Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-03T04:35:30.662Z Has data issue: false hasContentIssue false

22 - Krogh’s Principle and Why the Modern Zoo Is Important to Academic Research

from Part IV - Basic Research

Published online by Cambridge University Press:  21 December 2018

Allison B. Kaufman
Affiliation:
University of Connecticut
Meredith J. Bashaw
Affiliation:
Franklin and Marshall College, Pennsylvania
Terry L. Maple
Affiliation:
Jacksonville Zoo and Gardens
Get access

Summary

Modern comparative methods in biology are powerful conceptual tools for research seeking to understand adaptive change and character evolution. Their value as a guiding principle lies in the fact that information is explicitly incorporated into an independent phylogenetic framework by which results can be evaluated with respect to origin, direction (polarity), and frequency of character transformations (i.e., gains and losses). The requisite comparisons that can be made require individuals of multiple species that are variously phylogenetically distant from the focal species. The expense and bureaucracy of university animal care facilities, staff, and policies are such that many studies are severely limited, or simply not possible, in the traditional context of an academic research program. By their very nature, herpetological collections of zoos typically contain high levels of species-level diversity, often with multiple individuals of certain species, which are required by the comparative method for statistical rigor. Creative collaborations between zoos and academia have produced a number of research programs that otherwise would not have been possible.
Type
Chapter
Information
Scientific Foundations of Zoos and Aquariums
Their Role in Conservation and Research
, pp. 586 - 617
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astley, H. C., Gong, C., Travers, M., Serrano, M. M., Vela, P. A., Choset, H., … Goldman, D. I. (2015). Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion. Proceedings of the National Academy of Sciences, 112, 62006205.Google Scholar
Attractions Magazine (2012). Cheetah and dog friends celebrate anniversary together at Busch Gardens Tampa [Video File]. Retrieved from www.youtube.com/watch?v=Ndlf5_L5gsE.Google Scholar
Auffenberg, W. (1981). The Behavioral Ecology of the Komodo Monitor. Gainsville, FL: University Press of Florida.Google Scholar
Avise, J. C. (2008). Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals. New York: Oxford University Press.Google Scholar
Bachtrog, D., Kirkpatrick, M. Mank, J. E., McDaniel, S. F., Pires, J. S., Rice, W. R., & Valenzuela, N. (2011). Are all sex chromosomes created equal? Trend in Genetics, 27, 350357.Google Scholar
Barabanov, V., Gulimova, V., Berdiev, R., & Saveliev, S. (2015). Object play in thick-toed geckos during a space experiment. Journal of Ethology, 33, 109115.Google Scholar
Bateson, P. & Martin, P. (2013). Play, Playfulness, Creativity, and Innovation. Cambridge: Cambridge University Press.Google Scholar
Beach, F. A. (1945). Current concepts of play in animals. American Naturalist, 79, 523541.Google Scholar
Becak, W. & Becak, M. L. (1969). Cytotaxonomy and chromosomal evolution in Serpentes. Cytogenetics, 8, 247262.CrossRefGoogle ScholarPubMed
Bekoff, M. (2007). The Emotional Lives of Animals. Novato, CA: New World Library.Google Scholar
Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L., … Hines, H. B. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central AmericaProceedings of the National Academy of Sciences, 95, 90319036.Google Scholar
