Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-10T02:12:39.090Z Has data issue: false hasContentIssue false

4 - Flexible use of anti-predator defences

Published online by Cambridge University Press:  05 June 2012

Ximena J. Nelson
Affiliation:
University of Canterbury, New Zealand
Robert R. Jackson
Affiliation:
University of Canterbury, New Zealand
Marie Elisabeth Herberstein
Affiliation:
Macquarie University, Sydney
Get access

Summary

Belonging to a size category that makes them vulnerable to a wide variety of predators, spiders have evolved a bewildering array of anti-predator adaptations, which can be clustered under two broad categories, primary and secondary defence. Primary defences are ploys by which the spider avoids provoking pursuit by, and interaction with, the predator. Camouflage and masquerade are especially common examples. Secondary defences come into play once an interaction with a predator is under way, and these are the defences that have been most thoroughly studied. However, elements of anti-predator defence may often be integrated into other aspects of the spider's biology. Cues from predators may influence a spider's decision to move away from a habitat, and may also influence the decisions spiders make in the context of courtship, mating and oviposition. Anti-predator defences are sometimes subject to local adaptation by different populations within single species, and considerable flexibility in anti-predator ploys may be evident even at the level of the individual spider. Although vertebrates are often predators of spiders, anti-predator flexibility may have evolved primarily when the predator is another spider or an insect. Spider–spider encounters in particular have a way of blurring the distinction between anti-predator and predatory behaviour. Tremendous opportunity remains for research on the anti-predator defences of spiders, but perhaps the major challenge for future researchers will be to devise and carry out experiments that demonstrate the efficacy in the field of anti-predator defences that have thus far been studied primarily in the laboratory.

Type
Chapter
Information
Spider Behaviour
Flexibility and Versatility
, pp. 99 - 126
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. A. (1986). Is predator-prey coevolution an arms race?Trends in Ecology and Evolution, 1, 108–110.CrossRefGoogle Scholar
Amaya, C. C., Klawinski, P. D. and Formanowicz, D. R. (2001). The effects of leg autotomy on running speed and foraging ability in two species of wolf spider (Lycosidae). American Midland Naturalist, 145, 201–205.CrossRefGoogle Scholar
Andersson, M. (1994). Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Apontes, P. and Brown, C. A. (2005). Between-sex variation in running speed and a potential cost of leg autotomy in the wolf spiderPirata sedentarius. American Midland Naturalist, 154, 115–125.CrossRefGoogle Scholar
Barnes, M. C., Persons, M. H. and Rypstra, A. L. (2002). The effect of predator chemical cue age on antipredator behavior in the wolf spider Pardosa milvina (Araneae: Lycosidae). Journal of Insect Behavior, 15, 269–281.CrossRefGoogle Scholar
Blackledge, T. A. and Zevenbergen, J. M. (2007). Condition-dependent spider web architecture in the western black widow, Latrodectus hesperus. Animal Behaviour, 73, 855–864.CrossRefGoogle Scholar
Brautigam, M. and Persons, M. H. (2003). The effect of limb loss on the courtship and mating behaviour of the wolf spider Pardosa milvina (Araneae: Lycosidae). Journal of Insect Behavior, 16, 571–587.CrossRefGoogle Scholar
Briscoe, A. D. and Chittka, L. (2001). The evolution of colour vision in insects. Annual Review of Entomology, 46, 471–510.CrossRefGoogle ScholarPubMed
