Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-13T01:36:56.250Z Has data issue: false hasContentIssue false

19 - Solute and sediment fluxes from rivers and streams in the McMurdo Dry Valleys, Antarctica

from Part IV - Solute and sedimentary fluxes in sub-Antarctic and Antarctic environments

Published online by Cambridge University Press:  05 July 2016

Achim A. Beylich
Affiliation:
Geological Survey of Norway
John C. Dixon
Affiliation:
University of Arkansas
Zbigniew Zwoliński
Affiliation:
Adam Mickiewicz University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alger, A. S., McKnight, D. M., Spaulding, S. A., Tate, C. M., Shupe, G. H., Welch, K. A., Edwards, R., Andrews, E. D., and House, H. R. (1997). Ecological processes in a cold desert ecosystem: the abundance and species distribution of algal mats in glacial meltwater streams in Taylor Valley. Institute of Arctic and Alpine Research Occasional Paper 51. Boulder, CO: University of Colorado. 108pp.Google Scholar
Andersen, D. W., Wharton, R. A. Jr., and Squyres, S. W. (1993). Terrigenous clastic sedimentation in antarctic dry valley lakes. In Green, W. J. and Friedman, E. I., eds., Physical and Biogeochemical Processes in Antarctic Lakes. Antarctic Research Series 59, 7181.CrossRefGoogle Scholar
Angino, E. E., Armitage, K. B., and Tash, J. C. (1962). Chemical stratification in Lake Fryxell, Victoria Land, Antarctica. Science, 138, 3436.CrossRefGoogle Scholar
Bagshaw, E., Tranter, M., Fountain, A. G., Welch, K. A., Basagic, H. J., and Lyons, W. B. (2007). The biogeochemical evolution of cryoconite holes on glaciers in Taylor Valley, Antarctica. Journal of Geophysical Research, 113, G04S35.CrossRefGoogle Scholar
Barrett, J. E., Virginia, R. A., Lyons, W. B., McKnight, D. M., Priscu, J. C., Doran, P. T., Fountain, A. G., Wall, D. H., and Moorhead, D. L. (2007). Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. Journal of Geophysical Research: Biogeosciences, 112, G01010. doi:10.1029/2005JG000141.CrossRefGoogle Scholar
Bisson, K. M., Welch, K. A., Welch, S. A., Sheets, J. M., Lyons, W. B., Levy, J. S., and Fountain, A. G. (In press.) Patterns and processes of salt efflorescences in the McMurdo region, Antarctica. Arctic, Antarctic and Alpine Research, doi: 10.1657/AAAR0014-024,CrossRefGoogle Scholar
Chapman, W. L, and Walsh, J. E. (2007). A synthesis of Antarctic temperatures. Journal of Climate, 20, 40964117.CrossRefGoogle Scholar
Conovitz, P. A., McKnight, D. M., MacDonald, L. H., and Fountain, A. G. (1998). Hydrologic processes influencing streamflow variation in Fryxell Basin, Antarctica. In Priscu, J. C., ed., Ecosystem Processes in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series 72. Washington DC: American Geophysical Union, 93108.Google Scholar
Deuerling, K. M., Lyons, W. B., Welch, S. A., and Welch, K. A. (2014). The characterization and role of aeolian deposition on water quality, McMurdo Dry Valleys, Antarctica. Aeolian Research, 13 (2014), 717.CrossRefGoogle Scholar
Doran, P. T., Wharton, R. A. Jr., and Lyons, W. B. (1994). Paleolimnology of the McMurdo Dry Valleys, Antarctica. Journal of Paleolimnology, 10(2), 85114.CrossRefGoogle ScholarPubMed
Doran, P. T., McKay, C. P., Clow, G. D., Dana, G. L., Fountain, A. G., Nylen, T. H., and Lyons, W. B. (2002). Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. Journal of Geophysical Research, 107, 47724784.CrossRefGoogle Scholar
Faure, G., and Mensing, T. M. (2010). The Transantarctic Mountains: Rocks, Ice, Meteorites and Water. New York: Springer, 830pp.Google Scholar
Foley, K., Lyons, W. B., Barrett, J. E., and Virginia, R. A. (2006). Pedogenic carbonate distribution within glacial till in Taylor Valley, Southern Victoria Land, Antarctica. Geological Society of America Special Paper, 416, 89103.Google Scholar
Fountain, A. G., Lyons, W. B., Burkins, M. B., Dana, G. L., Doran, P. T., Lewis, K. J., McKnight, D. M., Moorhead, D. L., Parsons, A. N., and Priscu, J. C. (1999). Physical controls on the Taylor Valley Ecosystem, Antarctica. BioScience, 49(12), 961972.CrossRefGoogle Scholar
Fountain, A. G., and Walder, J. S. (1998). Water flow through temperate glaciers. Reviews of Geophysics, 36(3), 299328.CrossRefGoogle Scholar
