Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-12T02:38:48.359Z Has data issue: false hasContentIssue false

14 - The quantitative genetic analysis of primate dental variation: history of the approach and prospects for the future

Published online by Cambridge University Press:  12 September 2009

Oliver T. Rizk
Affiliation:
Department of Integrative Biology, University of California, 3060 Valley Life Sciences Building, Berkeley, California 94720, USA
Sarah K. Amugongo
Affiliation:
Department of Integrative Biology, University of California, 3060 Valley Life Sciences Building, Berkeley, California 94720, USA
Michael C. Mahaney
Affiliation:
Southwest National Primate Research Center, Southwest Foundation for Biomedical Research, PO Box 760549, San Antonio, Texas 78245, USA
Leslea J. Hlusko
Affiliation:
Department of Integrative Biology, University of California, 3060 Valley Life Sciences Building, Berkeley, California 94720, USA
Joel D. Irish
Affiliation:
University of Alaska, Fairbanks
Greg C. Nelson
Affiliation:
University of Oregon
Get access

Summary

Introduction

From the size and shape of teeth we can learn much about an animal's diet, gain some insight as to how it interacted with its conspecifics and environment, and draw conclusions about its phylogenetic placement. Consequently, primate dental variation has been the focus of an immense amount of research (as evidenced by this volume). These adaptive and phylogenetic scenarios rely on the assumption that variation in the dental phenotype is heritable, or rather, that this variation can be passed on from generation to generation as selection filters through the available phenotypic variance.

In this chapter, we discuss the history of research that tests this hypothesis through quantitative genetic analyses. We will focus attention on analyses of crown morphology with the aim of summarizing what is currently known and unknown about the extent to which dental variation is influenced by genetic factors. And last, we discuss two directions through which quantitative genetics will further enhance our understanding of the evolution of our ancestors and closest relatives.

Quantitative genetics

Quantitative genetics is concerned with the inheritance of those differences between individuals that are of degree rather than of kind, quantitative rather than qualitative. These are the individual differences which, as Darwin wrote, “afford materials for natural selection to act on and accumulate …” An understanding of the inheritance of these differences is thus of fundamental significance in the study of evolution and in the application of genetics to animal and plant breeding.

(Falconer, 1989, p. 1)
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvesalo, L. and Tigerstedt, P. M. A. (1974). Heritabilities of human tooth dimensions. Hereditas, 77, 311–18CrossRefGoogle ScholarPubMed
Alvesalo, L., Nuutila, M. and Portin, P. (1975). The cusp of Carabelli: occurrence in first upper molars and evaluation of its heritability. Acta Odontologica Scandinavica, 33, 191–7CrossRefGoogle ScholarPubMed
Andrews, P. (1995). Ecological apes and ancestors (comment). Nature, 376, 555–6CrossRefGoogle Scholar
Bachrach, F. H. and Young, M. (1927). A comparison of the degree of resemblance in dental characters shown in pairs of twins of identical and fraternal types. British Dental Journal, 48, 1293–304Google Scholar
Bader, R. S. (1965). Heritability of dental characters in the house mouse. Evolution, 19, 378–84CrossRefGoogle Scholar
Bader, R. S. and Lehmann, W. H. (1965). Phenotypic and genotypic variation in odontometric traits of the house mouse. American Midland Naturalist, 74, 28–38CrossRefGoogle Scholar
Bailey, S. E. (2004). A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins. Journal of Human Evolution, 47, 183–98CrossRefGoogle ScholarPubMed
Bailit, H. L. and Sung, B. (1968). Maternal effects on the developing dentition. Archives of Oral Biology, 13, 155–61CrossRefGoogle ScholarPubMed
Bailit, H. L., Workman, P. L., Niswander, J. D., and MacLean, C. J. (1970). Dental asymmetry as an indicator of genetic and environmental conditions in human populations. Human Biology, 42, 626–38Google ScholarPubMed