Blehert, D. S., Hicks, A. C., Behr, M., Meteyer, C. U., Berlowski-Zier, B. M., Buckles, E. L., … Okoniewski, J. C. (2009). Bat white-nose syndrome: An emerging fungal pathogen? Science, 323, 227227.Google Scholar
Booth, W. & Schuett, G. W. (2011). Molecular genetic evidence for alternative reproductive strategies in North American pitvipers (Serpentes, Viperidae): Long-term sperm storage and facultative parthenogenesis. Biological Journal of the Linnean Society, 104, 934942.Google Scholar
Booth, W. & Schuett, G. W. (2016). The emerging phylogenetic pattern of parthenogenesis in snakes. Biological Journal of the Linnean Society, 118, 172186.Google Scholar
Booth, W., Johnson, D. H., Moore, S., Schal, C., & Vargo, E. L. (2011). Evidence for viable, non-clonal but fatherless boa constrictors. Biology Letters, 7, 257260.Google Scholar
Booth, W., Million, L., Reynolds, R. G., Burghardt, G. M., Vargo, E. L., Schal, C., … Schuett, G. W. (2011). Consecutive virgin births in the New World boid snake, the Colombian Rainbow Boa, Epicrates maurus. Journal of Heredity, 102, 759763.Google Scholar
Booth, W, Schuett, G. W., Ridgway, A., Buxton, D., Castoe, T. A., Bastone, G., … McMahan, C. W. (2014). New insights on facultative parthenogenesis in pythons. Biological Journal of the Linnean Society, 112, 461468.CrossRefGoogle Scholar
Booth, W., Smith, C. F., Eskridge, P. H., Hoss, S. K., Mendelson, J. R. III, & Schuett, G. W. (2012). Facultative parthenogenesis discovered in wild vertebrates. Biology Letters, 8, 983985.Google Scholar
Bull, J. J. (1983). Evolution of Sex Determining Mechanisms. Menlo Park, CA: Benjamin Cummings.Google Scholar
Burghardt, G. M. (1999). Play. In Greenberg, G. & Haraway, M. M. (Eds.), Comparative Psychology: A Handbook (pp. 725735). New York: Garland Publishing Co.Google Scholar
Burghardt, G. M. (2005). The Genesis of Animal Play: Testing the Limits. Cambridge, MA: MIT Press.Google Scholar
Burghardt, G. M. (2011). Defining and recognizing play. In Pellegrini, A. D. (Ed.), The Oxford Handbook of the Development of Play (pp. 918). New York: Oxford University Press.Google Scholar
Burghardt, G. M. (2013). Environmental enrichment and cognitive complexities in reptiles and amphibians: Concepts, review and implications for captive populations. Applied Animal Behaviour Science, 147, 286298.CrossRefGoogle Scholar
Burghardt, G. M. (2014). A brief glimpse at the long evolutionary history of play. Animal Behavior and Cognition, 1, 9098.Google Scholar
Burghardt, G. M. (2015). Play in fishes, frogs and reptiles. Current Biology, 25, R9R10.Google Scholar
Burghardt, G. M., Chiszar, D., Murphy, J. B., Romano, J., Walsh, T., & Manrod, J. (2002). Behavioral complexity, behavioral development, and play. In Murphy, J. B., Ciofi, C., Panouse, C., & Walsh, T. (Eds.), Komodo Dragons: Biology and Conservation (pp. 78118). Washington, DC: Smithsonian Institution Press.Google Scholar
Burghardt, G. M., Dinets, V., & Murphy, J. B. (2014). Highly repetitive object play in a cichlid fish (Tropheus duboisi). Ethology, 121, 3844.Google Scholar
Burghardt, G. M., Ward, B., & Rosscoe, R. (1996). Problem of reptile play: Environmental enrichment and play behavior in a captive Nile soft-shelled turtle (Trionyx triunguis). Zoo Biology, 15, 223228.3.0.CO;2-D>CrossRefGoogle Scholar
Burggren, W. & Johansen, K., (1982). Ventricular haemodynamics in the monitor lizard Varanus exanthematicus: Pulmonary and systemic pressure separation. Journal of Experimental Biology, 96, 343354.Google Scholar
Card, W. C., Roberts, D. T., & Odum, R. A. (1998). Does zoo herpetology have a future? Zoo Biology, 17, 453462.Google Scholar
Chapman, D. D., Firchau, B., & Shivji, M. S. (2008). Parthenogenesis in a large-bodied requiem shark, the blacktip Carcharhinus limbatus. Journal of Fish Biology, 73, 14731477.Google Scholar