Bristowe, W. S. (1941). The Comity of Spiders. Publication 128. London: The Ray Society.Google Scholar
Bruce, M. J. (2006). Silk decorations: controversy and consensus. Journal of Zoology, 269, 89–97.CrossRefGoogle Scholar
Brueseke, M., Rypstra, A., Walker, S. and Persons, M. (2001). Leg autotomy in the wolf spider Pardosa milvina: a common phenomenon with few apparent costs. American Midland Naturalist, 146, 153–160.CrossRefGoogle Scholar
Cloudsley-Thompson, J. L. (1995). A review of the anti-predator devices of spiders. Bulletin of the British Arachnological Society, 10, 81–96.Google Scholar
Côté, I. M. and Cheney, K. L. (2007). A protective function for aggressive mimicry?Proceedings of the Royal Society of London, B, 274, 2445–2448.CrossRefGoogle ScholarPubMed
Cott, H. B. (1940). Adaptive Coloration in Animals. London: Methuen.Google Scholar
Cushing, P. E. (1997). Myrmecomorphy and myrmecophily in spiders: a review. Florida Entomologist, 80, 165–193.CrossRefGoogle Scholar
Cuthill, I. C., Partridge, J. C., Bennett, A. T. D., et al. (2000). Ultraviolet vision in birds. Advances in the Study of Behaviour, 29, 159–214.CrossRefGoogle Scholar
Edmunds, M. (1974). Defence in Animals: A Survey of Anti-Predator Defences. London: Longman.Google Scholar
Fleming, P. A., Muller, D. and Bateman, P. W. (2007). Leave it all behind: a taxonomic perspective of autotomy in invertebrates. Biological Reviews, 82, 481–510.CrossRefGoogle ScholarPubMed
Foelix, R. F. (1996). Biology of Spiders, 2nd edn. Oxford, UK: Oxford University Press.Google Scholar
Formanowicz, D. R. (1990). The antipredator efficacy of spider leg autotomy. Animal Behaviour, 40, 400–401.CrossRefGoogle Scholar
Fox, L. R. (1988). Diffuse coevolution within complex communities. Ecology, 69, 906–907.CrossRefGoogle Scholar
Gabritchvesky, E. (1927). Experiments on the color changes and regeneration in the crab spider Misumena vatia (Cl.). Journal of Experimental Zoology, 47, 251–267.CrossRefGoogle Scholar
Garb, J. E., González, A. and Gillespie, R. G. (2004). The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Molecular Phylogenetics and Evolution, 31, 1127–1142.CrossRefGoogle ScholarPubMed
Gregory, R. L. (1998). Eye and Brain: The Psychology of Seeing, 5th edn. Oxford, UK: Oxford University Press.Google Scholar
Guffey, C. (1998). Leg autotomy and its potential fitness costs for two species of harvestmen (Arachnida, Opiliones). Journal of Arachnology, 26, 296–302.Google Scholar
Guffey, C. (1999). Costs associated with leg autotomy in the harvestmen Leiobunum nigripes and Leiobunum vittatum (Arachnida: Opiliones). Canadian Journal of Zoology, 77, 824–830.CrossRefGoogle Scholar
Gullan, P. and Cranston, P. S. (2000). The Insects: An Outline of Entomology, 2nd edn. Oxford, UK: Blackwell.Google Scholar
Gunnarsson, B. (2007). Bird predation on spiders: ecological mechanisms and evolutionary consequences. Journal of Arachnology, 35, 509–529.CrossRefGoogle Scholar
Hamilton, W. D. (1971). Geometry for the selfish herd, Journal of Theoretical Biology, 31, 295–311.CrossRefGoogle ScholarPubMed
Hanlon, R. T., Chiao, C. C., Mäthger, L. M., et al. (2009). Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. Philosophical Transactions of the Royal Society of London, B, 364, 429–437.CrossRefGoogle ScholarPubMed
Harland, D. P. and Jackson, R. R. (2004). Portia perceptions: the Umwelt of an araneophagic jumping spider. In Complex Worlds from Simpler Nervous Systems (ed. Prete, F. R.). Cambridge, MA: MIT Press, pp. 5–40.Google Scholar
Harland, D. P. and Jackson, R. R. (in press). How jumping spiders see the world. In How Animals See the World: Behavior, Biology, and Evolution of Vision (ed. Lazareva, O., Shimizu, T. and Wasserman, E.). New York: Oxford University Press.