Bateson, W. (1892). On numerical variation in teeth, with a discussion of the conception of homology. Zoological Society of London, Proceedings, pp. 102–5Google Scholar
Baume, R. M. and Crawford, M. H. (1980). Discrete dental trait asymmetry in Mexican and Belizean groups. American Journal of Physical Anthropology, 52, 315–21CrossRefGoogle ScholarPubMed
Biggerstaff, R. H. (1970). Morphological variations for the permanent mandibular first molars in human monozygotic and dizygotic twins. Archives of Oral Biology, 15, 721–30CrossRefGoogle ScholarPubMed
Biggerstaff, R. H. (1973). Heritability of the Carabelli cusp in twins. Journal of Dental Research, 52, 40–4CrossRefGoogle ScholarPubMed
Biggerstaff, R. H. (1975). Cusp size, sexual dimorphism, and heritability of cusp size in twins. American Journal of Physical Anthropology, 42, 127–40CrossRefGoogle ScholarPubMed
Biggerstaff, R. H. (1976). Cusp size, sexual dimorphism, and the heritability of maxillary molar cusp size in twins. Journal of Dental Research, 55, 189–95CrossRefGoogle ScholarPubMed
Blanco, R. and Chakraborty, R. (1976). The genetics of shovel shape in maxillary central incisors in man. American Journal of Physical Anthropology, 44, 233–6CrossRefGoogle ScholarPubMed
Blangero, J. (2004). Localization and identification of human quantitative trait loci: king harvest has surely come. Current Opinion in Genetics and Development, 14, 233–40CrossRefGoogle ScholarPubMed
Boraas, J. C., Messer, L. B., and Till, M. J. (1988). A genetic contribution to dental caries, occlusion, and morphology as demonstrated by twins reared apart. Journal of Dental Research, 67, 1150–5CrossRefGoogle ScholarPubMed
Bowden, D. E. J. and Goose, D. H. (1968). The inheritance of palatal arch width in human families. Archives of Oral Biology, 13, 1293–5CrossRefGoogle ScholarPubMed
Bowden, D. E. J. and Goose, D. H. (1969). Inheritance of tooth size in Liverpool families. Journal of Medical Genetics, 6, 55–8CrossRefGoogle ScholarPubMed
Brunet, M., Guy, F., Pilbeam, D.et al. (2002). A new hominid from the Upper Miocene of Chad, Central Africa. Nature, 418, 145–51CrossRefGoogle ScholarPubMed
Carroll, S. B., Grenier, J. K., and Weatherbee, S. D. (2005). From DNA to Diversity, 2nd edn. Malden: Blackwell PublishingGoogle Scholar
Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36, 499–516CrossRefGoogle ScholarPubMed
Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution, 42, 958–68CrossRefGoogle ScholarPubMed
Cheverud, J. M. (1989). A comparative analysis of morphological variation patterns in the papionins. Evolution, 43, 1737–47CrossRefGoogle ScholarPubMed
Cheverud, J. M. (1995). Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145, 63–89CrossRefGoogle Scholar
Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50CrossRefGoogle Scholar
Cheverud, J. M. and Routman, E. (1993). Quantitative trait loci: individual gene effects on quantitative characters. Journal of Evolutionary Biology, 6, 463–80CrossRefGoogle Scholar
Cheverud, J. M., Rutledge, J. J., and Atchley, W. R. (1983). Quantitative genetics of development: genetic correlations among age-specific trait values and the evolution of ontogeny. Evolution, 37, 895–905CrossRefGoogle ScholarPubMed
Cheverud, J. M., Routman, E. J., and Irschick, D. K. (1997). Pleiotropic effects of individual gene loci on mandibular morphology. Evolution, 51, 2004–14CrossRefGoogle ScholarPubMed
Chung, C. S. and Niswander, J. D. (1975). Genetic and epidemiologic studies of oral characteristics in Hawaii's schoolchildren: V. Sibling correlations in occlusion traits. Journal of Dental Research, 54, 324–9Google ScholarPubMed
Corruccini, R. S. (1977). Crown component variation in hominoid lower third molars. Zeitschrift für Morphologie und Anthropologie, 68, 14–25Google ScholarPubMed
Corruccini, R. S. and Potter, R. H. Y. (1980). Genetic analysis of occlusal variation in twins. American Journal of Orthodontics, 75, 140–54CrossRefGoogle Scholar
Corruccini, R. S. and Potter, R. H. Y. (1981). Developmental correlates of crown component asymmetry and occlusal discrepancy. American Journal of Physical Anthropology, 55, 21–31CrossRefGoogle ScholarPubMed