Fountain, A. G., Nylen, T. H., Monaghan, A., Basagic, H. J., and Browmwich, D. (2010). Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology, 30(5), 633642.CrossRefGoogle Scholar
Fountain, A. G., Levy, J. S., Gooseff, M. N., and Van Horn, D. (2014). The McMurdo Dry Valleys: A landscape on the threshold of change. Geomorphology, http://dx.doi.org/10.1016/j.geomorph.2014.03.044.CrossRefGoogle Scholar
Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 10881090.CrossRefGoogle ScholarPubMed
Gillies, J. A., Nickling, W. G., and Tilson, M. (2013). Frequency, magnitude, and characteristics of Aeolian sediment transport: McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research, 118, 461479. doi:10.1002/jgrf.20007.CrossRefGoogle Scholar
Green, W. J., and Canfield, D. E. (1984). Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochimica et Cosmochimica Acta, 48 , 24572467.CrossRefGoogle Scholar
Green, W. J., Angle, M. P., and Chave, K. E. 1988). The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry valleys. Geochimica et Cosmochimica Acta, 52, 12651274.CrossRefGoogle Scholar
Green, W. J., Stage, B. R., Preston, A., Wagers, S., Shacat, J., Newell, S. (2005). Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals. Geochimica et Cosmochimica Acta, 69, 839850.CrossRefGoogle Scholar
Gooseff, M. N., McKnight, D. M., Lyons, W. B., and Blum, A. E. (2002). Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys. Water Resources Research, 38, 1279. doi:10.1029/2001WR000834.CrossRefGoogle Scholar
Gooseff, M. N., McKnight, D. M., Runkel, R. L., and Vaughn, B. H. (2003). Determining long time-scale hyporheic zone flow paths in Antarctic streams. Hydrological Processes, 17, 16911710.CrossRefGoogle Scholar
Gurnell, A. M., Hannah, D., and Lawler, D. (1996). Suspended sediment yield from glacier basins. IAHS Publication, 236, 97104.Google Scholar
Hall, B. L., and Denton, G. H. (2000). Extent and chronology of the Ross Sea ice sheet and the Wilson Piedmont Glacier along the Scott Coast at and since the last glacial maximum. Geografiska Annaler, 82A, 337363.CrossRefGoogle Scholar
Hall, K., Thorn, C. E., Matsuoka, N., and Prick, A. (2002). Weathering in cold regions: some thoughts and perspectives. Progress in Physical Geography, 26(4), 577603.CrossRefGoogle Scholar
Hendy, C. H. (2000). Late Quaternary lakes in the McMurdo Sound region of Antarctica. Geografiska Annaler, 82A, 411432.CrossRefGoogle Scholar
Harris, K., Carey, A. E., Welch, K. A., Lyons, W. B., and Fountain, A. G. (2007). Solute and isotope geochemistry of near-surface ice melt flows in Taylor Valley, Antarctica. Geological Society of America Bulletin, 119, 548555.CrossRefGoogle Scholar
Howard-Williams, C., Priscu, J. C., and Vincent, W. F. (1989). Nitrogen dynamics in two Antarctic streams. Hydrobiologia, 172, 5161.CrossRefGoogle Scholar
Keys, J. R., and Williams, K. (1981). Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochimica et Cosmochimica Acta, 45, 22992309.Google Scholar
Koch, J., McKnight, D. M., and Neupauer, R. M. (2011). Simulating unsteady flow, anabranching, and hyporheic dynamics in a glacial meltwater stream using a coupled surface water routing and groundwater flow model. Water Resources Research, 47(5). 10.1029/2010WR009508.CrossRefGoogle Scholar
Lancaster, N. (2002). Flux of aeolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic, Antarctic, and Alpine Research, 34(3), 318323. doi: 10.2307/1552490.CrossRefGoogle Scholar
Levy, J. S., Fountain, A. G., Gooseff, M. N., Welch, K. A., and Lyons, W. B. (2011). Water tracks and permafrost in Taylor Valley, Antarctica: Extensive and shallow groundwater connectivity in a cold desert ecosystem. Geological Society of America Bulletin, 123(11–12), 22952311.CrossRefGoogle Scholar
Lyons, W. B., Welch, K. A., Nezat, C. A., Crick, K., Toxey, J. K., Mastrine, J. A., and McKnight, D. M. (1997). Chemical weathering rates and reactions in the Lake Fryxell Basin, Taylor Valley: Comparison to temperate river basins. In Lyons, W.B., Howard-Williams, C., and Hawes, I., eds., Ecosystem Processes in Antarctic Ice-free Landscapes. Rotterdam: Balkema Publishers, 147154.Google Scholar
