, W. H. (1962). Radiogenic strontium-87 model of continent formation. J. Geophys. Res. 67, 5315–34.Google Scholar
Hurley, P. M. and Rand, J. R. (1969). Pre-drift continental nuclei. Science 164, 1229–42.CrossRefGoogle ScholarPubMed
Ingram, B. L., Hein, J. R. and Farmer, G. L. (1990). Age determinations and growth rates of Pacific ferromanganese deposits using strontium isotopes. Geochim. Cosmochim. Acta 54, 1709–21.Google Scholar
Jacobsen, S. B. (1988). Isotopic constraints on crustal growth and recycling. Earth Planet. Sci. Lett. 90, 315–29.Google Scholar
Jacobsen, S. B. and Pimentel-Klose, M. R. (1988). Nd isotopic variations in Precambrian banded iron formations. Geophys. Res. Lett. 15, 393–6.Google Scholar
Jacobsen, S. B. and Wasserburg, G. J. (1980). Sm–Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–55.Google Scholar
Jeandel, C. and Oelkers, E. H. (2015). The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles. Chem. Geol. 395, 5066.Google Scholar
Johannesson, K. H. and Burdige, D. J. (2007). Balancing the global oceanic neodymium budget: evaluating the role of groundwater. Earth Planet. Sci. Lett. 253, 129–42.Google Scholar
Kamber, B. S. (2010). Archean mafic–ultramafic volcanic landmasses and their effect on ocean–atmosphere chemistry. Chem. Geol. 274, 1928.Google Scholar
Kamber, B. S. and Moorbath, S. (1998). Initial Pb of the Amıtsoq gneiss revisited: implication for the timing of early Archaean crustal evolution in West Greenland. Chem. Geol. 150, 1941.Google Scholar
Kamber, B. S., Moorbath, S. and Whitehouse, M. J. (1998). Extreme Nd-isotope heterogeneity in the early Archean - fact or fiction? Case histories from northern Canada and West Greenland - Reply. Earth Planet. Sci. Lett. 148, 219–24.Google Scholar
Kemp, A. I. S., Hawkesworth, C. J., Collins, W. J., Gray, C. M. and Blevin, P. L. (2009). Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 284, 455–66.Google Scholar
Keto, L. S. and Jacobsen, S. B. (1987). Nd and Sr isotopic variations of Early Paleozoic oceans. Earth Planet. Sci. Lett. 84, 2741.Google Scholar
Keto, L. S. and Jacobsen, S. B. (1988). Nd isotopic variations of Phanerozoic paleo-oceans. Earth Planet. Sci. Lett. 90, 395410.Google Scholar
Kim, I. and Kim, G. (2014). Submarine groundwater discharge as a main source of rare earth elements in coastal waters. Marine Chem. 160, 1117.Google Scholar
Lacan, F. and Jeandel, C. (2005). Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent–ocean interface. Earth Planet. Sci. Lett. 232, 245–57.Google Scholar
Lahaye, Y., Arndt, N., Byerly, G. et al. (1995). The influence of alteration on the trace-element and nd isotopic composition of komatiites. Chem. Geol. 126, 4364.Google Scholar
Lambert, D. D., Morgan, J. W., Walker, R. J. et al. (1989). Rhenium–osmium and samarium–neodymium isotopic systematics of the Stillwater Complex. Science 244, 1169–74.CrossRefGoogle ScholarPubMed
Ling, H. F., Burton, K. W., O'Nions, R. K. et al. (1997). Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth Planet. Sci. Lett. 146, 112.CrossRefGoogle Scholar
Lugmair, G. W. and Marti, K. (1977). Sm–Nd–Pu timepieces in the Angra dos Reis meteorite. Earth Planet. Sci. Lett. 35, 273–84.CrossRefGoogle Scholar
Lugmair, G. W. and Galer, S. J. G. (1992). Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochim. Cosmochim. Acta 56, 1673–94.Google Scholar