Corruccini, R. S. and Sharma, K. (1985). Within- and between-zygosity variance in oral traits among US and Punjabi twins. Human Heredity, 35, 314–18CrossRefGoogle ScholarPubMed
Dahlberg, A. A. (1956). Materials for the Establishment of Standards for Classification of Tooth Characteristics, Attributes, and Techniques in Morphological Studies of the Dentition. Chicago: Zoller Laboratory of Dental Anthropology, University of ChicagoGoogle Scholar
Dempsey, P. J., Townsend, G. C., Martin, N. G., and Neale, M. C. (1995). Genetic covariance structure of incisor crown size in twins. Journal of Dental Research, 74, 1389–98CrossRefGoogle ScholarPubMed
Dempsey, P. J. and Townsend, G. C. (2001). Genetic and environmental contributions to variation in human tooth size. Heredity, 86, 685–93CrossRefGoogle ScholarPubMed
Di, Salvo N. A., Alumbaugh, C. E., Kwochka, W., Pilvelis, A. A., and Willcox, J. R. (1972). Genetic influence on mesiodistal width of deciduous anterior teeth. American Journal of Orthodontics, 61, 473–8Google Scholar
Drumm, M. L. and Collins, F. S. (1993). Molecular biology of cystic fibrosis. Molecular Genetic Medicine, 3, 33–68CrossRefGoogle ScholarPubMed
Ehrich, T. H., Vaughn, T. T., Koreishi, S. F.et al. (2003). Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. Journal of Experimental Zoology. Part B. Molecular Developmental Evolution, 296, 58–79CrossRefGoogle ScholarPubMed
El-Nofely, A. and Tawfik, W. A. (1995). On inheritance of permanent teeth crown size in a Middle Eastern population. Homo, 46, 51–62Google Scholar
Erdbrink, D. P. (1967). A quantification of lower molar patterns in deutero-Malayans. Zeitschrift für Morphologia und Anthropologie, 59, 40–56Google ScholarPubMed
Falconer, D. S. (1989). Introduction to Quantitative Genetics, 3rd edn. New York: Longman Scientific & TechnicalGoogle Scholar
Finn, S. B. and Caldwell, R. C. (1963). Dental caries in twins – I. A comparison of the caries experience of monozygotic twins, dizygotic twins and unrelated children. Archives of Oral Biology, 8, 571–85CrossRefGoogle ScholarPubMed
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433CrossRefGoogle Scholar
Galis, F. (1999). On the homology of structures and Hox genes: the vertebral column. Novartis Foundation Symposium, 222, 80–91Google ScholarPubMed
Garn, S. M., Lewis, A. B., and Polacheck, D. L. (1960). Sibling similarities in dental development. Journal of Dental Research, 39, 170–5CrossRefGoogle ScholarPubMed
Garn, S. M., Lewis, A. B., and Kerewsky, R. S. (1965a). Genetic, nutritional, and maturational correlates of dental development. Journal of Dental Research, 44, 228–42CrossRefGoogle Scholar
Garn, S. M., Lewis, A. B., and Kerewsky, R. S. (1965b). X-linked inheritance of tooth size. Journal of Dental Research, 44, 439–41CrossRefGoogle Scholar
Garn, S. M., Lewis, A. B., and Kerewsky, R. S. (1966). Genetic independence of Carabelli's trait from tooth size or crown morphology. Archives of Oral Biology, 11, 745–7CrossRefGoogle ScholarPubMed
Garn, S. M., Lewis, A. B., Swindler, D. R., and Kerewsky, R. S. (1967). Genetic control of sexual dimorphism in tooth size. Journal of Dental Research, Supplement to No. 5, 46, 963–72CrossRefGoogle ScholarPubMed
Garn, S. M., Lewis, A. B. and Walenga, A. J. (1968). Genetic basis of the crown-size profile pattern. Journal of Dental Research, 47, 1190CrossRefGoogle ScholarPubMed
Garn, S. M., Osborne, R. H., Alvesalo, L. and Horowitz, S. L. (1980). Maternal and gestational influences on deciduous and permanent tooth size. Journal of Dental Research, 59, 142–3CrossRefGoogle ScholarPubMed
Gilmore, R. W. (1968). Epidemiology and heredity of accessory occlusal ridges on the buccal cusps of human premolar teeth. Archives of Oral Biology, 13, 1035–46CrossRefGoogle ScholarPubMed
Goodman, H. O., Luke, J. E., Rosen, S. and Hackel, E. (1959). Heritability in dental caries, certain oral microflora and salivary components. American Journal of Human Genetics, 11, 263–73Google ScholarPubMed
Goose, D. H. (1967). Preliminary study of tooth size in families. Journal of Dental Research, 46, 959–62CrossRefGoogle ScholarPubMed
Goose, D. H. (1968). The inheritance of tooth size in British families. In Dental Morphology and Evolution, ed. Dahlberg, A. A.. Chicago: University of Chicago Press, pp. 263–70Google Scholar
