Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-11T18:27:24.702Z Has data issue: false hasContentIssue false

11 - Lyme borreliosis in Europe and North America

Published online by Cambridge University Press:  21 August 2009

J. Piesman
Affiliation:
CDC/DVBID, 3150 Rampart Road, Fort Collins, CO 80521 USA
L. Gern
Affiliation:
Institut de Biologie, Emile-Argand 11, 2009 Neuchâtel Switzerland
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

Arthropod-borne spirochaetes have long caused human suffering and disease. Louse-borne relapsing fever (LBRF), caused by Borrelia recurrentis and transmitted by the human body louse (Pediculus humanus), was once widespread in the extensive areas where human body lice were found. Today, LBRF is reported mainly from northeastern and central Africa including the countries of Ethiopia, Somalia and Sudan, in discrete foci where human body lice remain prevalent (Porcella et al., 2000). Tick-borne relapsing fever (TBRF) was first described in Africa where the argasid (soft) tick Ornithodoros moubata was found to transmit Borrelia duttoni (see historical review by Burgdorfer, 2001). Isolated endemic cycles of TBRF caused by individual species of relapsing fever spirochaetes and their matching argasid vector species have been described in Asia, Europe and the Americas (Felsenfeld, 1979). Recent reports detailing the epidemiology and biology of relapsing fever include studies in Tanzania, where B. duttoni frequently causes human disease (Melkert & Stel, 1991; Fukunaga et al., 2001), as well as studies in North America where Borrelia hermsii is the primary aetiologic agent of relapsing fever (Dworkin et al., 2002). Although Borrelia spp. were known to cause human disease in isolated pockets, scant attention was directed towards the study of these organisms in the latter half of the twentieth century until an epidemic of arthritis was described in Lyme, Connecticut (Steere et al., 1977b).

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 220 - 252
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeschlimann, A., Chamot, E., Gigon, F., et al. (1986). B. burgdorferi in Switzerland. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene A 263, 450–458.CrossRefGoogle Scholar
Allan, S. A. & Patrican, L. A. (1995). Reduction of immature Ixodes scapularis (Acari: Ixodidae) in woodlots by application of desiccant and insecticidal soap formulations. Journal of Medical Entomology 32, 16–20.CrossRefGoogle ScholarPubMed
Anderson, J. F. (1991). Epizootiology of Lyme borreliosis. Scandinavian Journal of Infectious Diseases Supplement 77, 23–34.Google ScholarPubMed
Anderson, J. F., Johnson, R. C., Magnarelli, L. A., Hyde, F. W. & Myers, J. E. (1987). Prevalence of Borrelia burgdorferi and Babesia microti in mice on islands inhabited by white-tailed deer. Applied and Environmental Microbiology 53, 892–894.Google ScholarPubMed
Anderson, J. F., Magnarelli, L. A. & Stafford, K. C. III (1990). Bird-feeding ticks transstadially transmit Borrelia burgdorferi that infect Syrian hamsters. Journal of Wildlife Diseases 26, 1–10.CrossRefGoogle ScholarPubMed
Appel, M. J., Allan, S., Jacobson, R. H., et al. (1993). Experimental Lyme disease in dogs produces arthritis and persistent infection. Journal of Infectious Diseases 167, 651–664.CrossRefGoogle ScholarPubMed
Apperson, C. S., Levine, J. F., Evans, T. L., Braswell, A. & Heller, J. (1993). Relative utilization of reptiles and rodents as hosts by immature Ixodes scapularis (Acari: Ixodidae) in the coastal plain of North Carolina, USA. Experimental and Applied Acarology 17, 719–731.Google ScholarPubMed
Assous, M. V. D., Postic, D., Paul, G., Nevot, P. & Baranton, G. (1993). Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of the Borrelia strains used as antigens. European Journal of Clinical Microbiology and Infectious Diseases 12, 261–268.CrossRefGoogle ScholarPubMed
Bailly-Choumara, H., Morel, P. C. & Rageau, J. (1974). Première contribution au catalogue des tiques du Maroc (Acari: Ixodidae). Bulletin de la Société des Sciences Naturelles du Maroc 54, 71–80.Google Scholar
Balmelli, T. & Piffaretti, J. C. (1995). Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Research in Microbiology 146, 329–340.CrossRefGoogle ScholarPubMed
Baranton, G., Postic, D., Girons, Saint I., et al. (1992). Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov.; and group VS461 associated with Lyme borreliosis. International Journal of Systematic Bacteriology 42, 378–383.CrossRefGoogle ScholarPubMed
Baranton, G., Seinost, G., Theodore, G., Postic, D. & Dykhuisen, D. (2001). Distinct levels of genetic diversity of Borrelia burgdorferi are associated with different aspects of pathogenicity. Research in Microbiology 152, 149–156.CrossRefGoogle ScholarPubMed
Barbour, A. G., Heiland, R. A. & Howe, T. R. (1985). Heterogeneity of major proteins in Lyme disease borreliae: a molecular analysis of North American and European isolates. Journal of Infectious Diseases 152, 478–484.CrossRefGoogle ScholarPubMed
