Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-09T11:25:47.059Z Has data issue: false hasContentIssue false

Part I - Structure and Mechanics of the Brain

Published online by Cambridge University Press:  28 September 2017

Philip M. Nichols
Affiliation:
University of Pennsylvania
Diana C. Robertson
Affiliation:
University of Pennsylvania
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Thinking about Bribery
Neuroscience, Moral Cognition and the Psychology of Bribery
, pp. 1 - 30
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A. R. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. Journal of Neuroscience, 20(7), 26832690.Google Scholar
Aguirre, G. K., & D'Esposito, M. (1999). Experimental design for brain fMRI. In Moonen, C. T. W. & Bandettini, P. A., eds., Functional MRI (369380). Berlin: Spring Verlag.Google Scholar
Antal, A., Nitsche, M. A., Kincses, T. Z., Kruse, W., Hoffmann, K. P., & Paulus, W. (2004). Facilitation of visuo‐motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. European Journal of Neuroscience, 19(10), 28882892.CrossRefGoogle ScholarPubMed
Ariely, D., & Berns, G. S. (2010). Neuromarketing: The hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11(4), 284292.CrossRefGoogle Scholar
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry – the methods. Neuroimage, 11(6 Pt 1), 805821.Google Scholar
Bachner-Melman, R., Gritsenko, I., Nemanov, L., Zohar, A. H., Dina, C., & Ebstein, R. P. (2005). Dopaminergic polymorphisms associated with self-report measures of human altruism: a fresh phenotype for the dopamine D4 receptor. Molecular Psychiatry, 10(4), 333335.Google Scholar
Bakermans‐Kranenburg, M. J., & Van IJzendoorn, M. H. (2006). Gene‐environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48(5), 406409.Google Scholar
Bandettini, P. A. (2009a). Seven topics in functional magnetic resonance imaging. Journal of Integrative Neuroscience, 8(3), 371403.CrossRefGoogle ScholarPubMed
Bandettini, P. A. (2009b). What’s new in neuroimaging methods? Annals of the New York Academy of Sciences, 1156, 260293.CrossRefGoogle ScholarPubMed
Baumgartner, T., Knoch, D., Hotz, P., Eisenegger, C., & Fehr, E. (2011). Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice. Nature Neuroscience, 14(11), 14681474.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 12931295.Google Scholar
Been, G., Ngo, T. T., Miller, S. M., & Fitzgerald, P. B. (2007). The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain Research Reviews, 56(2), 346361.Google Scholar
Benton, A. (1991). Aphasia: Historical perspectives. In Sarno, M. T., ed., Acquired Aphasia, 2nd ed. (126). New York, NY: Academic Press.Google Scholar
Bhatt, M. A., Lohrenz, T., Camerer, C. F., & Montague, P. R. (2010). Neural signatures of strategic types in a two-person bargaining game. Proceedings of the National Academy of Sciences, 107(46), 1972019725.Google Scholar
Buchel, C., Wise, R. J., Mummery, C. J., Poline, J. B., & Friston, K. J. (1996). Nonlinear regression in parametric activation studies. Neuroimage, 4(1), 6066.Google Scholar
Buckholtz, J. W., Treadway, M. T., Cowan, R. L., Woodward, N. D., Li, R., Ansari, M. S., Baldwin, R. M., Schwartzman, A. N., Shelby, E. S., Smith, C. E., Kessler, R. M., & Zald, D. H. (2010). Dopaminergic network differences in human impulsivity. Science, 329(5991), 532532.Google Scholar
Camerer, C. F. (2007). Neuroeconomics: Using neuroscience to make economic predictions. Economic Journal, 117(519), C26C42.Google Scholar
Camerer, C. F. (2008). The potential of neuroeconomics. Economics and Philosophy, 24(3), 369379.Google Scholar
Camerer, C. F., Loewenstein, G., & Prelec, D. (2004). Neuroeconomics: Why economics needs brains. Scandinavian Journal of Economics, 106(3), 555579.Google Scholar
Camerer, C. F., Loewenstein, G., (2005). Neuroeconomics: How neuroscience can inform economics. Journal of Economic Literature, 43(1), 964.Google Scholar
Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10(9), 11031109.Google Scholar
Carter, R. M., Bowling, D. L., Reeck, C., & Huettel, S. A. (2012). A distinct role of the temporal-parietal junction in predicting socially guided decisions. Science, 337(6090), 109111.CrossRefGoogle ScholarPubMed
Churchland, P. S., & Sejnowski, T. J. (1988). Perspectives on cognitive neuroscience. Science, 242(4879), 741745.CrossRefGoogle ScholarPubMed
Ciaramelli, E., Muccioli, M., Ladavas, E., & di Pellegrino, G. (2007). Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex. Social Cognitive and Affective Neuroscience, 2(2), 8492.Google Scholar
Coltheart, M. (2004). Brain imaging, connectionism, and cognitive neuropsychology. Cognitive Neuropsychology, 21(1), 2125.Google Scholar
Cools, R., Frank, M. J., Gibbs, S. E., Miyakawa, A., Jagust, W., & D'Esposito, M. (2009). Striatal dopamine predicts outcome-specific reversal learning and its sensitivity to dopaminergic drug administration. Journal of Neuroscience, 29(5), 15381543.CrossRefGoogle ScholarPubMed
Crockett, M. J., Clark, L., Tabibnia, G., Lieberman, M. D., & Robbins, T. W. (2008). Serotonin modulates behavioral reactions to unfairness. Science, 320(5884), 1739.CrossRefGoogle ScholarPubMed
Crockett, M. J., Clark, L., Hauser, M. D., & Robbins, T. W. (2010). Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proceedings of the National Academy of Sciences, 107(40), 1743317438.CrossRefGoogle ScholarPubMed
de Quervain, D. J., Fischbacher, U., Treyer, V., et al. (2004). The neural basis of altruistic punishment. Science, 305(5688), 12541258.Google Scholar
Debener, S., Ullsperger, M., Siegel, M., & Engel, A. K. (2006). Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends in Cognitive Sciences, 10(12), 558563.Google Scholar
Egerton, A., Mehta, M. A., Montgomery, A. J., et al. (2009). The dopaminergic basis of human behaviors: a review of molecular imaging studies. Neuroscience and Biobehavioral Reviews, 33(7), 11091132.Google Scholar
Engel, A. K., Moll, C. K., Fried, I., & Ojemann, G. A. (2005). Invasive recordings from the human brain: Clinical insights and beyond. Nature Reviews Neuroscience, 6(1), 3547.Google Scholar
Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision making: Judgment under uncertainty or judgment per se? Cerebral Cortex, 17(11), 26692674.Google Scholar
Fellows, L. K., Stark, M., Berg, A., & Chatterjee, A. (2008). Patient registries in cognitive neuroscience research: Advantages, challenges, and practical advice. Journal of Cognitive Neuroscience, 20(6), 11071113.Google Scholar
Fellows, L. K. (2012). Group studies in experimental neuropsychology. In APA Handbook of Research Methods in Psychology, Vol. 2 (647659). Washington, DC: American Psychological Association.Google Scholar
Fox, P. T., & Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proceedings of the National Academy of Sciences, 83(4), 11401144.Google Scholar
Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2(1–2), 5678.Google Scholar
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3), 218229.CrossRefGoogle ScholarPubMed
Glimcher, P. W. (2010). Foundations of Neuroeconomic Analysis. Oxford, New York: Oxford University Press.CrossRefGoogle Scholar
Gratton, G., & Fabiani, M. (2001). Shedding light on brain function: The event-related optical signal. Trends in Cognitive Sciences, 5(8), 357363.Google Scholar
Gray, M. A., Minati, L., Harrison, N. A., Gianaros, P. J., Napadow, V., & Critchley, H. D. (2009). Physiological recordings: Basic concepts and implementation during functional magnetic resonance imaging. Neuroimage, 47(3), 11051115.Google Scholar
Green, A. E., Munafo, M. R., Deyoung, C. G., Fossella, J. A., Fan, J., & Gray, J. R. (2008). Using genetic data in cognitive neuroscience: From growing pains to genuine insights. Nature Reviews Neuroscience, 9, 710720.Google Scholar