Goose, D. H. and Lee, G. T. R. (1971). The mode of inheritance of Carabelli's trait. Human Biology, 43, 64–9Google ScholarPubMed
Green, L. J. and Aszkler, S. E. (1970). Intra-alveolar dental development in twins. Journal of Dental Research, 49, 631–4CrossRefGoogle ScholarPubMed
Haldane, J. B. S. (1932). The Causes of Evolution. London: Longmans, GreenGoogle Scholar
Harris, E. F. and Bailit, H. L. (1980). The metaconule: a morphologic and familial analysis of a molar cusp in humans. American Journal of Physical Anthropology, 53, 349–58CrossRefGoogle ScholarPubMed
Harris, E. F. and Smith, R. J. (1980). A study of occlusion and arch widths in families. American Journal of Orthodontics, 78, 155–63CrossRefGoogle ScholarPubMed
Harzer, W. (1987). A hypothetical model of genetic control of tooth-crown growth in man. Archives of Oral Biology, 32, 159–62CrossRefGoogle ScholarPubMed
Harzer, W. (1995). Size relationships and interactions between crown diameters in twins and family members. In Proceedings of the Tenth International Symposium on Dental Morphology, ed. Radlanski, R. and Renz, H.. Berlin: “M” Marketing Services, pp. 124–35Google Scholar
Hatton, M. E. (1955). A measure of the effects of heredity and environment on eruption of the deciduous teeth. Journal of Dental Research, 34, 397–401CrossRefGoogle ScholarPubMed
Hills, M., Graham, S. H., and Wood, B. A. (1983). The allometry of relative cusp size in hominoid mandibular molars. American Journal of Physical Anthropology, 62, 311–16CrossRefGoogle ScholarPubMed
Hlusko, L. J. (2000). Identifying the genetic mechanisms of dental variation in cercopithecoid primates. Ph.D. Dissertation, The Pennsylvania State University, UMI 9982340Google Scholar
Hlusko, L. J. (2004). Perspective: integrating the genotype and phenotype in hominid paleontology. Proceedings of the National Academy of Sciences USA, 101, 2653–7CrossRefGoogle Scholar
Hlusko, L. J., Mahaney, M. C., and Weiss, K. M. (2002). A statistical genetic comparison of two techniques for assessing molar crown size in pedigreed baboons. American Journal of Physical Anthropology, 117, 182–9CrossRefGoogle ScholarPubMed
Hlusko, L. J. and Mahaney, M. C. (2003). Genetic contributions to expression of the baboon cingular remnant. Archives of Oral Biology, 48, 663–72CrossRefGoogle ScholarPubMed
Hlusko, L. J., Maas, M. L., and Mahaney, M. C. (2004a). Statistical genetics of molar cusp patterning in pedigreed baboons: implications for primate dental development and evolution. Journal of Experimental Zoology. Part B. Molecular Developmental Evolution, 302, 268–83CrossRefGoogle Scholar
Hlusko, L. J., Suwa, G., Kono, R., and Mahaney, M. C. (2004b). Genetics and the evolution of primate enamel thickness: a baboon model. American Journal of Physical Anthropology, 124, 223–33CrossRefGoogle Scholar
Hlusko, L. J., Lease, L. R., and Mahaney, M. C. (in press a). Evolution of genetically correlated traits: tooth size and body size in baboons. American Journal of Physical AnthropologyGoogle Scholar
Hlusko, L. J., Do, N., and Mahaney, M. C. (in press b). Genetic correlations between mandibular molar cusp areas in baboons. American Journal of Physical AnthropologyGoogle Scholar
Horowitz, S. L., Osborne, R. H., and DeGeorge, F. V. (1958a). Hereditary factors in tooth dimensions, a study of the anterior teeth of twins. Angle Orthodontist, 28, 87–93Google Scholar
Horowitz, S. L., Osborne, R. H., and DeGeorge, F. V. (1958b). Caries experience in twins. Science, 128, 300–1CrossRefGoogle Scholar
Hughes, T., Dempsey, P., Richards, L., and Townsend, G. (2000). Genetic analysis of deciduous tooth size in Australian twins. Archives of Oral Biology, 45, 997–1004CrossRefGoogle ScholarPubMed
Hunt, H. R., Hoppert, C. A., and Erwin, W. G. (1944). Inheritance of susceptibility to caries in albino rats (Mus norvegicus). Journal of Dental Research, 23, 385–401CrossRefGoogle Scholar
Jernvall, J. and Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92, 19–29CrossRefGoogle ScholarPubMed
Kaul, S. S., Sharma, K., Sharma, J. C., and Corruccini, R. S. (1985). Non-metric variants of the permanent dental crown in human monozygous and dizygous twins. In: Dental Anthropology: Application and Methods, ed. Rami, V. Reddy. New Delhi: Inter-India Publications, pp. 187–93Google Scholar