Heiling, A. M., Herberstein, M. E. and Chittka, L. (2003). Pollinator attraction: crab spiders manipulate flower signals. Nature, 421, 334.CrossRefGoogle ScholarPubMed
Henschel, J. R. (1998). Predation on social and solitary individuals of the spider Stegodyphus dumicola (Araneae, Eresidae). Journal of Arachnology, 26, 61–69.Google Scholar
Herberstein, M. E., Craig, C. L., Coddington, J. A. and Elgar, M. A. (2000). The functional significance of silk decorations of orb-web spiders: a critical review of the empirical evidence. Biological Reviews, 75, 649–669.CrossRefGoogle ScholarPubMed
Hölldobler, B. and Wilson, E. O. (1990). The Ants. Heidelberg, Germany: Springer Verlag.CrossRefGoogle Scholar
Hurd, L. E. and Eisenberg, R. M. (1990). Arthropod community responses to manipulation of a biotrophic predator guild. Ecology, 71, 2107–2114.CrossRefGoogle Scholar
Jackson, R. R. (1980). The mating strategy of Phidippus (Araneae, Salticidae). IV. Interpopulational variation in courtship persistence. Behavioral Ecology and Sociobiology, 6, 257–263.CrossRefGoogle Scholar
Jackson, R. R. (1985). The biology of Euryattus sp. indet., a web-building jumping spider (Araneae, Salticidae) from Queensland: utilization of silk, predatory behaviour, and intraspecific interactions. Journal of Zoology, London, B1, 145–173.Google Scholar
Jackson, R. R. and Blest, A. D. (1982). The biology of Portia fimbriata, a web-building jumping spider (Araneae, Salticidae) from Queensland: utilization of webs and predatory versatility. Journal of Zoology, 196, 255–293.CrossRefGoogle Scholar
Jackson, R. R. and Pollard, S. D. (1996). Predatory behavior of jumping spiders. Annual Review of Entomology, 41, 287–308.CrossRefGoogle ScholarPubMed
Jackson, R. R. and Wilcox, R. S. (1990). Aggressive mimicry, prey-specific predatory behaviour and predator recognition in the predator-prey interactions of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Behavioral Ecology and Sociobiology, 26, 111–119.CrossRefGoogle Scholar
Jackson, R. R. and Wilcox, R. S. (1993). Predator-prey co-evolution of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Memoirs of the Queensland Museum, 33, 557–560.Google Scholar
Jackson, R. R. and Pollard, S. D. (1997). Jumping spider mating strategies: sex among cannibals in and out of webs. In The Evolution of Mating Systems in Insects and Arachnids (ed. Choe, J. C. and Crespi, B. J.). Cambridge, UK: Cambridge University Press, pp.340–351.CrossRefGoogle Scholar
Jackson, R. R., Cross, F. R. and Carter, C. M. (2006). Geographic variation in a spider's ability to solve a confinement problem by trial and error. International Journal of Comparative Psychology, 19, 282–296.Google Scholar
Jackson, R. R., Li, D., Fijn, N. and Barrion, A. T. (1998). Predator-prey interactions between aggressive-mimic jumping spiders (Salticidae) and araeneophagic spitting spiders (Scytodidae) from the Philippines. Journal of Insect Behavior, 11, 319–342.CrossRefGoogle Scholar
Jackson, R. R., Pollard, S. D. and Cerveira, A. M. (2002). Opportunistic use of cognitive smokescreens by araneophagic jumping spiders. Animal Cognition, 5, 147–157.CrossRefGoogle ScholarPubMed
Janzen, D. H. (1980). When is it coevolution?Evolution, 34, 611–612.CrossRefGoogle ScholarPubMed
Jennions, M. D., Møller, A. P. and Petrie, M. (2001). Sexually selected traits and adult survival: a meta-analysis. Quarterly Review of Biology, 71, 3–36.CrossRefGoogle Scholar
Johnson, S. and Jakob, E. (1999). Leg autotomy in a spider has minimal costs in competitive ability and development. Animal Behaviour, 57, 957–965.CrossRefGoogle Scholar
Kaston, B. J. (1970). Comparative biology of American black widow spiders. Transactions of the San Diego Society of Natural History, 16, 33–82.Google Scholar