Grill-Spector, K., & Malach, R. (2001). fMR-adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107(1–3), 293321.CrossRefGoogle ScholarPubMed
Grossman, M., Eslinger, P. J., Troiani, V., et al. (2010). The role of ventral medial prefrontal cortex in social decisions: Converging evidence from fMRI and frontotemporal lobar degeneration. Neuropsychologia, 48(12), 35053512.Google Scholar
Gul, F., & Pesendorfer, W. (2008). The case for mindless economics. In Caplin, A. & Schotter, A., eds., The Foundations of Positive and Normative Economics: A Handbook. New York, NY: Oxford University Press.Google Scholar
Halberstadt, J., Winkielman, P., Niedenthal, P. M., & Dalle, N. (2009). Emotional conception: How embodied emotion concepts guide perception and facial action. Psychological Science, 20(10), 12541261.Google Scholar
Handy, T. C. (2005). Event-Related Potentials: A Methods Handbook. Cambridge, MA: MIT Press.Google Scholar
Hariri, A. R., Drabant, E. M., & Weinberger, D. R. (2006). Imaging genetics: Perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biological Psychiatry, 59(10), 888897.Google Scholar
Harrison, G. W. (2008). Neuroeconomics: A critical reconsideration. Economics and Philosophy, 24(3), 303344.Google Scholar
Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523534.Google Scholar
Hein, G., Morishima, Y., Leiberg, S., Sul, S., & Fehr, E. (2016). The brain’s functional network architecture reveals human motives. Science, 351(6277), 10741078.Google Scholar
Henrich, J., McElreath, R., Barr, A., et al. (2006). Costly punishment across human societies. Science, 312(5781), 17671770.Google Scholar
Henson, R. N., & Rugg, M. D. (2003). Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia, 41(3), 263270.Google Scholar
Hollmann, M., Rieger, J. W., Baecke, S., et al. (2011). Predicting decisions in human social interactions using real-time fMRI and pattern classification. PloS One, 6(10), e25304.Google Scholar
Hoshi, Y. (2005). Functional near-infrared spectroscopy: Potential and limitations in neuroimaging studies. International Review of Neurobiology, 66, 237266.Google Scholar
Houser, D., Schunk, D., & Xiao, E. (2007). Combining brain and behavioral data to improve econometric policy analysis. Analyse & Kritik, 29, 8696.Google Scholar
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science, 310(5754), 16801683.Google Scholar
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional Magnetic Resonance Imaging. Sunderland, MA: Sinauer Associates.Google Scholar
Jezzard, P., Matthews, P. M., & Smith, S. M. (2001). Functional MRI: An Introduction to Methods. Oxford, New York: Oxford University Press.Google Scholar
Johansen-Berg, H., & Rushworth, M. F. (2009). Using diffusion imaging to study human connectional anatomy. Annual Review of Neuroscience, 32, 7594.Google Scholar
Kable, J. W., & Glimcher, P. W. (2009). The neurobiology of decision: Consensus and controversy. Neuron, 63(6), 733745.Google Scholar
Kassam, K. S., Markey, A. R., Cherkassky, V. L., Loewenstein, G., & Just, M. A. (2013). Identifying emotions on the basis of neural activation. PloS One, 8(6), e66032.Google Scholar
Kimberg, D. Y., Coslett, H. B., & Schwartz, M. F. (2007). Power in voxel-based lesion-symptom mapping. Journal of Cognitive Neuroscience, 19(7), 10671080.Google Scholar
Knoch, D., Nitsche, M. A., Fischbacher, U., Eisenegger, C., Pascual-Leone, A., & Fehr, E. (2008). Studying the neurobiology of social interaction with transcranial direct current stimulation – The example of punishing unfairness. Cerebral Cortex, 18(9), 19871990.Google Scholar
Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., & Fehr, E. (2006). Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science, 314(5800), 829832.Google Scholar
Koenigs, M., Young, L., Adolphs, R., et al. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446(7138), 908911.Google Scholar