Lugmair, G. W. and Marti, K. (1978). Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett. 39, 349–57.Google Scholar
Lugmair, G. W., Scheinin, N. B. and Marti, K. (1975). Search for extinct 146Sm, I. The isotopic abundance of 142Nd in the Juvinas meteorite. Earth Planet. Sci. Lett. 27, 7984.Google Scholar
McCulloch, M. T. and Compston, W. (1981). Sm–Nd age of Kambalda and Kanowna greenstones and heterogeneity in the Archean mantle. Nature 294, 322–7.CrossRefGoogle Scholar
McCulloch, M. T. and Wasserburg, G. J. (1978). Sm–Nd and Rb–Sr chronology of continental crust formation. Science 200, 1003–11.Google Scholar
Michard, A., Albarede, F., Michard, G., Minster, J. F. and Charlou, J. L. (1983). Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 °N). Nature 303, 795–7.Google Scholar
Mildowski, A. E. and Zalasiewicz, J. A. (1991). Redistribution of rare earth elements during diagenesis of turbidite/hemipelagite mudstone sequences of Llandovery age from central Wales. In: Morton, A. C. et al. (Eds) Developments in Sedimentary Provenance Studies. Geol. Soc. Spec. Pap. 56, 789–95.Google Scholar
Miller, R. G. and O'Nions, R. K. (1985). Source of Precambrian chemical and clastic sediments. Nature 314, 325–33.Google Scholar
Moorbath, S. (1976). Age and isotope constraints for the evolution of Archaean crust. In: Windley, B. F. (Ed.) The Early History of the Earth, Wiley, pp. 351–60.Google Scholar
Moorbath, S., Powell, J. L. and Taylor, P. N. (1975). Isotopic evidence for the age and origin of the grey gneiss complex of the southern Outer Hebrides, Scotland. J. Geol. Soc. Lond. 131, 213–22.Google Scholar
Moorbath, S. and Whitehouse, M. J. (1996). Sm–Nd isotope data and Earth's evolution: Comment. Science 273, 1878.Google Scholar
Moorbath, S., Whitehouse, M. J. and Kamber, B. S. (1997). Extreme Nd-isotope heterogeneity in the early Archean – fact or fiction? Case histories from northern Canada and West Greenland. Chem. Geol. 135, 213–31.Google Scholar
Moore, E. S. and Dickin, A. P. (2011). Evaluation of Nd isotope data for the Grenville Province of the Laurentian shield using a geographic information system. Geosphere 7, 415–28.Google Scholar
Mork, M. B. E. and Mearns, E. W. (1986). Sm–Nd isotopic systematics of a gabbro–eclogite transition. Lithos 19, 255–67.Google Scholar
Nelson, B. K. and DePaolo, D. J. (1984). 1,700-Ma greenstone volcanic successions in southwestern North America and isotopic evolution of Proterozoic mantle. Nature 312, 143–6.CrossRefGoogle Scholar
Nelson, B. K. and DePaolo, D. J. (1985). Rapid production of continental crust 1.7 to 1.9 b.y. ago: Nd isotopic evidence from the basement of the North American mid-continent. Geol. Soc. Amer. Bull. 96, 746–54.Google Scholar
Nelson, B. K. and DePaolo, D. J. (1988). Application of Sm–Nd and Rb–Sr isotope systematics to studies of provenance and basin analysis. J. Sed. Petrol. 58, 348–57.Google Scholar
Nunes, P. D. (1981). The age of the Stillwater complex: a comparison of U–Pb zircon and Sm–Nd isochron systematics. Geochim. Cosmochim. Acta 45, 1961–3.CrossRefGoogle Scholar
Nutman, A. P., Bennett, V. C. and Friend, C. R. (2015). Proposal for a continent ‘Itsaqia’ amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record. American J. Sci. 315, 509–36.Google Scholar