Lyons, W. B., Welch, K. A., Fountain, A. G., Dana, G. L., Vaughn, B. H., and McKnight, D. M. (2003). Surface glaciochemistry of Taylor Valley, southern Victoria Land, Antarctica and its relationship to stream chemistry. Hydrological Processes, 17, 115130.CrossRefGoogle Scholar
MacDonell, S. A., Fitzsimons, S. J., and Mölg, T. (2012). Seasonal sediment fluxes forcing supraglacial melting on the Wright Lower Glacier, McMurdo Dry Valleys, Antarctica. Hydrological Processes, doi:10.1002/hyp.9444 2012.CrossRefGoogle Scholar
Maurice, P., McKnight, D. M., Leff, L., Fulghun, J., and Gooseff, M. N. (2002). Direct observation of aluminosilicate weathering in the hyporheic zone of an Antarctic Dry Valley stream. Geochimica et Cosmochimica Acta, 66, 13351347.CrossRefGoogle Scholar
McKnight, D. M., Niyogi, D. K., Alger, A. S., Bomblies, A., Conovitz, P. A., and Tate, C. M. (1999). Dry valley streams in Antarctica: ecosystems waiting for water. BioScience, 49(12), 985995.CrossRefGoogle Scholar
Mosley, M. P. (1988). Bedload transport and sediment yield in the Onyx River, Antarctica. Earth Surface Processes and Landforms, 13, 5167.CrossRefGoogle Scholar
Mullin, J. B., and Riley, J. P. (1955). The colorimetric determination of silicate with special reference to sea and natural waters. Analytica Chemica Acta, 12, 162176.CrossRefGoogle Scholar
Nezat, C. A., Lyons, W. B., and Welch, K. A. (2001. Chemical weathering in streams of a polar desert (Taylor Valley, Antarctica). Geological Society of America Bulletin, 113, 14011408.2.0.CO;2>CrossRefGoogle Scholar
Nylen, T. H., Fountain, A. G., and Doran, P. T. (2004). Climatology of katabatic winds in the McMurdo Dry Valleys, Southern Victoria Land, Antarctica. Journal of Geophysical Research, 109. DOI: 10.1029/2003JD003937.Google Scholar
Priscu, J. C., ed. (1998), Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series 72, Washington, DC: American Geophysical Union, 369 pp.CrossRefGoogle Scholar
Putkonen, J., Balco, G., and Morgan, D. (2008). Slow regolith degradation without creep determined by cosmogenic nuclide measurements in Arena Valley, Antarctica. Quaternary Research, 69, 242249. doi:10.1016/j.yqres.2007.12.004.CrossRefGoogle Scholar
Stanish, L. F., Kohler, T. J., Esposito, R. M. M., Simmons, B. L., Nielsen, U. N., Wall, D. H., Nemergut, D. R., and McKnight, D. M. (2012). Extreme streams: flow intermittency as a control on diatom communities in meltwater streams in the McMurdo Dry Valleys, Antarctica. Canadian Journal of Fisheries and Aquatic Sciences, 69(8), 14051419.CrossRefGoogle Scholar
Summerfield, M. A., Stuart, F. M., Cockburn, H. A. P., Sugden, D. E., Denton, G. H., Dunai, T., and Marchant, D. R. (1999). Long-term rates of denudation in the Dry Valleys, Transantarctic Mountains, southern Victoria Land, Antarctica based on in-situ-produced cosmogenic 21Ne. Geomorphology, 27(1–2), 113129.CrossRefGoogle Scholar
Szpikowski, J., Szpikowska, G., Zwoliński, Z., Rachlewicz, G., Kostrzewski, A., Marciniak, M., and Dragon, K. (2014). Character and rate of denudation in a High Arctic glacierized catchment (Ebbaelva, Central Spitsbergen). Geomorphology, http://dx.doi.org/10.1016/j.geomorph.2014.01.012.CrossRefGoogle Scholar
Tranter, M., Fountain, A., Fritsen, C., Lyons, W. B., Priscu, J. C., Statham, P., and Welch, K. (2004). Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes, 18, 379387.CrossRefGoogle Scholar
Tranter, M. (2003). Geochemical weathering in glacial and proglacial environments. In Holland, H. D. and Turekian, K. K., eds., Surface and Ground Water, Weathering, and Soils (ed. Drever, J. I.) Vol. 5 Treatise on Geochemistry. Oxford: Elsevier-Pergamon, pp 189205.Google Scholar
Welch, K. A., Lyons, W. B., Graham, E., Neumann, K., Thomas, J. M., and Mikesell, D. (1996). Determination of major element chemistry in terrestrial waters from Antarctica by ion chromatography. Journal of Ion Chromatography A, 739, 257263.CrossRefGoogle Scholar
Welch, K. A., Lyons, W. B., Whisner, C., Gardner, C. B., Gooseff, M. N., McKnight, D. M., and Priscu, J. C. (2010). Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarctic Science, 22(06) 662672.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×