Koenigs, M., & Tranel, D. (2007). Irrational economic decision-making after ventromedial prefrontal damage: Evidence from the ultimatum game. The Journal of Neuroscience, 27(4), 951956.CrossRefGoogle ScholarPubMed
Kolb, B., & Whishaw, I. Q. (2009). Fundamentals of Human Neuropsychology, 6th ed. New York, NY: Worth Publishers.Google Scholar
Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13(10), 12921298.Google Scholar
Lachaux, J. P., Rudrauf, D., & Kahane, P. (2003). Intracranial EEG and human brain mapping. Journal of Physiology (Paris), 97(4–6), 613628.CrossRefGoogle ScholarPubMed
Laycock, R., Crewther, D. P., Fitzgerald, P. B., & Crewther, S. G. (2007). Evidence for fast signals and later processing in human V1/V2 and V5/MT+: A TMS study of motion perception. Journal of Neurophysiology, 98(3), 12531262.Google Scholar
Leslie, R. A., & James, M. F. (2000). Pharmacological magnetic resonance imaging: A new application for functional MRI. Trends in Pharmacological Sciences, 21(8), 314318.CrossRefGoogle ScholarPubMed
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869878.Google Scholar
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150157.Google Scholar
Lounasmaa, O. V., Hamalainen, M., Hari, R., & Salmelin, R. (1996). Information processing in the human brain: magnetoencephalographic approach. Proceedings of the National Academy of Sciences, 93(17), 88098815.Google Scholar
Luck, S. J. (2005). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.Google Scholar
Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. New England Journal of Medicine, 363(2), 166176.Google Scholar
McCabe, K. A. (2008). Neuroeconomics and the economic sciences. Economics and Philosophy, 24(3), 345368.Google Scholar
McCabe, K., Houser, D., Ryan, L., Smith, V., & Trouard, T. (2001). A functional imaging study of cooperation in two-person reciprocal exchange. Proceedings of the National Academy of Sciences, 98(20), 1183211835.CrossRefGoogle ScholarPubMed
McIntosh, A. R., Bookstein, F. L., Haxby, J. V., & Grady, C. L. (1996). Spatial pattern analysis of functional brain images using partial least squares. Neuroimage, 3(3 Pt 1), 143157.Google Scholar
Mendelsohn, D., Riedel, W. J., & Sambeth, A. (2009). Effects of acute tryptophan depletion on memory, attention and executive functions: A systematic review. Neuroscience and Biobehavioral Reviews, 33(6), 926952.Google Scholar
Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., & Grave de Peralta, R. (2004). EEG source imaging. Clinical Neurophysiology, 115(10), 21952222.Google Scholar
Miller, K. J., denNijs, M., Shenoy, P., Miller, J. W., Rao, R. P., & Ojemann, J. G. (2007). Real-time functional brain mapping using electrocorticography. Neuroimage, 37(2), 504507.Google Scholar
Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51(5), 527539.Google Scholar
Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. (2012). Rational regulation of learning dynamics by pupil-linked arousal systems. Nature Neuroscience, 15(7), 10401046.Google Scholar
Newsome, W. T. (1997). The King Solomon Lectures in Neuroethology. Deciding about motion: linking perception to action. Journal of Comparative Physiology A – Sensory Neural & Behavioral Physiology, 181(1), 512.Google Scholar
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424430.CrossRefGoogle ScholarPubMed
O’Doherty, J. P., Hampton, A., & Kim, H. (2007). Model-based fMRI and its application to reward learning and decision making. Annals of the New York Academy of Sciences, 1104, 3553.Google Scholar
Obrig, H., & Villringer, A. (2003). Beyond the visible – Imaging the human brain with light. Journal of Cerebral Blood Flow and Metabolism, 23(1), 118.Google Scholar
Ojemann, J. G., Akbudak, E., Snyder, A. Z., McKinstry, R. C., Raichle, M. E., & Conturo, T. E. (1997). Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage, 6(3), 156167.Google Scholar