Chapman, D. D., Shivji, M. S., Louis, E., Sommer, J., Fletcher, H., & Prödohl, P. A. (2007). Virgin birth in a hammerhead shark. Biology Letters, 3, 425427.Google Scholar
Charlesworth, D. & Mank, J. E. (2010) The birds and the bees and the flowers and the trees: Lessons from genetic mapping of sex determination in plants and animals. Genetics, 186, 931.CrossRefGoogle ScholarPubMed
Cohen, P. (1998). Like a virgin. New Scientist, 160, 3639.Google Scholar
Cole, C. J. (1984). Unisexual lizards, Scientific American, 50, 94101.Google Scholar
Coles, J. (2012). Virgin births discovered in wild snakes. BBC Nature (September 12, 2012). Retrieved from www.bbc.co.uk/nature/19555550.Google Scholar
Collins, J. P. (2002). May you live in interesting times: Using multidisciplinary and interdisciplinary programs to cope with change in the life sciences. BioScience, 52, 7583.CrossRefGoogle Scholar
Collins, J. P., Crump, M. L., & Lovejoy, T. E. III (2009). Extinction in Our Times: Global Amphibian Decline. New York: Oxford University Press.Google Scholar
Darwin, C. (1874). The Descent of Man, 2nd edn. London: Murray.Google Scholar
Darevsky, I. S. (1958). Natural parthenogenesis in certain subspecies of the rock-lizard Lacerta saxicola Eversmann. Doklady Academii Nauk SSSR, 122, 730732.Google Scholar
Darevsky, I. S. (1966). Natural parthenogenesis in a polymorphic group of Caucasian rock lizards related to Lacerta saxicola Eversmann. Journal of the Ohio Herpetological Society, 5, 115152.Google Scholar
Darevsky, I. S., Kupriyanova, L. A., & Uzzell, T. (1985). Parthenogenesis in reptiles. In Gans, C. & Billett, D. F. (Eds.), Biology of the Reptilia, 15 (pp. 413526). New York: John Wiley & Sons.Google Scholar
Demlong, M. & Schuett, G. (1998). The Phoenix Zoo announces birth. Communiqué, July, 35.Google Scholar
Deufel, A. & Cundall, D. (2003). Feeding in Atractaspis (Serpentes: Atractaspididae): A study in conflicting functional constraints. Zoology, 106, 4361.Google Scholar
Dinets, V. (2015). Play behavior in crocodilians. Animal Behavior and Cognition, 2, 4955.Google Scholar
Ding, Y., Sharpe, S. S., Masse, A., & Goldman, D. I. (2012). Mechanics of undulatory swimming in a frictional fluid. PLoS Computational Biology, 8, e1002810.Google Scholar
Doody, J. S., Burghardt, G. M., & Dinets, V. (2013). Breaking the social–non-social dichotomy: A role for reptiles in vertebrate social behavior research? Ethology, 199, 19.Google Scholar
Dubach, J., Sajewicz, A., & Pawley, R. (1997). Parthenogenesis in the Arafuran filesnake (Acrochordus arafurae). Herpetological Natural History, 5, 1118.Google Scholar
Dudgeon, C. L., Coulton, L., Bone, R., Ovenden, J. R., & Thomas, S. (2017). Switch from sexual to parthenogenetic reproduction in a zebra shark. Scientific Reports, 7, 40537.Google Scholar
Emerson, J. J. (2017). Evolution: A paradigm shift in snake sex chromosome genetics. Current Biology, 27, R800R803.Google Scholar
Facultative Parthenogenesis in Reptilia (2014). Faculative Parthenogensis in Reptilia Facebook group page. Retrieved from www.facebook.com/groups/463481383787022.Google Scholar
Fagan, R. (1981). Animal Play Behavior. New York: Oxford University Press.Google Scholar
Feldheim, K. A., Chapman, D. D., Sweet, D., Fitzpatrick, S., Prodöhl, P. A., Shivji, M. S., & Snowden, B. (2010). Shark virgin birth produces multiple viable offspring. Journal of Heredity, 101, 374377.Google Scholar
Firestein, S. (2012). Ignorance: How It Drives Science. New York: Oxford University Press.Google Scholar
Gamble, T. & Zarkower, D. (2014). Identification of sex-specific molecular markers using restriction site associated DNA sequencing. Molecular Ecology Resources, 14, 902913.Google Scholar