Barbour, A. G., Maupin, G. O., Teltow, G. J., Carter, C. J. & Piesman, J. (1996). Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. Journal of Infectious Diseases 173, 403–409.CrossRefGoogle ScholarPubMed
Barral, M., Garcia-Perez, A. L., Juste, R. A., et al. (2002). Distribution of Borrelia burgdorferi sensu lato in Ixodes ricinus (Acari: Ixodidae) ticks from the Basque Country, Spain. Journal of Medical Entomology 39, 177–184.CrossRefGoogle ScholarPubMed
Basta, J., Plch, J., Hulinska, D. & Daniel, M. (1999). Incidence of Borrelia garinii and Borrelia afzelii in Ixodes ricinus ticks in an urban environment, Prague, Czech Republic, between 1995 and 1998. European Journal of Clinical Microbiology and Infectious Diseases 18, 515–517.Google Scholar
Battaly, G. R. & Fish, D. (1993). Relative importance of bird species as hosts for immature Ixodes dammini (Acari: Ixodidae) in a suburban residential landscape of southern New York State. Journal of Medical Entomology 30, 740–747.CrossRefGoogle Scholar
Benjamin, M. A., Zhioua, E. & Ostfeld, R. S. (2002). Laboratory and field evaluation of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) for controlling questing adult Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 39, 723–728.CrossRefGoogle Scholar
Brisson, D. & Dykhuizen, D. E. (2006). A modest model explains the distribution and abundance of Borrelia burgdorferi strains. American Journal of Tropical Medicine and Hygiene 74, 615–622.Google ScholarPubMed
Brown, R. N., Peot, M. A. & Lane, R. S. (2006). Sylvatic maintenance of Borrelia burgdorferi (Spirochaetales) in Northern California: untangling the web of transmission. Journal of Medical Entomology 43, 743–751.CrossRefGoogle ScholarPubMed
Buchwald, A. (1883). Ein Fall von diffuser idiopathischer Hautatrophie. Vierteljahrschrift für Dermatologie 15, 553–556.Google Scholar
Burgdorfer, W. (2001). Arthropod-borne spirochetoses: a historical perspective. European Journal of Clinical Microbiology and Infectious Disease 20, 1–5.CrossRefGoogle ScholarPubMed
Burgdorfer, W., Barbour, A. G., Hayes, S. F., et al. (1982). Lyme disease: a tick-borne spirochetosis?Science 216, 1317–1319.CrossRefGoogle ScholarPubMed
Burgdorfer, W., Barbour, A. G., Hayes, S. F., Péter, O. & Aeschlimann, A. (1983). Erythema migrans: a tick-borne spirochetosis. Acta Tropica 40, 79–83.Google Scholar
Burkot, T. R., Clover, J. R., Happ, C. M., Debess, E. & Maupin, G. O. (1999). Isolation of Borrelia burgdorferi from Neotoma fuscipes, Peromyscus maniculatus, Peromyscus boylii, and Ixodes pacificus in Oregon. American Journal of Tropical Medicine and Hygiene 60, 453–457.CrossRefGoogle ScholarPubMed
Busch, U., Hizo-Teufel, C., Boehmer, R., et al. (1996 a). Three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B. afzelii and B. garinii) identified from cerebrospinal fluid isolates by pulsed-field gel electrophoresis and PCR. Journal of Clinical Microbiology 34, 1072–1078.Google Scholar
Busch, U., Hizo-Teufel, C., Boehmer, R., et al. (1996 b). Borrelia burgdorferi sensu lato strains isolated from cutaneous Lyme borreliosis biopsies differentiated by pulsed-field gel electrophoresis. Scandinavian Journal of Infectious Diseases 28, 583–589.CrossRefGoogle ScholarPubMed
Canica, M. M., Nato, F., Merle, Du L., et al. (1993). Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scandinavian Journal of Infectious Diseases 25, 441–448.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (1995). Recommendations for test performance and interpretation from the Second National Conference on Serologic Diagnosis of Lyme Disease. Morbidity and Mortality Weekly Report 44, 590–591.
Chang, Y. F., Novosol, V., McDonough, S. P., et al. (2000). Experimental infection of ponies with Borrelia burgdorferi by exposure to Ixodid ticks. Veterinary Pathology 37, 68–76.CrossRefGoogle ScholarPubMed
Cinco, M., Padovan, D., Murgia, R., et al. (1998). Rate of infection of Ixodes ricinus ticks with Borrelia burgdorferi sensu stricto, Borrelia garinii, Borrelia afzelii and group VS116 in an endemic focus of Lyme disease in Italy. European Journal of Clinical Microbiology and Infectious Diseases 17, 90–94.Google Scholar
Collares-Pereira, M., Couceiro, S., Franca, I., et al. (2004). First isolation of Borrelia lusitaniae from a patient. Journal of Clinical Microbiology 42, 1216–1318.CrossRefGoogle Scholar
Craine, N. G., Nuttall, P. A., Marriott, A. C. & Randolph, S. E. (1997). Role of grey squirrels and pheasants in the transmission of Borrelia burgdorferi sensu lato, the Lyme disease spirochaete, in the UK. Folia Parasitologica 44, 155–160.Google Scholar
Crippa, M., Rais, O. & Gern, L. (2002). Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector Borne and Zoonotic Diseases 2, 3–9.CrossRefGoogle ScholarPubMed
Curran, K. L., Fish, D. & Piesman, J. (1993). Reduction of nymphal Ixodes dammini (Acari: Ixodidae) in a residential suburban landscape by area application of insecticides. Journal of Medical Entomology 30, 107–113.CrossRefGoogle Scholar