Olsson, A., & Phelps, E. A. (2007). Social learning of fear. Nature Neuroscience, 10(9), 10951102.Google Scholar
Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron: Probing the physiology of perception. Annual Review of Neuroscience, 21, 227277.Google Scholar
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience – Virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10(2), 232237.Google Scholar
Plassmann, H., O'Doherty, J., & Rangel, A. (2007). Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience, 27(37), 99849988.Google Scholar
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2), 5963.Google Scholar
Prehn, K., Korczykowski, M., Rao, H., Fang, Z., Detre, J. A., & Robertson, D. C. (2015). Neural correlates of post-conventional moral reasoning: A voxel-based morphometry study. PloS One, 10(6), e0122914.Google Scholar
Raichle, M. E. (1998). Behind the scenes of functional brain imaging: A historical and physiological perspective. Proceedings of the National Academy of Sciences, 95(3), 765772.Google Scholar
Rest, J., Narvaez, D., Bebeau, M., & Thoma, S. (1999). A neo-Kohlbergian approach: The DIT and schema theory. Educational Psychology Review, 11(4), 291324.Google Scholar
Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267287.Google Scholar
Rorden, C., & Karnath, H. O. (2004). Using human brain lesions to infer function: A relic from a past era in the fMRI age? Nature Reviews Neuroscience, 5(10), 813819.Google Scholar
Rorden, C., Karnath, H. O., & Bonilha, L. (2007). Improving lesion-symptom mapping. Journal of Cognitive Neuroscience, 19(7), 10811088.Google Scholar
Ruff, C. C., Ugazio, G., & Fehr, E. (2013). Changing social norm compliance with noninvasive brain stimulation. Science, 342(6157), 482484.Google Scholar
Rutledge, R. B., Lazzaro, S. C., Lau, B., Myers, C. E., Gluck, M. A., & Glimcher, P. W. (2009). Dopaminergic drugs modulate learning rates and perseveration in Parkinson’s patients in a dynamic foraging task. Journal of Neuroscience, 29(48), 1510415114.CrossRefGoogle Scholar
Sáez, I., Zhu, L., Set, E., Kayser, A., & Hsu, M. (2015). Dopamine modulates egalitarian behavior in humans. Current Biology, 25 (7), 912919.Google Scholar
Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the ultimatum game. Science, 300(5626), 17551758.Google Scholar
Sarlo, M., Lotto, L., Manfrinati, A., Rumiati, R., Gallicchio, G., & Palomba, D. (2012). Temporal dynamics of cognitive–emotional interplay in moral decision-making. Journal of Cognitive Neuroscience, 24(4), 10181029.Google Scholar
Sarter, M., Berntson, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: Toward strong inference in attributing function to structure. American Psychologist, 51(1), 1321.Google Scholar
Satterthwaite, T. D., Green, L., Myerson, J., Parker, J., Ramaratnam, M., & Buckner, R. L. (2007). Dissociable but inter-related systems of cognitive control and reward during decision making: Evidence from pupillometry and event-related fMRI. Neuroimage, 37(3), 10171031.Google Scholar
Senior, C., Russell, T., & Gazzaniga, M. S. (2006). Methods in Mind. Cambridge, MA: MIT Press.Google Scholar
Shah, Y. B., & Marsden, C. A. (2004). The application of functional magnetic resonance imaging to neuropharmacology. Current Opinion in Pharmacology, 4(5), 517521.Google Scholar
Shallice, T. (1988). From Neuropsychology to Mental Structure. Cambridge, New York: Cambridge University Press.Google Scholar
Shohamy, D., Myers, C. E., Grossman, S., Sage, J., & Gluck, M. A. (2005). The role of dopamine in cognitive sequence learning: evidence from Parkinson’s disease. Behavioural Brain Research, 156(2), 191199.Google Scholar
Siebner, H. R., Bergmann, T. O., Bestmann, S., et al. (2009). Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimulation, 2(2), 5880.CrossRefGoogle ScholarPubMed