Kelber, A., Vorobyev, M. and Osorio, D. (2003). Animal colour vision: behavioural tests and physiological concepts. Biological Reviews, 78, 81–118.CrossRefGoogle ScholarPubMed
Kiltie, R. A. (1988). Countershading: universally deceptive or deceptively universal. Trends in Ecology and Evolution, 3, 21–23.CrossRefGoogle ScholarPubMed
Kindlmann, P. and Houdková, K. (2006). Intraguild predation: fiction or reality?Population Ecology, 48, 317–322.CrossRefGoogle Scholar
Kotiaho, J. S. (2001). Costs of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biological Reviews, 76, 365–376.CrossRefGoogle ScholarPubMed
Kotiaho, J. S., Alatalo, R. V., Mappes, J., Parri, S. and Rivero, A. (1998). Male mating success and risk of predation in a wolf spider: a balance between sexual and natural selection?Journal of Animal Ecology, 67, 287–291.CrossRefGoogle Scholar
Krafft, B. and Leborgne, R. (1979). Perception sensorielle et importance des phénomènes vibratoires chez les araignées. Journal de Psychologie, 3, 299–334.Google Scholar
Land, M. F. and Nilsson, D. E. (2002). Animal Eyes. Oxford, UK: Oxford University Press.Google Scholar
Leimu, R. and Fischer, M. (2008). A meta-analysis of local adaptation in plants. PLoS ONE, 3, e4010. doi:10.1371/journal.pone.0004010.CrossRefGoogle ScholarPubMed
Li, D. (2002). Hatching responses of subsocial spitting spiders to predation risk. Proceedings of the Royal Society of London, B, 269, 2155–2161.CrossRefGoogle ScholarPubMed
Li, D. and Jackson, R. R. (2003). A predator's preference for egg-carrying prey: a novel cost of parental care. Behavioral Ecology and Sociobiology, 55, 129–136.CrossRefGoogle Scholar
Li, D. and Lee, W. S. (2004). Predator-induced plasticity in web-building behaviour. Animal Behaviour, 67, 309–318.CrossRefGoogle Scholar
Lim, M. L. M. and Li, D. (2006). Behavioural evidence of UV sensitivity in jumping spiders (Araneae: Salticidae). Journal of Comparative Physiology, A, 192, 871–878.CrossRefGoogle Scholar
Lima, S. L. and Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology, 68, 619–640.CrossRefGoogle Scholar
Lindström, L., Ahtiainen, J. J., Mappes, J., et al. (2006). Negatively condition dependent predation cost of positively condition dependent sexual signalling. Journal of Evolutionary Biology, 19, 649–656.CrossRefGoogle ScholarPubMed
Lohrey, A. K., Clark, D. L., Gordon, S. D. and Uetz, G. W. (2009). Antipredator responses of wolf spiders (Araneae: Lycosidae) to sensory cues representing an avian predator. Animal Behaviour, 77, 813–821.CrossRefGoogle Scholar
Lutzy, R. M. and Morse, D. H. (2008). Effects of leg loss on male crab spiders Misumena vatia. Animal Behaviour, 76, 1519–1527.CrossRefGoogle Scholar
Maupin, J. L. and Riechert, S. E. (2001). Superfluous killing in spiders: a consequence of adaptation to food-limited environments?Behavioral Ecology, 12, 569–576.CrossRefGoogle Scholar
Moya-Laraño, J. and Wise, D. H. (2007). Direct and indirect effects of ants on a forest-floor food web. Ecology, 88, 1454–1465.CrossRefGoogle ScholarPubMed
Nelson, X. J. and Jackson, R. R. (2006). Vision-based innate aversion to ants and ant mimics. Behavioral Ecology, 17, 676–681.CrossRefGoogle Scholar
Nelson, X. J. and Jackson, R. R. (2008). Anti-predator crèches and aggregations of ant-mimicking jumping spiders (Araneae: Salticidae). Biological Journal of the Linnean Society, 94, 475–481.CrossRefGoogle Scholar
Nelson, X. J. and Jackson, R. R. (2009). The influence of ants on the mating strategy of a myrmecophilic jumping spider (Araneae, Salticidae). Journal of Natural History, 43, 713–735.CrossRefGoogle Scholar
Nelson, X. J., Jackson, R. R., Edwards, G. B. and Barrion, A. T. (2004). Predation by ants on jumping spiders (Araneae: Salticidae) in the Philippines. New Zealand Journal of Zoology, 31, 45–56.CrossRefGoogle Scholar