Danchin, E., Boulinier, T. & Massot, M. (1998). Conspecific reproductive success and breeding habitat selection: implications for the study of coloniality. Ecology 79, 2415–2428.CrossRefGoogle Scholar
Daniels, T. J. & Fish, D. (1995). Effect of deer exclusion on the abundance of immature Ixodes scapularis (Acari: Ixodidae) parasitizing small and medium-sized mammals. Journal of Medical Entomology 32, 5–11.CrossRefGoogle ScholarPubMed
Daniels, T. J., Fish, D. & Falco, R. C. (1991). Evaluation of host-targeted acaricide for reducing risk of Lyme disease in southern New York State. Journal of Medical Entomology 28, 537–543.CrossRefGoogle ScholarPubMed
Deblinger, R. D. & Rimmer, D. W. (1991). Efficacy of a permethrin-based acaricide to reduce the abundance of Ixodes dammini (Acari: Ixodidae). Journal of Medical Entomology 28, 708–711.CrossRefGoogle Scholar
Deblinger, R. D., Wilson, M. L., Rimmer, D. W. & Spielman, A. (1993). Reduced abundance of immature Ixodes dammini (Acari: Ixodidae) following incremental removal of deer. Journal of Medical Entomology 30, 144–150.CrossRefGoogle ScholarPubMed
Boer, R., Hovius, K. E., Nohlmans, M. K. E. & Gray, J. S. (1993). The woodmouse (Apodemus sylvaticus) as a reservoir of tick-transmitted spirochaetes (Borrelia burgdorferi) in the Netherlands. Zentralblatt für Bakteriologie 279, 404–416.CrossRefGoogle Scholar
Michelis, S., Sewell, H. S., Collares-Pereira, M., et al. (2000). Genetic diversity of Borrelia burgdorferi sensu lato in ticks from mainland Portugal. Journal of Clinical Microbiology 38, 2118–2133.Google ScholarPubMed
Dennis, D., Nekomoto, T. S., Victor, J. C., Paul, W. S. & Piesman, J. (1998). Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. Journal of Medical Entomology 35, 629–638.CrossRefGoogle Scholar
Vignes, Des F., Piesman, J., Heffernan, R., et al. (2001). Effect of tick removal on transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis nymphs. Journal of Infectious Diseases 183, 773–778.Google ScholarPubMed
Dister, S. W., Fish, D., Bros, S. M., Frank, D. H. & Wood, B. L. (1997). Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. American Journal of Tropical Medicine and Hygiene 57, 687–692.CrossRefGoogle ScholarPubMed
Diuk-Wasser, M. A., Gatewood, A. G., Cortinas, M. R., et al. (2006). Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Ixodidae) in the United States. Journal of Medical Entomology 43, 166–176.CrossRefGoogle Scholar
Dizij, A. & Kurtenbach, K. (1995). Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunology 17, 177–183.CrossRefGoogle Scholar
Dolan, M. C., Maupin, G. O., Schneider, B. S., et al. (2004). Control of immature Ixodes scapularis (Acari: Ixodidae) on rodent reservoirs of Borrelia burgdorferi in a residential community of southeastern Connecticut. Journal of Medical Entomology 41, 1043–1054.CrossRefGoogle Scholar
Donnelly, J. (1976). The life cycle of Ixodes ricinus L. based on recent published findings. In Tick-Borne Diseases and their Vectors, ed. Wilde, J. K. H., pp. 56–60. Edinburgh, UK: CTVM, University of Edinburgh.Google Scholar
Dressler, F., Ackermann, R. & Steere, A. C. (1994). Antibody responses to the three genomic groups of Borrelia burgdorferi in European Lyme borreliosis. Journal of Infectious Diseases 169, 313–318.CrossRefGoogle ScholarPubMed
Dressler, F., Whalen, J. A., Reinhardt, B. N. & Steere, A. C. (1993). Western blotting in the serodiagnosis of Lyme disease. Journal of Infectious Diseases 167, 392–400.CrossRefGoogle ScholarPubMed
Dsouli, N., Younsi-Kabachi, H., Postic, D., et al. (2006). Reservoir role of the lizard, Psammodromus algirus, in the transmission cycle of Borrelia burgdorferi sensu lato (Spirochaetacea) in Tunisia. Journal of Medical Entomology 43, 737–742.CrossRefGoogle Scholar
Dworkin, M. S., Shoemaker, P. C., Fritz, C. L., Dowell, M. E. & Anderson, D. E. Jr (2002). The epidemiology of tick-borne relapsing fever in the United States. American Journal of Tropical Medicine and Hygiene 66, 753–758.CrossRefGoogle ScholarPubMed
Eiffert, H., Karsten, A., Thomssen, R. & Christen, H. J. (1998). Characterization of Borrelia burgdorferi strains in Lyme arthritis. Scandinavian Journal of Infectious Diseases 30, 265–268.Google ScholarPubMed
Eisen, R. J., Eisen, L. & Lane, R. S. (2006). Predicting density of Ixodes pacificus nymphs in dense woodlands in Mendocino County, California, based on geographic information systems and remote sensing versus field-derived data. American Journal of Tropical Medicine and Hygiene 74, 632–640.Google ScholarPubMed
Escudero, R., Barral, M., Perez, A., et al. (2000). Molecular and pathogenic characterization of Borrelia burgdorferi sensu lato isolates from Spain. Journal of Clinical Microbiology 38, 4026–4033.Google ScholarPubMed
Eveleigh, E. S. & Threlfall, W. (1974). The biology of Ixodes (Ceratoixodes) uriae White, 1852 in Newfoundland. Acarologia 16, 621–635.Google Scholar
Falco, R. C., Fish, D. & Piesman, J. (1996). Duration of tick bites in a Lyme disease-endemic area. American Journal of Epidemiology 143, 187–192.CrossRefGoogle Scholar