Silber, B. Y., & Schmitt, J. A. (2010). Effects of tryptophan loading on human cognition, mood, and sleep. Neuroscience & Biobehavioral Reviews, 34(3), 387407.Google Scholar
Silva, A. J. (2007). The science of research: the principles underlying the discovery of cognitive and other biological mechanisms. Journal of Physiology (Paris), 101(4–6), 203213.Google Scholar
Strait, M., Briggs, G., & Scheutz, M. (2013, September). Some Correlates of Agency Ascription and Emotional Value and Their Effects on Decision-making. 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII) (505–510). IEEE.Google Scholar
Sun, F. T., Miller, L. M., & D'Esposito, M. (2004). Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage, 21(2), 647658.Google Scholar
Toga, A. W., & Mazziotta, J. C. (2002). Brain Mapping: The Methods, 2nd ed. Amsterdam, Boston: Academic Press.Google Scholar
Tootell, R. B., Reppas, J. B., Dale, A. M., et al. (1995). Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 375(6527), 139141.Google Scholar
Tootell, R. B., Reppas, J. B., Kwong, K. K., et al. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. The Journal of Neuroscience, 15(4), 32153230.Google Scholar
Tranel, D., Damasio, H., & Damasio, A. R. (1997). A neural basis for the retrieval of conceptual knowledge. Neuropsychologia, 35(10), 13191327.Google Scholar
Van’t Wout, M., Kahn, R. S., Sanfey, A. G., & Aleman, A. (2006). Affective state and decision-making in the ultimatum game. Experimental Brain Research, 169(4), 564568.Google Scholar
Wagner, T., Valero-Cabre, A., & Pascual-Leone, A. (2007). Noninvasive human brain stimulation. Annual Review of Biomedical Engineering, 9, 527565.Google Scholar
Walsh, V., & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews Neuroscience, 1(1), 7379.Google Scholar
Walsh, V., Ellison, A., Battelli, L., & Cowey, A. (1998). Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5. Proceedings of the Royal Society of London B: Biological Sciences, 265(1395), 537543.Google Scholar
Wassermann, E. M. (1998). Risk and safety of repetitive transcranial magnetic stimulation: Report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalography & Clinical Neurophysiology, 108(1), 116.Google Scholar
Weber, M. J., & Thompson-Schill, S. L. (2010). Functional neuroimaging can support causal claims about brain function. Journal of Cognitive Neuroscience, 22(11), 24152416.Google Scholar
Weigelt, S., Muckli, L., & Kohler, A. (2008). Functional magnetic resonance adaptation in visual neuroscience. Reviews in the Neurosciences, 19(4–5), 363380.Google Scholar
Weiskopf, N., Hutton, C., Josephs, O., & Deichmann, R. (2006). Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3T and 1.5T. Neuroimage, 33(2), 493504.Google Scholar
Zald, D. H., Boileau, I., El-Dearedy, W., et al. (2004). Dopamine transmission in the human striatum during monetary reward tasks. Journal of Neuroscience, 24(17), 41054112.Google Scholar
Zhong, S., Israel, S., Shalev, I., Xue, H., Ebstein, R. P., & Chew, S. H. (2010). Dopamine D4 receptor gene associated with fairness preference in ultimatum game. PLoS One, 5(11), e13765.Google Scholar

References

Atran, S. (2010). A question of honour: Why the Taliban fight and what to do about it. Asian Journal of Social Sciences, 38, 343363.Google Scholar
Babad, E., Ariav, A., Rosen, I., & Salomon, G. (1987). Perseverance of bias as a function of debriefing conditions and subjects’ confidence. Social Behaviour, 2(3), 185193.Google Scholar
Badre, D., Poldrack, R. A., Pare´-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907918.Google Scholar
Baron, J., & Spranca, M. (1997). Protected values. Organizational Behavior and Human Decision Processes, 70(1), 116.Google Scholar
Bartels, D. M. (2008). Principled moral sentiment and the flexibility of moral judgment and decision making. Cognition, 108(2), 381417.Google Scholar