Nutman, A. P., Bennett, V. C., Friend, C. R. L. and McGregor, V. R. (2000). The early Archean Itsaq Gneiss Complex of southern West Greenland: The importance of field observations in interpreting age and isotopic constraints for early terrestrial evolution. Geochim. Cosmochim. Acta 64, 3035–60.Google Scholar
O'Nions, R. K. (1984). Isotopic abundances relevant to the identification of magma sources. Phil. Trans. Roy. Soc. Lond. A 310, 591603.Google Scholar
O'Nions, R. K., Carter, S. R., Cohen, R. S., Evensen, N. M. and Hamilton, P. J. (1978). Pb, Nd and Sr isotopes in oceanic ferromanganese deposits and ocean floor basalts. Nature 273, 435–8.Google Scholar
O'Nions, R. K., Frank, M., Von Blanckenburg, F. and Ling, H. F. (1998). Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans. Earth Planet. Sci. Lett. 155, 1528.Google Scholar
O'Nions, R. K., Hamilton, P. J. and Evensen, N. M. (1977). Variations in 143Nd/144Nd and 87Sr/86Sr in oceanic basalts. Earth Planet. Sci. Lett. 34, 1322.Google Scholar
O'Nions, R. K., Hamilton, P. J. and Hooker, P. J. (1983). A Nd isotope investigation of sediments related to crustal development in the British Isles. Earth Planet. Sci. Lett. 63, 229–40.Google Scholar
Palmer, M. R. and Elderfield, H. (1986). Rare earth elements and neodymium isotopes in ferromanganese oxide coatings of Cenozoic foraminifera from the Atlantic Ocean. Geochim. Cosmochim. Acta 50, 409–17.Google Scholar
Patchett, P. J. and Arndt, N. T. (1986). Nd isotopes and tectonics of 1.9–1.7 Ga crustal genesis. Earth Planet. Sci. Lett. 78, 329–38.Google Scholar
Patchett, J., Gorbatschev, R., Kuovo, O. and Todt, W. (1984). Origin of continental crust of 1.9–1.7 Ga age: Nd isotopes in the Svecokarelian terrain of Sweden and Finland. Geol. Soc. America, Abstr. with Prog. 16.Google Scholar
Pearce, C. R., Jones, M. T., Oelkers, E. H., Pradoux, C. and Jeandel, C. (2013). The effect of particulate dissolution on the neodymium (Nd) isotope and rare earth element (REE) composition of seawater. Earth Planet. Sci. Lett. 369, 138–47.Google Scholar
Pidgeon, R. T. and Bowes, D. R. (1972). Zircon U/Pb ages of granulites from the central region of the Lewisian, north western Scotland. Geol. Mag. 109, 247–58.Google Scholar
Piepgras, D. J. and Wasserburg, G. J. (1980). Neodymium isotopic variations in seawater. Earth Planet. Sci. Lett. 50, 128–38.Google Scholar
Piepgras, D. J. and Wasserburg, G. J. (1983). Influence of the Mediterranean Outflow on the isotopic composition of neodymium in waters of the North Atlantic. J. Geophys. Res. 88, 59976006.Google Scholar
Piepgras, D. J. and Wasserburg, G. J. (1987). Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations. Geochim. Cosmochim. Acta 51, 1257–71.Google Scholar
Piepgras, D. J., Wasserburg, G. J. and Dasch, E. J. (1979). The isotopic composition of Nd in different ocean masses. Earth Planet. Sci. Lett. 45, 223–36.Google Scholar
Piotrowski, A. M., Galy, A., Nicholl, J. A. L. et al. (2012). Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. Earth Planet. Sci. Lett. 357, 289–97.Google Scholar
Piotrowski, A. M., Goldstein, S. L., Hemming, S. R. and Fairbanks, R. G. (2005). Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science 307, 1933–8.Google Scholar
Pollington, A. D. and Baxter, E. F. (2010). High resolution Sm–Nd garnet geochronology reveals the uneven pace of tectonometamorphic processes. Earth Planet. Sci. Lett. 293, 6371.CrossRefGoogle Scholar