Falco, R. C., McKenna, D. F., Daniels, T. J., et al. (1999). Temporal relationship between Ixodes scapularis abundance and risk for Lyme disease associated with erythema migrans. American Journal of Epidemiology 149, 771–776.CrossRefGoogle Scholar
Felsenfeld, O. (1979). Borrelia. In CRC Handbook Series in Zoonoses, Section A, Bacterial, Rickettsial, and Mycotic Diseases, vol. 1, ed. Steele, J. H., pp. 79–96. Boca Raton, FL: CRC Press.Google Scholar
Ferquel, E., Garnier, M., Marie, J., et al. (2006). Prevalence of Borrelia burgdorferi sensu lato and Anaplasmataceae members in Ixodes ricinus ticks in Alsace, a focus of Lyme borreliosis endemicity in France. Applied and Environmental Microbiology 72, 3074–3078.CrossRefGoogle ScholarPubMed
Fingerle, V., Rauser, S., Hammer, B., et al. (2002). Dynamics of dissemination and outer surface protein expression of different Borrelia burgdorferi s.l. strains in artificially infected Ixodes ricinus nymphs. Journal of Clinical Microbiology 40, 1456–1463.CrossRefGoogle Scholar
Fish, D. & Dowler, R. C. (1989). Host associations of ticks (Acari: Ixodidae) parasitizing medium-sized mammals in a Lyme disease endemic area of southern New York. Journal of Medical Entomology 26, 200–209.CrossRefGoogle Scholar
Földvari, G., Farkas, R. & Lakos, A. (2005). Borrelia spielmanii erythema migrans, Hungary. Emerging Infectious Diseases 11, 1794–1795.CrossRefGoogle ScholarPubMed
Fraenkel, C.-J., Garpmo, U. & Berglund, J. (2002). Determination of novel Borrelia genospecies in Swedish Ixodes ricinus ticks. Journal of Clinical Microbiology 40, 3308–3312.CrossRefGoogle ScholarPubMed
Fukunaga, M., Takahashi, Y., Tsuruta, Y., et al. (1995). Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. International Journal of Systematic Bacteriology 45, 804–810.CrossRefGoogle ScholarPubMed
Fukunaga, M., Ushijima, Y., Aoki, L. Y. & Talbert, A. (2001). Detection of Borrelia duttonii, a tick-borne relapsing fever agent in central Tanzania, within ticks by flagellin gene-based nested polymerase chain reaction. Vector Borne Zoonotic Diseases 1, 331–338.CrossRefGoogle ScholarPubMed
Gage, K. L., Maupin, G. O., Montieneri, J., et al. (1997). Flea (Siphonaptera: Ceratophyllidae, Hystrichopsyllidae) and tick (Acarina: Ixodidae) control on wood rats using host-targeted liquid permethrin in bait tubes. Journal of Medical Entomology 34, 46–51.CrossRefGoogle ScholarPubMed
Gern, L. & Humair, P. F. (2002). Ecology of Borrelia burgdorferi sensu lato in Europe. In Lyme Borreliosis: Biology, Epidemiology and Control, eds. Gray, J., Kahl, O., Lane, R. S. & Stanek, G., pp. 149–174. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Gern, L. & Rais, O. (1996). Efficient transmission of Borrelia burgdorferi between co-feeding Ixodes ricinus ticks (Acari: Ixodidae). Journal of Medical Entomology 33, 189–192.CrossRefGoogle Scholar
Gern, L., Estrada-Peña, A., Frandsen, F., et al. (1998). European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt für Bakteriologie 287, 196–204.CrossRefGoogle ScholarPubMed
Gern, L., Hu, C. M., Kocianova, E., Vyrostekova, V. & Rehacek, J. (1999). Genetic diversity of Borrelia burgdorferi sensu lato isolates obtained from Ixodes ricinus ticks collected in Slovakia. European Journal of Epidemiology 15, 665–669.CrossRefGoogle ScholarPubMed
Gern, L., Hu, C. M., Voet, P., Hauser, P. & Lobet, Y. (1997 a). Immunization with a polyvalent OspA vaccine protects mice against Ixodes ricinus tick bites infected by Borrelia burgdorferi ss, B. garinii and B. afzelii. Vaccine 15, 1551–1557.CrossRefGoogle Scholar
Gern, L., Lebet, N. & Moret, J. (1996). Dynamics of Borrelia burgdorferi infection in nymphal Ixodes ricinus ticks during feeding. Experimental and Applied Acarology 20, 649–658.CrossRefGoogle ScholarPubMed
Gern, L., Rouvinez, E., Toutoungi, L. N. & Godfroid, E. (1997 b). Transmission cycles of Borrelia burgdorferi sensu lato involving Ixodes ricinus and/or I. hexagonus ticks and the European hedgehog, Erinaceus europaeus, in suburban and urban areas in Switzerland. Folia Parasitologica 44, 309–314.Google ScholarPubMed
Gern, L., Siegenthaler, M., Hu, C. M., et al. (1994). Borrelia burgdorferi in rodents (Apodemus flavicollis and A. sylvaticus): duration and enhancement of infectivity for Ixodes ricinus ticks. European Journal of Epidemiology 10, 75–80.CrossRefGoogle Scholar
Gern, L., Zhu, Z. & Aeschlimann, A. (1990). Development of Borrelia burgdorferi in Ixodes ricinus females during blood feeding. Annales de Parasitologie Humaine et Comparée 65, 89–94.CrossRefGoogle Scholar
Goddard, J. (1992). Ecological studies of adult Ixodes scapularis in central Mississippi: questing activity in relation to time of year, vegetation type, and meteorologic conditions. Journal of Medical Entomology 29, 501–506.CrossRefGoogle ScholarPubMed
Gorelova, N. B., Korenberg, E. I., Kovalevskii, Y. V., Postic, D. & Baranton, G. (1996). [The isolation of Borrelia from the tick Ixodes trianguliceps (Ixodidae) and the possible significance of this species in the epizootiology of ixodid tick-borne borrelioses.] (In Russian)Parazitologiia 30, 13–18.Google Scholar