Klingenberg, C. P., Leamy, L. J., Routman, E. J., and Cheverud, J. M. (2001). Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics, 157, 785–802Google ScholarPubMed
Kolakowski, D. and Bailit, H. L. (1981). A differential environmental effect on human anterior tooth size. American Journal of Physical Anthropology, 54, 377–81CrossRefGoogle ScholarPubMed
Kolakowski, D., Harris, E. F., and Bailit, H. L. (1980). Complex segregation analysis of Carabelli's Trait in a Melanesian population. American Journal of Physical Anthropology, 53, 301–8CrossRefGoogle Scholar
Kondo, S. and Townsend, G. C. (2006). Associations between Carabelli trait and cusp areas in human permanent maxillary first molars. American Journal of Physical Anthropology, 129, 196–203CrossRefGoogle ScholarPubMed
Kraus, B. S., Wise, W. J., and Frei, R. H. (1959). Heredity and the craniofacial complex. American Journal of Orthodontics, 45, 172–217CrossRefGoogle Scholar
Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution, 33, 402–16Google ScholarPubMed
Lande, R. (1980). Genetic variation and phenotypic evolution during allopatric speciation. American Naturalist, 116, 463–79CrossRefGoogle Scholar
Lawn, R. M. (1985). The molecular genetics of hemophilia: blood clotting factors VIII and IX. Cell, 42, 405–6CrossRefGoogle ScholarPubMed
Leakey, M. G., Feibel, C. S., McDougall, I. and Walker, A. (1995). New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature, 376, 565–71CrossRefGoogle ScholarPubMed
Leamy, L., Routman, E., and Cheverud, J. M. (1999). Quantitative trait loci for early and late developing skull characters in mice: a test of the genetic independence model of morphological integration. American Naturalist, 153, 201–14Google ScholarPubMed
Leamy, L. J., Pomp, D., Eisen, E. J., and Cheverud, J. M. (2000). Quantitative trait loci for directional but not fluctuating asymmetry of mandible characters in mice. Genetical Research, 76, 27–44CrossRefGoogle Scholar
Leamy, L. J., Workman, M. S., Routman, E. J., and Cheverud, J. M. (2005). An epistatic genetic basis for fluctuating asymmetry of tooth size and shape in mice. Heredity, 94, 316–25CrossRefGoogle ScholarPubMed
Lee, G. T. R. and Goose, D. H. (1972). The inheritance of dental traits in a Chinese population in the United Kingdom. Journal of Medical Genetics, 9, 336–9CrossRefGoogle Scholar
Lee, G. T. R. and Goose, D. H. (1982). Heritability of dental occlusal variables in a family study in Liverpool, UK. Archives of Oral Biology, 27, 987–9CrossRefGoogle Scholar
Lewis, D. W. and Grainger, R. M. (1967). Sex-linked inheritance of tooth size: a family study. Archives of Oral Biology, 12, 539–44CrossRefGoogle ScholarPubMed
Lewontin, R. (2001). Foreword. In The Character Concept in Evolutionary Biology, ed. Wagner, G. P.. New York: Academic Press, pp. ⅹⅶ–ⅹⅹⅲGoogle Scholar
Ludwig, F. J. (1957). The mandibular second premolars: morphologic variations and inheritance. Journal of Dental Research, 36, 263–73CrossRefGoogle Scholar
Lundström, A. (1948). Tooth Size and Occlusion in Twins, 2nd edn. Basel: S. KargerGoogle Scholar
Lundström, A. (1963). Tooth morphology as a basis for distinguishing monozygotic and dizygotic twins. American Journal of Human Genetics, 15, 34–43Google ScholarPubMed
Lundström, A. (1964). Size of teeth and jaws in twins. British Dental Journal, 117, 321–6Google Scholar
Lundström, A. (1967). Genetic aspects of variation in tooth width based on asymmetry and twin studies. Hereditas, 57, 403–9CrossRefGoogle ScholarPubMed
Lynch, M. and Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sunderland: Sinauer Associates, IncGoogle Scholar
Macho, G. A. (1994). Variation in enamel thickness and cusp area within human maxillary molars and its bearing on scaling techniques used for studies of enamel thickness between species. Archives of Oral Biology, 39, 783–92CrossRefGoogle ScholarPubMed
Magwene, P. M. (2001). New tools for studying integration and modularity. Evolution, 55, 1734–45CrossRefGoogle ScholarPubMed
Mansbridge, J. N. (1959). Heredity and dental caries. Journal of Dental Research, 38, 337–47CrossRefGoogle ScholarPubMed