Nelson, X. J., Jackson, R. R. and Li, D. (2006b). Conditional use of honest signaling by a Batesian mimic. Behavioral Ecology, 17, 575–580.CrossRefGoogle Scholar
Nelson, X. J., Li, D. and Jackson, R. R. (2006a). Out of the frying pan and into the fire: a novel trade-off for Batesian mimics. Ethology, 112, 270–277.CrossRefGoogle Scholar
Osorio, D. and Vorobyev, M. (2008). A review of the evolution of animal colour vision and visual communication signals. Vision Research, 48, 2042–2051.CrossRefGoogle ScholarPubMed
Oxford, G. S. and Gillespie, R. G. (1998). Evolution and ecology of spider coloration. Annual Review of Entomology, 43, 619–643.CrossRefGoogle ScholarPubMed
Persons, M. H. and Rypstra, A. L. (2000). Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology, 106, 27–35.CrossRefGoogle Scholar
Persons, M. H. and Rypstra, A. L. (2001). Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. Journal of Chemical Ecology, 27, 2493–2504.CrossRefGoogle ScholarPubMed
Persons, M. H., Walker, S. E. and Rypstra, A. L. (2002). Fitness costs and benefits of antipredator behavior mediated by chemotactic cues in the wolf spider Pardosa milvina (Araneae: Lycosidae). Behavioral Ecology, 13, 386–392.CrossRefGoogle Scholar
Persons, M. H., Walker, S. E., Rypstra, A. L. and Marshall, S. D. (2001). Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Animal Behaviour, 61, 43–51.CrossRefGoogle Scholar
Polis, G. A. and Strong, D. R. (1996). Food web complexity and community dynamics. American Naturalist, 147, 813–842.CrossRefGoogle Scholar
Poulton, E. B. (1890). The Colours of Animals: Their Meaning and Use Especially Considered in the Case of Insects. London: Kegan Paul, Trench, Truebner.CrossRefGoogle Scholar
Pruden, A. J. and Uetz, G. W. (2004). Assessment of potential predation costs of male decoration and courtship display in wolf spiders using video digitization and playback. Journal of Insect Behavior, 17, 67–80.CrossRefGoogle Scholar
Rash, L. D. and Hodgson, W. C. (2002). Pharmacology and biochemistry of spider venoms. Toxicon, 40, 225–254.CrossRefGoogle ScholarPubMed
Rayor, L. S. and Uetz, G. W. (1990). Trade-offs in foraging success and predation risk with spatial position on colonial spiders. Behavioral Ecology and Sociobiology, 27, 77–85.CrossRefGoogle Scholar
Rayor, L. S. and Uetz, G. W. (1993). Ontogenic shifts within the selfish herd: predation risk and foraging trade-offs change with age in colonial web-building spiders. Oecologia, 95, 1–8.CrossRefGoogle Scholar
Richman, D. B. and Jackson, R. R. (1992). A review of the ethology of jumping spiders (Araneae, Salticidae). Bulletin of the British Arachnological Society, 9, 33–37.Google Scholar
Riechert, S. E. (1981). The consequences of being territorial: spiders, a case study. American Naturalist, 117, 871–892.CrossRefGoogle Scholar
Riechert, S. E. (1988). The energetic cost of fighting. American Zoologist, 28, 877–884.CrossRefGoogle Scholar
Riechert, S. E. (1991). Prey abundance versus diet breadth in a spider test system. Evolutionary Ecology, 5, 327–338.CrossRefGoogle Scholar
Riechert, S. E. (1999). The use of behavioral ecotypes in the study of evolutionary processes. In Geographic Variation in Behavior: Perspectives on Evolutionary Mechanisms (ed. Foster, S. A. and Endler, J. A.). Oxford, UK: Oxford University Press, pp. 3–32.Google Scholar
Riechert, S. E. and Hall, R. F. (2000). Local population success in heterogeneous habitats: reciprocal transplant experiments completed on a desert spider. Journal of Evolutionary Biology, 13, 541–550.CrossRefGoogle Scholar
Riechert, S. E. and Hedrick, A. V. (1990). Levels of predation and genetically-based anti-predatory behaviour in the spider, Agelenopsis aperta. Animal Behaviour, 40, 679–687.CrossRefGoogle Scholar
Riechert, S. E. and Hedrick, A. V. (1993). A test for correlations among fitness-linked behavioral traits in the spider Agelenopsis aperta (Araneae, Agelenidae). Animal Behaviour, 46, 669–675.CrossRefGoogle Scholar