Gorelova, N. B., Korenberg, E. I., Kovalevsk, Y. V. ii & Shcherbakov, S. V. (1995). Small mammals as reservoir hosts for Borrelia in Russia. Zentralblatt für Bakteriologie 282, 315–322.CrossRefGoogle ScholarPubMed
Gray, J. S. (1982). The development and questing activity of Ixodes ricinus (L.) (Acari: Ixodidae) under field conditions in Ireland. Bulletin of Entomological Research 72, 263–270.CrossRefGoogle Scholar
Gray, J. S. (1985). Studies on the larval activity of the tick Ixodes ricinus (L.) in Co. Wicklow, Ireland. Experimental and Applied Acarology 1, 307–316.CrossRefGoogle ScholarPubMed
Gray, J. S. (1991). The development and seasonal activity of the tick Ixodes ricinus (L.) a vector of Lyme borreliosis. Review of Medical and Veterinary Entomology 79, 323–333.Google Scholar
Gray, J. S., Granström, M., Cimmino, M., et al. (1998). Lyme borreliosis awareness. Zentralblatt für Bakteriologie 287, 253–265.CrossRefGoogle ScholarPubMed
Gray, J. S., Kahl, O., Janetzki, C. & Stein, J. (1992). Studies on the ecology of Lyme disease in a deer forest in County Galway, Ireland. Journal of Medical Entomology 29, 915–920.CrossRefGoogle Scholar
Gray, J. S., Kahl, O., Janetzki-Mittman, C., Stein, J. & Guy, E. (1994). Acquisition of Borrelia burgdorferi by Ixodes ricinus ticks fed on the European hedgehog, Erinaceus europaeus L. Experimental and Applied Acarology 18, 485–491.CrossRefGoogle ScholarPubMed
Gray, J. S., Kahl, O., Janetzki, C., Stein, J. & Guy, E. (1995). The spatial distribution of Borrelia burgdorferi-infected Ixodes ricinus in the Connemara region of Co. Galway, Ireland. Experimental and Applied Acarology 18, 485–491.CrossRefGoogle Scholar
Gross, D. M., Forsthuber, T., Tary-Lehmann, M., et al. (1998). Identification of Lfa-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 281, 703–706.CrossRefGoogle ScholarPubMed
Guerra, M., Walker, E., Jones, C., et al. (2002). Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerging Infectious Diseases 8, 289–297.CrossRefGoogle ScholarPubMed
Gylfe, Å., Bergström, S., Lunström, J. & Olsen, B. (2000). Epidemiology: reactivation of Borrelia infection in birds. Nature 403, 724–725.CrossRefGoogle Scholar
Gylfe, Å., Olsen, B., Strasevicius, D., et al. (1999). Isolation of Lyme disease Borrelia from puffins (Fratercula arctica) and seabird ticks (Ixodes uriae) on the Faroe Islands. Journal of Clinical Microbiology 37, 890–896.Google Scholar
Halperin, J. J., Luft, B. J., Anand, A. K., et al. (1989). Lyme neuroborreliosis: central nervous system manifestations. Neurology 39, 753–759.CrossRefGoogle ScholarPubMed
Hanincová, K., Kurtenbach, K., Diuk-Wasser, M., Brei, B. & Fish, D. (2006). Epidemic spread of Lyme borreliosis, northeast United States. Emerging Infectious Diseases 12, 604–611.CrossRefGoogle Scholar
Hanincová, K., Schäfer, S. M., Etti, S., et al. (2003 a). Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20.CrossRefGoogle Scholar
Hanincová, K., Taragelová, V., Koci, J., et al. (2003 b). Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Applied and Environmental Microbiology 69, 2825–2830.CrossRefGoogle Scholar
Hauser, U., Krahl, H., Peters, H., Fingerle, V. & Wilske, B. (1998). Impact of strain heterogeneity on Lyme disease serology in Europe: comparison of enzyme-linked immunosorbent assays using different species of Borrelia burgdorferi sensu lato. Journal of Clinical Microbiology 36, 427–436.Google ScholarPubMed
Hayes, E. B. & Piesman, J. (2003). How can we prevent Lyme disease?New England Journal of Medicine 348, 2424–2430.CrossRefGoogle ScholarPubMed
Herrington, J. E. Jr, Campbell, G. L., Bailey, R. E., et al. (1997). Predisposing factors for individuals' Lyme disease prevention practices: Connecticut, Maine, and Montana. American Journal of Public Health 87, 2035–2038.CrossRefGoogle ScholarPubMed
Hillyard, P. D. (1996). Ticks of North-West Europe, eds. Barnes, R. S. K. & Crothers, J. H., vol. 52. Shrewsbury, UK: Field Studies Council.Google Scholar
Hu, C. M., Cheminade, Y., Perret, J.-L., et al. (2003). Early detection of Borrelia burgdorferi sensu lato infection in BALB/c mice by co-feeding Ixodes ricinus ticks. International Journal of Medical Microbiology 293, 421–426.CrossRefGoogle Scholar
Hu, C. M., Humair, P. F., Wallich, R. & Gern, L. (1997). Apodemus sp. rodents, reservoir hosts for Borrelia afzelii in an endemic area in Switzerland. Zentralblatt für Bakteriologie 285, 558–564.CrossRefGoogle Scholar
Hu, C. M., Wilske, B., Fingerle, V., Lobet, Y. & Gern, L. (2001). Transmission of Borrelia garinii OspA serotype 4 to BALB/c mice by Ixodes ricinus ticks collected in the field. Journal of Clinical Microbiology 39, 1169–1171.CrossRefGoogle ScholarPubMed
Hubálek, Z. & Halouzka, J. (1997). Distribution of Borrelia burgdorferi sensu lato genomic groups in Europe: a review. European Journal of Epidemiology 13, 951–957.CrossRefGoogle ScholarPubMed
Hubálek, Z. & Halouzka, J. (1998). Prevalence rates of Borrelia burgdorferi sensu lato in host-seeking Ixodes ricinus ticks in Europe. Parasitology Research 84, 167–172.Google Scholar