Marroig, G., DeVivo, M., and Cheverud, J. M. (2004). Cranial evolution in sakis (Pithecia, Platyrrhini) II: evolutionary processes and morphological integration. Journal of Evolutionary Biology, 17, 144–55CrossRefGoogle ScholarPubMed
Marroig, G. and Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution, 59, 1128–42CrossRefGoogle ScholarPubMed
Menezes, D. M., Foster, T. D., and Lavelle, C. L. B. (1974). Genetic influences on dentition and dental arch dimensions: a study of monozygotic and dizygotic triplets. American Journal of Physical Anthropology, 40, 213–20CrossRefGoogle ScholarPubMed
Merwin, D. R. and Harris, E. F. (1998). Sibling similarities in the tempo of human tooth mineralization. Archives of Oral Biology, 43, 205–10CrossRefGoogle ScholarPubMed
Mezey, J., Cheverud, J. M., and Wagner, G. (2000). Is the genotype-phenotype map modular? A statistical approach using mouse QTL data. Genetics, 156, 305–11Google Scholar
Mizoguchi, Y. (1977). Genetic variability in tooth crown characters: analysis by the tetrachoric correlation method. Bulletin of the National Science Museum. Series D, Anthropology, 3, 37–62Google Scholar
Mizoguchi, Y. (1978). Tooth crown characters on the lingual surfaces of the maxillary anterior teeth: analysis of the correlations by the method of path coefficients. Bulletin of the National Science Museum. Series D, Anthropology, 4, 24–57Google Scholar
Moore, G. R. and Hughes, B. O. (1942). Familial factors in diagnosis, treatment, and prognosis of dentofacial disturbances. American Journal of Orthodontics and Oral Surgery, 28, 603–39CrossRefGoogle Scholar
Nichol, C. R. (1990). Dental genetics and biological relationships of the Pima Indians of Arizona. Ph.D. Dissertation, Arizona State UniversityGoogle Scholar
Niswander, J. D. and Chung, C. S. (1965). The effects of inbreeding on tooth size in Japanese children. American Journal of Human Genetics, 17, 390–8Google ScholarPubMed
Olson, E. C. and Miller, R. L. (1958). Morphological Integration. Chicago, University of Chicago PressGoogle Scholar
Osborne, R. H., Horowitz, S. L., and George, F. V. (1958). Genetic variation in tooth dimensions: a twin study of the permanent anterior teeth. American Journal of Human Genetics, 10, 350–6Google ScholarPubMed
Pelsmaekers, B., Loos, R., Carels, C., Derom, C., and Vlietinck, R. (1997). The genetic contribution to dental maturation. Journal of Dental Research, 76, 1337–40CrossRefGoogle ScholarPubMed
Peyer, B. (1968). Comparative Odontology. Chicago: The University of Chicago PressGoogle Scholar
Portin, P. and Alvesalo, L. (1974). The inheritance of shovel shape in maxillary central incisors. American Journal of Physical Anthropology, 41, 59–62CrossRefGoogle ScholarPubMed
Potter, R. H. (1990). Twin half-sibs: a research design for genetic epidemiology of common dental disorders. Journal of Dental Research, 69, 1527–30CrossRefGoogle ScholarPubMed
Potter, R. H. and Nance, W. E. (1976). A twin study of dental dimension. I: Discordance, asymmetry, and mirror imagery. American Journal of Physical Anthropology, 44, 391–6CrossRefGoogle ScholarPubMed
Potter, R. H. Y., Yu, P. L., Dahlberg, A. A., Merritt, A. D., and Conneally, P. M. (1968). Genetic studies of tooth size factors in Pima Indian families. American Journal of Human Genetics, 20, 89–99Google ScholarPubMed
Potter, R. H., Nance, W. E., Yu, P. L., and Davis, W. B. (1976). A twin study of dental dimension II: independent genetic determinants. American Journal of Physical Anthropology, 44, 397–412CrossRefGoogle ScholarPubMed
Potter, R. H. Y., Nance, W. E., and Yu, P. L. (1978). Genetic determinants of dental dimension: a twin study. Progress in Clinical and Biological Research, 24, 235–40Google ScholarPubMed
Potter, R. H. Y., Yu, P. L., and Christian, J. C. (1979). Association of twin zygosity with the mean and variance of tooth size. Acta Geneticae Medicae et Gemellologiae, 28, 211–23CrossRefGoogle ScholarPubMed
Potter, R. H. Y., Corruccini, R. S., and Green, L. J. (1981). Variance of occlusion traits in twins. Journal of Craniofacial Genetics and Developmental Biology, 1, 217–27Google ScholarPubMed
Potter, R. H. Y., Rice, J. P., Dahlberg, A. A., and Dahlberg, T. (1983). Dental size traits within families: path analysis for first molar and lateral incisor. American Journal of Physical Anthropology, 61, 3–289CrossRefGoogle ScholarPubMed