Roberts, J. A. and Uetz, G. W. (2008). Discrimination of variation in a male signaling trait affects optomotor response in visual predators. Ethology, 114, 557–563.CrossRefGoogle Scholar
Roberts, J. A., Taylor, P. W. and Uetz, G. W. (2006). Consequences of complex signalling: predator detection of multimodal cures. Behavioral Ecology, 18, 236–240.CrossRefGoogle Scholar
Roth, V. D. and Roth, B. M. (1984). A review of appendotomy in spiders and other arachnids. Bulletin of the British Arachnological Society, 6, 137–146.Google Scholar
Ruxton, G. D. (2009). Non-visual crypsis: a review of the empirical evidence for camouflage to senses other than vision. Philosophical Transactions of the Royal Society of London, B, 364, 549–557.CrossRefGoogle ScholarPubMed
Ruxton, G., Sherratt, T. and Speed, M. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Rypstra, A. L., Schmidt, J. M., Reif, B. D., DeVito, J. and Persons, M. H. (2007). Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos, 116, 853–863.CrossRefGoogle Scholar
Scheffer, S. J., Uetz, G. W. and Stratton, G. E. (1996). Sexual selection, male morphology, and the efficacy of courtship signalling in two wolf spiders (Araneae: Lycosidae). Behavioral Ecology and Sociobiology, 38, 17–23.CrossRefGoogle Scholar
Seibt, U. and Wickler, W. (1988). Bionomics and social structure of ‘family spiders’ of the genus Stegodyphus, with special reference to the African species Stegodyphus dumicola and Stegodyphus mimosarum (Araneida, Eresidae). Verhandlungen des Naturwissenschflichen Vereins in Hamburg, 30, 255–304.Google Scholar
Speed, M. P., Kelly, D. J., Davidson, A. M. and Ruxton, G. D. (2005). Countershading enhances crypsis with some bird species but not others. Behavioral Ecology, 16, 327–334.CrossRefGoogle Scholar
Spiller, D. A. and Schoener, T. W. (1998). Lizards reduce spider species richness by excluding rare species. Ecology, 79, 503–516.CrossRefGoogle Scholar
Spiller, D. A. and Schoener, T. W. (2001). An experimental test for predator-mediated interactions among spider species. Ecology, 82, 1560–1570.CrossRefGoogle Scholar
Stevens, M. (2007). Predator perception and the interrelation between different forms of protective coloration. Proceedings of the Royal Society of London, B, 274, 1457–1464.CrossRefGoogle ScholarPubMed
Stevens, M. and Merilaita, S. (2009). Defining disruptive coloration and distinguishing its functions. Philosophical Transactions of the Royal Society of London, B, 364, 481–488.CrossRefGoogle ScholarPubMed
Stuart-Fox, D. and Moussali, A. (2009). Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philosophical Transactions of the Royal Society of London, B, 364, 463–470.CrossRefGoogle ScholarPubMed
Tarsitano, M. S., Jackson, R. R. and Kirchner, W. (2000). Signals and signal choices made by araneophagic jumping spiders while hunting the orb-weaving spiders Zygiella x-notata and Zosis genicularis. Ethology, 106, 595–615.CrossRefGoogle Scholar
Taylor, A. R., Persons, M. H. and Rypstra, A. L. (2005). The effect of perceived predation risk on male courtship and copulatory behaviour in the wolf spider Pardosa milvina (Araneae, Lycosidae). Journal of Arachnology, 33, 76–81.CrossRefGoogle Scholar
Taylor, P. W. and Jackson, R. R. (2003). Interacting effects of size and prior injury in jumping spider conflicts. Animal Behaviour, 65, 787–794.CrossRefGoogle Scholar
Théry, M. (2007). Colours of background reflected light and of the prey's eye affect adaptive coloration in female crab spiders. Animal Behaviour, 73, 797–804.CrossRefGoogle Scholar
Théry, M. and Casas, C. (2009). The multiple disguises of spiders: web colour and decorations, body colour and movement. Philosophical Transactions of the Royal Society of London, B, 364, 471–480.CrossRefGoogle ScholarPubMed