Gamble, T., Castoe, T. A., Nielsen, S. V., Banks, J. L., Jaison, L., Card, D. C., … Booth, W. (2017). The discovery of XY sex chromosomes in Boa and Python. Current Biology, 27, 21482153.CrossRefGoogle ScholarPubMed
Gamble, T., Coryell, J., Ezaz, T., Lynch, J., Scantlebury, D. P., & Zarkower, D. (2015). Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Molecular Biology and Evolution, 32, 12961309.Google Scholar
Gans, C. (1994). Directions for future research at academic institutions. In Murphy, J. B., Adler, K., & Collins, J. T. (Eds.), Captive Management and Conservation of Amphibians and Reptiles, Contributions to Herpetology, Vol. 1 (pp. 391395). Ithaca, NY: Society for the Study of Amphibians and Reptiles.Google Scholar
Gong, C., Travers, M., Astley, H., Li, L., Mendelson, J., Hu, D., … Choset, H. (2015). Kinematic gait synthesis for snake robots. The International Journal of Robotics Research, 34, 114.Google Scholar
Graham, K. L. & Burghardt, G. M. (2010). Current perspectives on the biological study of play: Signs of progress. Quarterly Review of Biology, 85, 393418.Google Scholar
Greene, H. W. (1976). Scale overlap, a directional sign stimulus for prey ingestion by ophiophagous snakes. Ethology, 41, 113120.Google Scholar
Greene, H. W. & Burghardt, G. M. (1978). Behavior and phylogeny: Constriction in ancient and modern snakes. Science, 200, 7477.Google Scholar
Graves, J. A. M. (2013). How to evolve new vertebrate sex determining genes. Developmental Dynamics, 242, 354359.Google Scholar
Groot, T. V. M., Bruins, E., & Breeuwer, J. A. J. (2003). Molecular genetic evidence for parthenogenesis in the Burmese python, Python molurus bivittatus. Heredity, 90, 130135.Google Scholar
Haig, D. (2002). Genomic Imprinting and Kinship. New Brunswick, NJ: Rutgers University Press.Google Scholar
Harvey, P. H. & Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.Google Scholar
Hill, C. (1946). Playtime at the zoo. ZOO-LIFE, 1, 2426.Google Scholar
Hill, R. L., Mendelson, J. R. III, & Stabile, J. L. (2015). Direct observation and review of herbivory in Sirenidae (Amphibia: Caudata). The Southeastern Naturalist, 14, N5N9.Google Scholar
Hopper, L. M. (2017). Cognitive research in zoos. Current Opinions in Behavioral Sciences 16, 100110.Google Scholar
Jaenisch, R. (1997). DNA methylation: Why bother? Trends in Genetics, 13, 323329.CrossRefGoogle ScholarPubMed
Koshiba-Takeuchi, K. T., Mori, A. D., Kaynak, B. L., Cebra-Thomas, J., Sukonnik, T., Georges, R. O., … Bruneau, B.G. (2009). Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature, 461, 9598.Google Scholar
Kramer, M. & Burghardt, G. M. (1998). Precocious courtship and play in emydid turtles. Ethology, 104, 3856.Google Scholar
Krogh, A. (1929). The progress of physiology. American Journal of Physiology – Legacy Content, 90, 243251.CrossRefGoogle Scholar
Kuhn, T. S. (1996). The Structure of Scientific Revolutions, 3rd edn. Chicago, IL: University of Chicago Press.Google Scholar
Lampert, K. P. (2008). Facultative parthenogenesis in vertebrates: Reproductive error or chance? Sexual Development, 2, 290301.Google Scholar
Lazell, J. D. & Spitzer, N. C. (1977). Apparent play in an American alligator. Copeia, 1977, 18.Google Scholar
Lindstedt, S. (2014). Krogh 1929 or The Krogh Principle. Journal of Experimental Biology, 217, 16401641.Google Scholar
Lips, K. R. (1998). Decline of a tropical montane amphibian fauna. Conservation Biology, 12, 106117.Google Scholar
Lips, K. R. & Mendelson, J. R. III (2014). Stopping the next amphibian apocalypse. New York Times. November 14, 2014.Google Scholar