Provine, W. B. (1971). The Origins of Theoretical Population Genetics. Chicago: University of Chicago PressGoogle Scholar
Raff, R. A. (1996). The Shape of Life. Chicago: The University of Chicago PressGoogle Scholar
Rogers, J., Mahaney, M. C., Almasy, L., Comuzzie, A. and Blangero, J. (1999). Quantitative trait linkage mapping in anthropology. Yearbook of Physical Anthropology, 42, 127–513.0.CO;2-T>CrossRefGoogle Scholar
Rosen, S., Hunt, H. R., and Hoppert, C. A. (1961). The importance of the genotype on susceptibility to dental caries in the rat. Journal of Dental Research, 40, 352–4CrossRefGoogle Scholar
Scott, G. R. (1973). Dental morphology: a genetic study of American white families and variation in living southwest Indians. Ph.D. Dissertation, Arizona State UniversityGoogle Scholar
Scott, G. R. (1980). Population variation of Carabelli's trait. Human Biology, 52, 63–78Google ScholarPubMed
Senut, B., Pickford, M., Gommery, D.et al. (2001). First hominid from the Miocene (Lukeino Formation, Kenya). Comptes Rendue de l'Academie des Sciences. Série II. Fascicule A – Sciences de la Terre et des Planetes, 332, 137–44Google Scholar
Sharma, K., Corruccini, R. S., and Henderson, A. M. (1985). Genetic variance in dental dimensions of Punjabi twins. Journal of Dental Research, 64, 1389–91CrossRefGoogle ScholarPubMed
Shubin, N. (2002). Origin of evolutionary novelty: examples from limbs. Journal of Morphology, 252, 15–28CrossRefGoogle ScholarPubMed
Shubin, N., Tabin, C., and Carroll, S. (1997). Fossils, genes, and the evolution of animal limbs. Nature, 388, 639–48CrossRefGoogle ScholarPubMed
Simons, E. L. and Pilbeam, D. R. (1972). Hominoid paleoprimatology. In The Functional and Evolutionary Biology of Primates, ed. Tuttle, R.. Chicago: Aldine, pp. 36–62Google Scholar
Sirianni, J. E. and Swindler, D. R. (1973). Inheritance of deciduous tooth size inMacaca nemestrina. Journal of Dental Research, 52, 179CrossRefGoogle ScholarPubMed
Sirianni, J. E. and Swindler, D. R. (1974). Tooth size inheritance in Macaca nemestrina. Symposium Volume of the Fifth International Congress of Primatology. Basel: S. Karger, pp. 12–19Google Scholar
Skrinjaric, I., Slaj, M., Lapter, V., and Muretic, Z. (1985). Heritability of Carabelli's trait in twins. Collegium Antropologicum, 2, 177–81Google Scholar
Sofaer, J. A., MacLean, C. J., and Bailit, H. L. (1972). Heredity and morphological variation in early and late developing human teeth of the same morphological class. Archives of Oral Biology, 17, 811–16CrossRefGoogle ScholarPubMed
Sperber, G. (1974). Morphology of the cheek teeth of early South African hominids. Ph.D. Thesis, University of the Witwatersrand
Staley, R. N. and Green, L. J. (1971). Bilateral asymmetry in tooth cusp occurrence in human monozygotic twins, dizygotic twins, and nontwins. Journal of Dental Research, 50, 83–9CrossRefGoogle ScholarPubMed
Stern, D. L. (2000). Perspective: evolutionary developmental biology and the problem of variation. Evolution, 54, 1079–91CrossRefGoogle Scholar
Stock, D. W. (2001). The genetic basis of modularity in the development and evolution of the vertebrate dentition. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1633–53CrossRefGoogle ScholarPubMed
Suwa, G., Wood, B. A., and White, T. W. (1994). Further analysis of mandibular molar crown and cusp areas in Pliocene and early Pleistocene hominids. American Journal of Physical Anthropology, 93, 407–26CrossRefGoogle ScholarPubMed
Suwa, G., White, T. D., and Howell, F. C. (1996). Mandibular postcanine dentition from the Shungura formation, Ethiopia: crown morphology, taxonomic allocations, and Plio-Pleistocene hominid evolution. American Journal of Physical Anthropology, 101, 247–823.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Swindler, D. R. (2002). Primate Dentition. New York: Cambridge University PressCrossRefGoogle Scholar
Tenczar, P. and Bader, R. S. (1966). Maternal effect in dental traits of the house mouse. Science, 152, 1398–400CrossRefGoogle ScholarPubMed
Townsend, G. C. (1980). Heritability of deciduous tooth size in Australian Aboriginals. American Journal of Physical Anthropology, 53, 297–300CrossRefGoogle ScholarPubMed