Hubálek, Z., Anderson, J. F., Halouzka, J. & Hájek, V. (1996). Borreliae in immature Ixodes ricinus (Acari: Ixodidae) ticks parasitizing birds in the Czech Republic. Journal of Medical Entomology 33, 766–771.CrossRefGoogle ScholarPubMed
Hubbard, M. J., Baker, A. S. & Cann, K. J. (1998). Distribution of Borrelia burgdorferi s.l. spirochaete DNA in British ticks (Argasidae and Ixodidae) since the nineteenth century, assessed by PCR. Medical and Veterinary Entomology 12, 89–97.CrossRefGoogle Scholar
Huegli, D., Hu, C. M., Humair, P.-F., Wilske, B. & Gern, L. (2002). Apodemus species mice, reservoir hosts of Borrelia garinii OspA serotype 4 in Switzerland. Journal of Clinical Microbiology 40, 4735–4737.CrossRefGoogle ScholarPubMed
Humair, P. F. (2002). Birds and Borrelia. International Journal of Medical Microbiology 291, 70–74.CrossRefGoogle ScholarPubMed
Humair, P. F. & Gern, L. (1998). Relationship between Borrelia burgdorferi sensu lato species, red squirrels (Sciurus vulgaris) and Ixodes ricinus in enzootic areas in Switzerland. Acta Tropica 69, 213–227.CrossRefGoogle ScholarPubMed
Humair, P. F., Péter, O., Wallich, R. & Gern, L. (1995). Strain variation of Lyme disease spirochetes isolated from Ixodes ricinus ticks and rodents collected in two endemic areas in Switzerland. Journal of Medical Entomology 32, 433–438.CrossRefGoogle ScholarPubMed
Humair, P. F., Postic, D., Wallich, R. & Gern, L. (1998). An avian reservoir (Turdus merula) of the Lyme borreliosis spirochaetes. Zentralblatt für Bakteriologie 287, 521–538.Google Scholar
Humair, P. F., Rais, O. & Gern, L. (1999). Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitology 118, 33–42.CrossRefGoogle ScholarPubMed
Humair, P. F., Turrian, N., Aeschlimann, A. & Gern, L. (1993 a). Borrelia burgdorferi in a focus of Lyme borreliosis: epizootiologic contribution of small mammals. Folia Parasitologica 40, 65–70.Google Scholar
Humair, P. F., Turrian, N., Aeschlimann, A. & Gern, L. (1993 b). Ixodes ricinus immatures on birds in a focus of Lyme borreliosis. Folia Parasitologica 40, 237–242.Google Scholar
Jaenson, T. G. T. & Tälleklint, L. (1992). Incompetence of roe deer as reservoirs of the Lyme borreliosis spirochete. Journal of Medical Entomology 29, 813–817.CrossRefGoogle ScholarPubMed
Jaenson, T. G. T. & Tälleklint, L. (1996). Lyme borreliosis spirochetes in Ixodes ricinus (Acari: Ixodidae) and the varying hare on isolated islands in the Baltic sea. Journal of Medical Entomology 33, 339–343.CrossRefGoogle ScholarPubMed
Jaenson, T. G. T., Tälleklint, L., Lundqvist, L., et al. (1994). Geographical distribution, host associations and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden. Journal of Medical Entomology 31, 240–256.CrossRefGoogle Scholar
James, A. M., Liveris, D., Wormser, G. P., et al. (2001). Borrelia lonestari infection after a bite by an Amblyomma americanum tick. Journal of Infectious Diseases 183, 1810–1814.CrossRefGoogle ScholarPubMed
Jaulhac, B., Heller, R., Limbach, F. X., et al. (2000). Direct molecular typing of Borrelia burgdorferi sensu lato species in synovial samples from patients with Lyme arthritis. Journal of Clinical Microbiology 38, 1895–1900.Google ScholarPubMed
Jenkins, A., Kristiansen, B. E., Allum, A. G., et al. (2001). Borrelia burgdorferi sensu lato and Ehrlichia spp. in Ixodes ticks from southern Norway. Journal of Clinical Microbiology 39, 3666–3671.CrossRefGoogle ScholarPubMed
Johnson, B. J., Robbins, K. E., Bailey, R. E., et al. (1996). Serodiagnosis of Lyme disease: accuracy of a two-step approach using a flagella-based ELISA and immunoblotting. Journal of Infectious Diseases 174, 346–353.CrossRefGoogle ScholarPubMed
Johnson, R. C., Schmid, G. P., Hyde, F. W., Stiegerwalt, A. G. & Brenner, D. J. (1984). Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. International Journal of Systematic Bacteriology 34, 496–497.CrossRefGoogle Scholar
Jones, C. G., Ostfeld, R. S., Richard, M. P., Schauber, E. M. & Wolff, J. O. (1998). Chain reaction linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279, 1023–1026.CrossRefGoogle Scholar
Jouda, F., Crippa, M., Perret, J.-L. & Gern, L. (2003). Distribution and prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks of Canton Ticino (Switzerland). European Journal of Epidemiology 18, 907–912.CrossRefGoogle Scholar
Jouda, F., Perret, J.-L. & Gern, L. (2004 a). Ixodes ricinus density, and distribution and prevalence of Borrelia burgdorferi sensu lato infection along an altitudinal gradient. Journal of Medical Entomology 41, 162–170.CrossRefGoogle ScholarPubMed
Jouda, F., Perret, J.-L. & Gern, L. (2004 b). Density of questing Ixodes ricinus nymphs and adults infected by Borrelia burgdorferi sensu lato in Switzerland: spatio-temporal pattern at a regional scale. Vector Borne and Zoonotic Diseases 4, 23–32.CrossRefGoogle Scholar
Junttila, J., Peltomaa, M., Soini, H., Marjamäki, M. & Viljamnen, M. K. (1999). Prevalence of Borrelia burgdorferi in Ixodes ricinus ticks in urban recreational areas of Helsinki. Journal of Clinical Microbiology 37, 1361–1365.Google ScholarPubMed