Longcore, J. E., Pessier, A. P., & Nichols, D. K. (1999). Batrachochytrium dendrobatidis gen. et sp. nov.: A chytrid pathogenic to amphibians. Mycologia, 1999, 219227.Google Scholar
Mank, J. E., Nam, K., & Ellegren, H. (2010). Faster Z evolution is predominantly due to genetic drift. Molecular Biology and Evolution, 27, 661670.Google Scholar
Martel, A., Spitzen-van der Sluijs, A., Blooi, M., Bert, W., Ducatelle, R., Fisher, M. C., … Pasmans, F. (2013). Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proceedings of the National Academy of Sciences, 110, 1532515329.Google Scholar
Marvi, H., Bridges, J., & Hu, D.L. (2013). Snakes mimic earthworms: Propulsion using rectilinear travelling waves. Journal of the Royal Society Interface, 10, 20130188.Google Scholar
Marvi, H., Gong, C., Gravish, N., Astley, H., Hatton, R. L., Mendelson, J. R. III, … Goldman, D. I. (2014). Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science, 346, 224229.Google Scholar
Medvedev, M. & Makova, K. D. (2017). Y and W chromosome assemblies: Approaches and discoveries. Trends in Genetics, 33, 266282.Google Scholar
Mendelson, J. R. III, Lips, K. R., Gagliardo, R. W., Rabb, G. B., Collins, J. P., Diffendorfer, J. E., … Brodie, E. D. Jr. (2006). Policy forum: Confronting amphibian declines and extinctions. Science, 313, 48.Google Scholar
Mikloski, A. & Soproni, A. (2006). A comparative analysis of animals’ understanding of the human pointing gesture. Animal Cognition, 9, 8193.Google Scholar
Miller, L. J. (2017). Creating a common terminology for play behavior to increase cross-disciplinary research. Learning and Behavior, 45, 330334.Google Scholar
Moberg, G. P. (1985). Animal Stress. Bethesda, MD: American Physiological Society.Google Scholar
Monaghan, P. (1997). Reports of ‘virgin birth’ of snakes prompt excitement and skepticism. The Chronicles of Higher Education (December 19, 1997). Retrieved from www.chronicle.com/article/reports-of-virgin-birth-of/101039.Google Scholar
Murphy, J. B. (2007). Herpetological History of the Zoo and Aquarium World. Malabar, FL: Krieger Publishing Co..Google Scholar
Murphy, J. B., Adler, K., & Collins, J. T. (Eds.) (1994). Captive Management and Conservation of Amphibians and Reptiles. Contributions to Herpetology. Ithaca, NY: Society for the Study of Amphibians and Reptiles.Google Scholar
Murphy, J. B., Ciofi, C., de La Panouse, C., & Walsh, T. (Eds.) (2002). Komodo Dragons: Biology and Conservation. Washington, DC: Smithsonian Institution.Google Scholar
Neaves, W. B. & Baumann, P. (2011). Unisexual reproduction among vertebrates. Trends in Genetics, 27, 8188.Google Scholar
Nichols, D. K. (2003). Tracking down the killer chytrid of amphibians. Herpetological Review, 34, 101104.Google Scholar
Norris, K. S. & Kavanau, J. L. (1966). The burrowing environment of the western shovel-nosed snake, Chionactis occipitalis Hallowell, and the undersand environment. Copeia, 1966, 650664.Google Scholar
Ohno, S. (1967). Sex Chromosomes and Sex-linked Genes. Berlin: Springer-Verlag.Google Scholar
Olena, A. (2017). Snake sex determination dogma overturned. The Scientist. Retrieved from www.the-scientist.com/?articles.view/articleNo/49814/title/snake-sex-determination-dogma-overturned.Google Scholar
Olsen, M. W. (1975). Avian parthenogenesis. Agricultural Research Service, United States Department of Agriculture, 65, 182.Google Scholar
Olsen, W. W. & Marsden, S. J. (1954) Natural parthenogenesis in turkey eggs. Science, 120, 545546.CrossRefGoogle ScholarPubMed
Pough, F. H. 1993. Zoo-academic research collaborations: How close are we? Herpetologica 49: 500-508.Google Scholar
Pruitt, J. N., Burghardt, G. M., & Riechert, S. E. (2012). Non-conceptive sexual behavior in spiders: A form of play associated with body condition, personality type, and male intrasexual selection. Ethology, 118, 3340.Google Scholar