Pollington, A. D. and Baxter, E. F. (2011). High precision microsampling and preparation of zoned garnet porphyroblasts for Sm–Nd geochronology. Chem. Geol. 281, 270–82.Google Scholar
Premo, W. R., Helz, R. T., Zientek, M. L. and Langston, R. B. (1990). U–Pb and Sm–Nd ages for the Stillwater Complex and its associated sills and dikes, Beartooth Mountains, Montana: Identification of a parent magma? Geology 18, 1065–8.Google Scholar
Reymer, A. and Schubert, G. (1986). Rapid growth of some major segments of continental crust. Geology 14, 299302.Google Scholar
Reynolds, B. C., Frank, M. and O'Nions, R. K. (1999). Nd- and Pb-isotope time series from Atlantic ferromanganese crusts: implications for changes in provenance and paleocirculation over the last 8 Ma. Earth Planet. Sci. Lett. 173, 381–96.CrossRefGoogle Scholar
Roberts, N. L., Piotrowski, A. M., McManus, J. F. and Keigwin, L. D. (2010). Synchronous deglacial overturning and water mass source changes. Science 327, 75–8.Google Scholar
Rutberg, R. L., Hemming, S. R. and Goldstein, S. L. (2000). Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature 405, 935–8.CrossRefGoogle Scholar
Samson, S. D., McClelland, W. C., Patchett, P. J., Gehrels, G. E. and Anderson, G. (1989). Evidence from neodymium isotopes for mantle contributions to Phanerozoic crustal genesis in the Canadian Cordillera. Nature 337, 705–9.Google Scholar
Shaw, H. F. and Wasserburg, G. J. (1985). Sm–Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages. Geochim. Cosmochim. Acta 49, 503–18.Google Scholar
Shimizu, H., Umemoto, N., Masuda, A. and Appel, P. W. U. (1990). Sources of iron-formations in the Archean Isua and Malene supracrustals, West Greenland: Evidence from La–Ce and Sm–Nd isotopic data and REE abundances. Geochim. Cosmochim. Acta 54, 1147–54.CrossRefGoogle Scholar
Siddall, M., Khatiwala, S., van de Flierdt, T. et al. (2008). Towards explaining the Nd paradox using reversible scavenging in an ocean general circulation model. Earth Planet. Sci. Lett. 274, 448–61.Google Scholar
Skiold, T., Ohlander, B., Vocke, R. D. and Hamilton, P. J. (1988). Chemistry of Proterozoic orogenic processes at a continental margin in northern Sweden. Chem. Geol. 69, 193207.Google Scholar
Smith, A. D. and Ludden, J. N. (1989). Nd isotopic evolution of the Precambrian mantle. Earth Planet. Sci. Lett. 93, 1422.Google Scholar
Staudigel, H., Doyle, P. and Zindler, A. (1985). Sr and Nd isotope systematics in fish teeth. Earth Planet. Sci. Lett. 76, 4556.Google Scholar
Stichel, T., Hartman, A. E., Duggan, B. et al. (2015). Separating biogeochemical cycling of neodymium from water mass mixing in the Eastern North Atlantic. Earth Planet. Sci. Lett. 412, 245–60.Google Scholar
Stille, P. and Clauer, N. (1986). Sm–Nd isochron-age and provenance of the argillites of the Gunflint Iron Formation in Ontario, Canada. Geochim. Cosmochim. Acta 50, 1141–6.Google Scholar
Stordal, M. C. and Wasserburg, G. J. (1986). Neodymium isotopic study of Baffin Bay water: sources of REE from very old terranes. Earth Planet. Sci. Lett. 77, 259–72.Google Scholar
Tachikawa, K., Jeandel, C. and Roy-Barman, M. (1999). A new approach to the Nd residence time in the ocean: the role of atmospheric inputs. Earth Planet. Sci. Lett. 170, 433–46.Google Scholar