Kahl, O. & Geue, L. (1998). Laboratory study on the possible role of the European fox, Vulpes vulpes as a potential reservoir of Borrelia burgdorferi s.l. In 2nd International Conference on Tick-Borne Pathogens at the Host–Vector Interface: A Global Perspective, eds. Coons, L. & Rothschild, M., p. 29.Google Scholar
Kahl, O. & Knülle, W. (1988). Water vapour uptake from subsaturated atmospheres by engorged immature ixodid ticks. Experimental and Applied Acarology 4, 73–83.CrossRefGoogle ScholarPubMed
Kahl, O., Janetzki-Mittmann, C., Gray, J. S., et al. (1998). Risk of infection with Borrelia burgdorferi sensu lato for a host in relation to the duration of nymphal Ixodes ricinus feeding and the method of tick removal. Zentralblatt für Bakteriologie 287, 41–52.CrossRefGoogle ScholarPubMed
Kahl, O., Gern, L., Eisen, L. & Lane, R. S. (2002). Ecological research on Borrelia burgdorferi sensu lato: terminology and some methodological pitfalls. In Lyme Borreliosis: Biology, Epidemiology and Control, eds. Gray, J., Kahl, O., Lane, R. S. & Stanek, G., pp. 29–46. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Kain, D. E., Sperling, F. A. H., Daly, H. V. & Lane, R. S. (1999). Mitochondrial DNA sequence variation in Ixodes pacificus (Acari: Ixodidae). Heredity 83, 378–386.CrossRefGoogle Scholar
Kain, D. E., Sperling, F. A. H. & Lane, R. S. (1997). Population genetic structure of Ixodes pacificus (Acari: Ixodidae) using allozymes. Journal of Medical Entomology 34, 441–450.CrossRefGoogle ScholarPubMed
Kampen, H., Rötzel, D. C., Kurtenbach, K., Maier, W. A. & Seitz, H. M. (2004). Substantial rise in the prevalence of Lyme borreliosis spirochetes in a region of Western Germany over a 10-year period. Applied and Environmental Microbiology 70, 1576–1582.CrossRefGoogle Scholar
Khanakah, G., Kmety, E., Radda, A. & Stanek, G. (1994). Micromammals as reservoir of Borrelia burgdorferi in Austria. In Abstract Book of the 6th Conference on Lyme Borreliosis, eds. Cevenini, R., Sambri, V. & Girons, M., Abstract P077W.Google Scholar
Kirstein, F., Rijpkema, S., Molkenboer, M. & Gray, J. S. (1997). The distribution and prevalence of Borrelia burgdorferi genomospecies in Ixodes ricinus ticks in Ireland. European Journal of Epidemiology 13, 67–72.CrossRefGoogle ScholarPubMed
Klempner, M. S., Hu, L. T., Evans, J., et al. (2001). Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. New England Journal of Medicine 345, 85–92.CrossRefGoogle Scholar
Korenberg, E. I. (2000). Seasonal population dynamics of Ixodes ticks and tick-borne encephalitis virus. Experimental and Applied Acarology 24, 665–681.CrossRefGoogle ScholarPubMed
Korenberg, E. I., Gorelova, N. B. & Kovalevskii, Y. V. (2002). Ecology of Borrelia burgdorferi sensu lato in Russia. In Lyme Borreliosis: Biology, Epidemiology and Control, eds. Gray, J., Kahl, O., Lane, R. S. & Stanek, G., pp. 175–200. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Kraiczy, P., Skerka, C., Brade, V. & Zipfel, P. F. (2001). Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi. Infection and Immunity 69, 7800–7809.CrossRefGoogle ScholarPubMed
Kuo, M. M., Lane, R. S. & Gicias, P. C. (2000). A comparative study of mammalian and reptilian alternative pathway of complement-mediated killing of the Lyme disease spirochete (Borrelia burgdorferi). Journal of Parasitology 86, 1223–1228.CrossRefGoogle Scholar
Kurtenbach, K., Carey, D., Hoodless, A. N., Nuttall, P. A. & Randolph, S. E. (1998 a). Competence of pheasants as reservoirs for Lyme disease spirochetes. Journal of Medical Entomology 35, 77–81.CrossRefGoogle ScholarPubMed
Kurtenbach, K., Michelis, S., Etti, S., et al. (2002 a). Host association of Borrelia burgdorferi sensu lato: the key role of host complement. Trends in Microbiology 10, 74–79.CrossRefGoogle ScholarPubMed
Kurtenbach, K., Michelis, S., Sewell, H. S., et al. (2001). Distinct combinations of Borrelia burgdorferi sensu lato genospecies found in individual questing ticks from Europe. Applied and Environmental Microbiology 67, 4926–4929.CrossRefGoogle ScholarPubMed
Kurtenbach, K., Dizij, A., Seitz, H. M., et al. (1994). Differential immune responses to Borrelia burgdorferi in European wild rodent species influence spirochete transmission to Ixodes ricinus L. (Acari: Ixodidae). Infection and Immunity 62, 5344–5352.Google Scholar
Kurtenbach, K., Hanincová, K., Tsao, J. I., et al. (2006). Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature Reviews in Microbiology 4, 660–669.CrossRefGoogle ScholarPubMed
Kurtenbach, K., Kampen, H., Dizij, A., et al. (1995). Infestation of rodents with larval Ixodes ricinus (Acari: Ixodidae) is an important factor in the transmission cycle of Borrelia burgdorferi s.l. in German woodlands. Journal of Medical Entomology 32, 807–817.CrossRefGoogle ScholarPubMed
Kurtenbach, K., Peacey, M., Rijpkema, S. G. T., et al. (1998 b). Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Applied and Environmental Microbiology 64, 1169–1174.Google ScholarPubMed
Kurtenbach, K., Schäfer, S. M., Sewell, H. S., et al. (2002 b). Differential survival of Lyme borreliosis spirochetes in ticks that feed on birds. Infection and Immunity 70, 5893–5895.CrossRefGoogle ScholarPubMed