Bassili, J. N. (1996). Meta-judgmental versus operative indexes of psychological attributes: The case of measures of attitude strength. Journal of Personalty and Social Psychology, 71, 637653.Google Scholar
Becker, G. M., DeGroot, M. H., & Marschak, J. (1964). Measuring utility by a single-response sequential method. Behavioral Sciences, 9(3), 226232.Google Scholar
Berns, G. S., Bell, E., Capra, C. M., et al. (2012). The price of your soul: Neural evidence for the non-utilitarian representation of sacred values. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1589), 754762.Google Scholar
Bhanji, J. P., Beer, J. S., & Bunge, S. A. (2010). Taking a gamble or playing by the rules: Dissociable prefrontal systems implicated in probabilistic versus deterministic rule-based decisions. NeuroImage, 49(2), 18101819.Google Scholar
Brass, M., Ruge, H., Meiran, N., et al. (2003). When the same response has different meanings: Recoding the response meaning in the lateral prefrontal cortex. NeuroImage, 20(2), 10261031.Google Scholar
Brass, M., & Von Cramon, D. Y. (2004). Decomposing components of task preparation with functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 16(4), 609620.Google Scholar
Bunge, S. A. (2004). How we use rules to select actions: A review of evidence from cognitive neuroscience. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 564579.Google Scholar
Bunge, S. A., Kahn, I., Wallis, J. D., Miller, E. K., & Wagner, A. D. (2003). Neural circuits subserving the retrieval and maintenance of abstract rules. Journal of Neurophysiology, 90(5), 34193428.Google Scholar
Donohue, S. E., Wendelken, C., Crone, E. A., & Bunge, S. A. (2005). Retrieving rules for behavior from long-term memory. NeuroImage, 26(4), 11401149.Google Scholar
Drake, R. A. (1993). Processing persuasive arguments – II: Discounting of truth and relevance as a function of agreement and manipulated activation asymmetry. Journal of Research in Personality, 27, 184196.Google Scholar
Falk, E. B., Way, B. M., & Jasinska, A. J. (2012). An imaging genetics approach to understanding social influence. Frontiers in Human Neuroscience, 6, 168.Google Scholar
Gazzaniga, M. S. (1998, June 16). The split brain revisited. Scientific American. www.scientificamerican.com/article/the-split-brain-revisited. Last accessed November 1, 2013.Google Scholar
Ginges, J., Atran, S., Sachdeva, S., & Medin, D. (2011). Psychology out of the laboratory: The challenge of violent extremism. American Psychologist, 66(6), 507.Google Scholar
Izuma, K., & Adolphs, R. (2013). Social manipulation of preference in the human brain. Neuron, 78(3), 563573.Google Scholar
Klucharev, V., Hytönen, K., Rijpkema, M., Smidts, A., & Fernández, G. (2009). Reinforcement learning signal predicts social conformity. Neuron, 61(1), 140151.Google Scholar
Lombrozo, T. (2009). The role of moral commitments in moral judgment. Cognitive Science, 33(2), 273286.Google Scholar
Ramachandran, V. S. (1995). Anosognosia in parietal lobe syndrome. Conscious and Cognition, 4(1), 2251.Google Scholar
Sharot, T., Kanai, R., Marston, D., et al. (2012). Selectively altering belief formation in the human brain. Proceedings of the National Academy of Sciences USA, 109(42), 1705817062.Google Scholar
Souza, M. J., Donohue, S. E., & Bunge, S. A. (2009). Controlled retrieval and selection of action-relevant knowledge mediated by partially overlapping regions in left ventrolateral prefrontal cortex. NeuroImage, 46(1), 299307.Google Scholar
Tetlock, P. E. (2003). Thinking the unthinkable: Sacred values and taboo cognitions. Trends in Cognitive Sciences, 7(7), 320324.Google Scholar
Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica, 26(1), 2436.Google Scholar
Tormala, Z. L., & Petty, R. E. (2002). What doesn’t kill me makes me stronger: The effects of resisting persuasion on attitude certainty. Journal of Personality and Social Psychology, 83, 12981313.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×