Taylor, S. R., McLennan, S. N. and McCulloch, M. T. (1983). Geochemistry of loess, continental crustal composition and crustal model ages. Geochim. Cosmochim. Acta 47, 18971905.Google Scholar
Thurston, P. C., Osmani, I. A. and Stone, D. (1991). Northwest Superior province: review and terrane analysis. In: Thurston, P. C., Williams, H. R., Sutcliffe, R. H. and Stott, G. M. (Eds) Geology of Ontario. Ontario Geol. Surv. Spec. Vol. 4, 81139.Google Scholar
Tolstikhin, I. and Hofmann, A. W. (2005). Early crust on top of the Earth's core. Phys. Earth Planet. Int. 148, 109–30.Google Scholar
Tugarinov, A. I. and Bibikova, Y. V. (1976). Evolution of the chemical composition of the Earth's crust. Geokhimiya 1976, (8) 1151–9.Google Scholar
Turner, S., Rushmer, T., Reagan, M. and Moyen, J. F. (2014). Heading down early on? Start of subduction on Earth. Geology 42, 139–42.Google Scholar
Vance, D. and Burton, K. (1999). Neodymium isotopes in planktonic foraminifera: a record of the response of continental weathering and ocean circulation rates to climate change. Earth Planet. Sci. Lett. 173, 365–79.Google Scholar
Vance, D. and O'Nions, R. K. (1990). Isotopic chronometry of zoned garnets: growth kinetics and metamorphic histories. Earth Planet. Sci. Lett. 97, 227–40.CrossRefGoogle Scholar
VonderHaar, D. L., Mahoney, J. J. and McMurtry, G. M. (1995). An evaluation of strontium isotopic dating of ferromanganese oxides in a marine hydrogeneous ferromanganese crust. Geochim. Cosmochim. Acta 59, 4267–77.Google Scholar
Wasserburg, G. J., Jacobsen, S. B., DePaolo, D. J., McCulloch, M. T. and Wen, T. (1981). Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 45, 2311–23.CrossRefGoogle Scholar
West, G. F. (1980). Formation of continental crust. In: Strangway, D. W. (Ed.) The Continental Crust and its Mineral Deposits. Geol. Assoc. Canada Spec. Pap. 8, 117–48.Google Scholar
Whitehouse, M. J. (1988). Granulite facies Nd-isotopic homogenisation in the Lewisian complex of northwest Scotland. Nature 331, 705–7.Google Scholar
Whitehouse, M. J., Kamber, B. S. and Moorbath, S. M. (1999). Age significance of U–Th–Pb zircon data from early Archean rocks of west Greenland – a reassessment based on combined ion-microprobe and imaging studies. Chem. Geol. 160, 201–24.Google Scholar
Whitehouse, M. J., Myers, J. S. and Fedo, C. M. (2009). The Akilia controversy: field, structural and geochronological evidence questions interpretations of >3.8 Ga life in SW Greenland. J. Geol. Soc. 166, 335–48.Google Scholar
Wilson, M., Hamilton, P. J., Fallick, A. E., Aftalion, M. and Michard, A. (1985). Granites and early Proterozoic crustal evolution in Sweden: evidence from Sm Nd, U Pb and O isotope systematics. Earth Planet. Sci. Lett. 72, 376–88.Google Scholar
Wust, G. (1924). Florida und Antillenstrom. Veroffentl. Inst. Meeresh. Univ. Berlin 12, 148.Google Scholar
Zolnai, A. I., Price, R. A. and Helmstaedt, H. (1984). Regional cross section of the Southern Province adjacent to Lake Huron, Ontario: implications for the tectonic significance of the Murray Fault Zone. Can. J. Earth Sci. 21, 447–56.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The Sm–Nd Method
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The Sm–Nd Method
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The Sm–Nd Method
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.005
Available formats
×