Townsend, G. C. (1985). Intercuspal distance of maxillary pre-molar teeth in Australian Aboriginals. Journal of Dental Research, 64, 443–6CrossRefGoogle Scholar
Townsend, G. C. and Brown, T. (1978a). Inheritance of tooth size in Australian Aboriginals. American Journal of Physical Anthropology, 48, 305–14CrossRefGoogle Scholar
Townsend, G. C. and Brown, T. (1978b). Heritability of permanent tooth size. American Journal of Physical Anthropology, 49, 497–504CrossRefGoogle Scholar
Townsend, G. C. and Martin, N. G. (1992). Fitting genetic models to Carabelli trait data in South Australian twins. Journal of Dental Research, 71, 403–9CrossRefGoogle ScholarPubMed
Townsend, G. C., Brown, T., Richards, L. C.et al. (1986). Metric analyses of the teeth and faces of South Australian twins. Acta Geneticae Medicae et Gemellologiae, 35, 179–92CrossRefGoogle ScholarPubMed
Townsend, G. C., Richards, L. C., Brown, T. and Burgess, ( V. B. (1988). Twin zygosity determination on the basis of dental morphology. Journal of Forensic Odonto-Stomatology, 6, 1–15Google ScholarPubMed
Townsend, G. C., Richards, L. C., Brown, T., Burgess, V. B., Travan, G. R. and Rogers, J. R. (1992). Genetic studies of dental morphology in South Australian twins. In Structure, Function and Evolution of Teeth, ed. Smith, P. & Tchernov, E., pp. 501–18. London: Freund Publishing HouseGoogle Scholar
Townsend, G., Richards, L., and Hughes, T. (2003). Molar intercuspal dimensions: genetic input to phenotypic variations. Journal of Dental Research, 82, 350–5CrossRefGoogle Scholar
Tucker, A. and Sharpe, T. (2004). The cutting-edge of mammalian development; how the embryo makes teeth. Nature Review Genetics, 5, 499–508CrossRefGoogle ScholarPubMed
Turner, C. G. II (1967). Dental genetics and microevolution in prehistoric and living Koniag Eskimo. Journal of Dental Research, 46, 911–17CrossRefGoogle ScholarPubMed
Turner, C. G., II, Nichol, C. R., and Scott, G. R. (1991). Scoring procedures for key morphological traits of the permanent dentition: the Arizona State University Dental Anthropology System. In Advances in Dental Anthropology, ed. Kelley, M. A. and Larsen, C. S.. New York: Wiley-Liss, pp. 13–31Google Scholar
Uchida, A. (1998a). Variation in tooth morphology ofGorilla gorilla. Journal of Human Evolution, 34, 55–70CrossRefGoogle Scholar
Uchida, A. (1998b). Variation in tooth morphology ofPongo pygmaeus. Journal of Human Evolution, 34, 71–9CrossRefGoogle Scholar
Dassow, G., Meir, E., Munro, E. M. and Odell, G. M. (2000). The segment polarity network is a robust developmental module. Nature, 406, 188–92CrossRefGoogle Scholar
Wagner, G. P. and Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–76CrossRefGoogle ScholarPubMed
Weiss, K. M. (1990). Duplication with variation: metameric logic in evolution from genes to morphology. Yearbook of Physical Anthropology, 33, 1–23CrossRefGoogle Scholar
Weiss, K. M., Stock, D. W., and Zhao, Z. (1998). Dynamic interactions and the evolutionary genetics of dental patterning. Critical Reviews in Oral Biology and Medicine, 9, 369–98CrossRefGoogle ScholarPubMed
White, T. D., Suwa, G., and Asfaw, B. (1995). Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature, 375, 88Google ScholarPubMed
Wood, B. A. and Engleman, C. A. (1988). Analysis of the dental morphology of Plio-Pleistocene hominds. V. Maxillary postcanine tooth morphology. Journal of Anatomy, 161, 1–35Google ScholarPubMed
Wood, B. A., Abbott, S. A., and Graham, S. H. (1983). Analysis of the dental morphology of Plio-Pleistocene hominds. II. Mandibular molars – study of cusp areas, fissure pattern and cross sectional shape of the crown. Journal of Anatomy, 137, 287–314Google ScholarPubMed
Wood, B. F. and Green, L. J. (1969). Second premolar morphologic trait similarities in twins. Journal of Dental Research, 48, 74–8CrossRefGoogle ScholarPubMed
Workman, M. S., Leamy, L. J., Routman, E. J., and Cheverud, J. M. (2002). Analysis of quantitative trait locus effects on the size and shape of mandibular molars in mice. Genetics, 160, 1573–86Google ScholarPubMed
Wright, S. (1921). Systems of mating. I. The biometric relations between parents and offspring. Genetics, 6, 111–23Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×