Rabb, G. B. & Rabb, M. S. (1960). On the mating and egg-laying behavior of the Surinam toad, Pipa pipa. Copeia, 1960, 271276.Google Scholar
Radcliffe, C. W., Chiszar, D., & O’Connell, B. (1980). Effects of prey size on poststrike behavior in rattlesnakes (Crotalus durissus, C. enyo, and C. viridis). Bulletin of the Psychonomic Society, 16, 449450.Google Scholar
Schloegel, L. M., Toledo, L. F., Longcore, J. E., Greenspan, S. E., Vieira, C. A., Lee, M., … Davies, A. J. (2012). Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Molecular Ecology, 21, 51625177.Google Scholar
Schuett, G. W., Clark, R. W., Repp, R. A., Amarello, M., Smith, C. F., & Greene, H. W. (2016). Social behavior of rattlesnakes: a shifting paradigm. In Schuett, G. W., Feldner, M. J., Smith, C. F., & Reiserer, R. S. (Eds.), Rattlesnakes of Arizona, 2 (pp. 161244). Rodeo, NM: ECO Publishing.Google Scholar
Schuett, G. W., Fernandez, P. J., Gergits, W. F., Casna, N. J., Chiszar, D., Smith, H. M., … Demlong, M. J. (1997). Production of offspring in the absence of males: Evidence for facultative parthenogenesis in bisexual snakes. Herpetological Natural History, 5, 110.Google Scholar
Schuett, G. W., Fernandez, P. J., Chiszar, D., & Smith, H. M. (1998). Fatherless sons: A new type of parthenogenesis in snakes. Fauna, 1, 2025.Google Scholar
Schuett, G. W. & Booth, W. (2017). Facultative parthenogenesis in reptiles: Discovery and progress – Role of zoos and private citizens. Presented at: International Herpetological Symposium, Chiricahua Desert Museum & Geronimo Event Center, Rodeo, New Mexico, July 19–23.Google Scholar
Schuetz, A., Farmer, K., & Krueger, K. (2017). Social learning across species: Horses (Equus caballus) learn from humans by observation. Animal Cognition, 20, 567573.Google Scholar
Schut, E., Hemmings, N., & Birkhead, T. R. (2008). Parthenogenesis in a passerine bird, the zebra finch Taeniopygia guttata. Ibis, 150, 197199.Google Scholar
Serres, A. & Delfour, F. (2017). Environmental changes and anthropogenic factors modulate social play in captive bottlenose dolphins (Tursiops truncatus). Zoo Biology, 36, 99111.Google Scholar
Sharpe, S. S., Koehler, S. A., Kuckuk, R. M., Serrano, M., Vela, P. A., Mendelson, J. R. III, & Goldman, D. I. (2015). Locomotor advantages of being a slender and slick sand-swimmer. Journal of Experimental Biology, 218, 440450.Google Scholar
Tomaszkiewicz, M., Medvedev, P., and Makova1, K. D. (2017). Y and W chromosome assemblies: approaches and discoveries. Trends in Genetics 33: 266-282.Google Scholar
Vicoso, B., Emerson, J. J., Zektser, Y., Mahajan, S., & Bachtrog, D. (2013). Comparative sex chromosome genomics in snakes: Differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biology, 11, e1001643.CrossRefGoogle ScholarPubMed
Walker, M. (2011), Snake gives ‘virgin birth’ to extraordinary babies. Retrieved from news.bbc.co.uk/earth/hi/earth_news/newsid_9139000/9139971.stm.Google Scholar
Waters, R. M., Bowers, B. B., & Burghardt, G.M. (2017). Personality and individuality in reptile behavior. In Vonk, J., Weiss, A., & Kuczaj, S. (Eds.), Personality in Nonhuman Animals (pp. 153184). New York: Springer Publishing.Google Scholar
Watts, P. C., Buley, K. R., Sanderson, S., Boardman, W., Ciofi, C., & Gibson, R. (2006). Parthenogenesis in Komodo dragons. Nature, 444, 10211022.Google Scholar
Westlund, K. (2014). Training is enrichment – And beyond. Applied Animal Behaviour Science, 152, 16.Google Scholar
Zylinski, S. (2015). Fun and play in invertebrates. Current Biology, 25, R10R12.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×