Thompson, D. B. (1999). Different spatial scales of natural selection and gene flow: the evolution of behavioral geographic variation and phenotypic plasticity. In Geographic Variation in Behavior: Perspectives on Evolutionary Mechanisms (ed. Foster, S. A. and Endler, J. A.). Oxford, UK: Oxford University Press, pp. 33–51.Google Scholar
Troscianko, T., Benton, C. P., Lovell, P. G., Tolhurst, D. J. and Pizlo, Z. (2009). Camouflage and visual perception. Philosophical Transactions of the Royal Society of London, B, 364, 449–461.CrossRefGoogle ScholarPubMed
Turesson, G. (1922). The species and the variety as ecological units. Hereditas, 3, 100–113.CrossRefGoogle Scholar
Uetz, G. W. and Cangialosi, K. R. (1986). Genetic differences in social behavior and spacing in populations of Metepeira spinipes, a communal-territorial orb weaver (Araneae, Araneidae). Journal of Arachnology, 14, 159–173.Google Scholar
Uetz, G. W. and Hieber, C. S. (1994). Group size and predation risk in colonial web-building spiders: analysis of attack-abatement mechanisms. Behavioral Ecology, 5, 326–333.CrossRefGoogle Scholar
Uetz, G. W. and Roberts, J. A. (2002). Multi-sensory cues and multi-modal communication in spiders: insights from video/audio playback studies. Brain, Behaviour and Evolution, 59, 222–230.CrossRefGoogle Scholar
Uetz, G. W., Boyle, J., Hieber, C. S. and Wilcox, R. S. (2002). Anti-predator benefits of group living in colonial web-building spiders: the ‘Early Warning’ effect. Animal Behaviour, 63, 445–452.CrossRefGoogle Scholar
Uetz, G. W., McClintock, W. J., Miller, D., Smith, E. I. and Cook, K. K. (1996). Limb regeneration and subsequent asymmetry in a male secondary sexual character influences sexual selection in wolf spiders. Behavioral Ecology and Sociobiology, 38, 253–257.CrossRefGoogle Scholar
Vane-Wright, R. I. (1980). On the definition of mimicry. Biological Journal of the Linnean Society, 66, 215–229.Google Scholar
Vetter, R. S. (1980). Defensive behavior of the black-widow spider Latrodectus hesperus (Araneae, Theridiidae). Behavioral Ecology and Sociobiology, 7, 187–193.CrossRefGoogle Scholar
Vetter, R. S. and Isbister, G. K. (2008). Medical aspects of spider bites. Annual Review of Entomology, 53, 409–429.CrossRefGoogle ScholarPubMed
Vetter, R. S. and Visscher, P. K. (1998). Bites and stings of medically important venomous arthropods. International Journal of Dermatology, 37, 481–496.CrossRefGoogle ScholarPubMed
Wanless, F. R. (1978). A revision of the spider genus. I (Araneae: Salticidae). Bulletin of the British Museum of Natural History, 34, 83–124.Google Scholar
Whitehouse, M. E. A. and Lubin, Y. (2005). The functions of societies and the evolution of group living: spider societies as a test case. Biological Reviews, 80, 347–361.CrossRefGoogle Scholar
Wickler, W. (1968). Mimicry in Plants and Animals. London: Weidenfeld and Nicholson.Google Scholar
Wilcox, R. S., Jackson, R. R. and Gentile, K. (1996). Spiderweb smokescreens: spider trickster uses background noise to mask stalking movements. Animal Behaviour, 51, 313–326.CrossRefGoogle Scholar
Wrinn, K. M. and Uetz, G. W. (2007). Impacts of leg loss and regeneration on body condition, growth, and development time in the wolf spider Schizocosa ocreata. Canadian Journal of Zoology, 85, 823–831.CrossRefGoogle Scholar
Zuk, M. and Kolluru, G. (1998). Exploitation of sexual signals by predators and parasitoids. Quarterly Review of Biology, 73, 415–438.CrossRefGoogle Scholar
Zylinski, S., Osorio, D. and Sholet, A. J. (2009). Perception of edges and visual texture in the camouflage of the common cuttlefish, Sepia officianalis. Philosophical Transactions of the Royal Society of London, B, 364, 439–448.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×