Kurtenbach, K., Sewell, H. S., Ogden, N. H., Randolph, S. E. & Nuttall, P. A. (1998 c). Serum complement sensitivity as a key factor in Lyme disease ecology. Infection and Immunity 66, 1248–1251.Google ScholarPubMed
Lagal, V., Postic, D., Ruzic-Sabljic, E. & Baranton, G. (2003). Genetic diversity among Borrelia strains determined by single-strand conformation polymorphism analysis of the ospC gene and its association with invasiveness. Journal of Clinical Microbiology 41, 5059–5065.CrossRefGoogle ScholarPubMed
Lane, R. S. & Loye, J. E. (1989). Lyme disease in California: interrelationship of Ixodes pacificus (Acari: Ixodidae), the western fence lizard (Sceloporus occidentalis), and Borrelia burgdorferi. Journal of Medical Entomology 26, 272–278.CrossRefGoogle Scholar
Lane, R. S., Casher, L. E., Peavey, C. A. & Piesman, J. (1998). Modified bait tube controls disease-carrying ticks and fleas. California Agriculture 52, 43–48.CrossRefGoogle Scholar
Lathrop, S. L., Ball, R., Haber, P., et al. (2002). Adverse events reports following vaccination for Lyme disease: December 1998–July 2000. Vaccine 20, 1603–1608.CrossRefGoogle ScholarPubMed
Lebet, N. & Gern, L. (1994). Histological examination of Borrelia burgdorferi infection in unfed Ixodes ricinus nymphs. Experimental and Applied Acarology 18, 177–183.CrossRefGoogle Scholar
Lees, A. D. & Milne, A. (1951). The seasonal and diurnal activities of individual sheep ticks (Ixodes ricinus). Parasitology 41, 180–209.CrossRefGoogle Scholar
Fleche, A., Postic, D., Girardet, K., Péter, O. & Baranton, G. (1997). Characterization of Borrelia lusitaniae sp. nov. by 16S ribosomal DNA sequence analysis. International Journal of Systematic Bacteriology 47, 921–925.CrossRefGoogle ScholarPubMed
Leprince, D. J. & Lane, R. S. (1996). Evaluation of permethrin-impregnated cotton balls as potential nesting material to control ectoparasites of woodrats in California. Journal of Medical Entomology 33, 355–360.CrossRefGoogle ScholarPubMed
Leuba-Garcia, S., Kramer, M. D., Wallich, R. & Gern, L. (1994). Characterization of Borrelia burgdorferi isolated from different organs of Ixodes ricinus ticks collected in nature. Zentralblatt für Bakteriologie 280, 468–475.CrossRefGoogle ScholarPubMed
Leuba-Garcia, S., Martinez, R. & Gern, L. (1998). Expression of outer surface proteins A and C of Borrelia afzelii in Ixodes ricinus ticks and in the skin of mice. Zentralblatt für Bakteriologie und Hygiene 287, 475–484.CrossRefGoogle Scholar
Levin, M., Levine, J. F., Yang, S., Howard, P. & Apperson, C. S. (1996). Reservoir competence of the southeastern five-line skink (Eumeces inexpectatus) and the green anole (Anolis carolinensis) for Borrelia burgdorferi. American Journal of Tropical Medicine and Hygiene 54, 92–97.CrossRefGoogle Scholar
Liang, F. T., Steere, A. C., Marques, A. R., et al. (1999). Sensitive and specific serodiagnosis of Lyme disease by enzyme-linked immunosorbent assay with a peptide based on an immunodominant conserved region of Borrelia burgdorferi vlsE. Journal of Clinical Microbiology 37, 3990–3996.Google ScholarPubMed
Liebisch, G., Dimpfl, B., Finkbeiner-Weber, B., Liebisch, A. & Frosch, M. (1998 a). The red fox (Vulpes vulpes) a reservoir competent host for Borrelia burgdorferi sensu lato. In 2nd International Conference on Tick-Borne Pathogens at the Host–Vector Interface: A Global Perspective, eds. Coons, L. & Rothschild, M., p. 238.Google Scholar
Liebisch, G., Finkbeiner-Weber, B. & Liebisch, A. (1996). The infection with Borrelia burgdorferi s.l. in the European hedgehog (Erinaceus europaeus) and its ticks. Parassitologia 38, 385.Google Scholar
Liebisch, G., Sihns, B. & Bautsch, W. (1998 b). Detection and typing of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks attached to human skin by PCR. Journal of Clinical Microbiology 36, 3355–3358.Google ScholarPubMed
Lin, T., Oliver, J. H. Jr & Gao, L. (2002). Genetic diversity of the outer surface protein C gene of southern Borrelia isolates and its possible epidemiological, clinical, and pathogenetic implications. Journal of Clinical Microbiology 40, 2572–2583.CrossRefGoogle ScholarPubMed
Lindsay, L. R., Barker, I. K., Surgeoner, G. A., et al. (1995). Survival and development of Ixodes scapularis (Acari: Ixodidae) under various climatic conditions in Ontario, Canada. Journal of Medical Entomology 32, 143–152.CrossRefGoogle ScholarPubMed
Lindsay, L. R., Mathison, S. W., Barker, I. K., Mcewen, S. A. & Surgeoner, G. A. (1999). Abundance of Ixodes scapularis (Acari: Ixodidae) larvae and nymphs in relation to host density and habitat on Long Point, Ontario. Journal of Medical Entomology 36, 243–254.CrossRefGoogle ScholarPubMed
Liveris, D., Wang, G., Girao, G., et al. (2002). Quantitative detection of Borrelia burgdorferi in 2-millimeter skin samples of erythema migrans lesions: correlation of results with clinical laboratory findings. Journal of Clinical Microbiology 40, 1249–1253.CrossRefGoogle Scholar
Logigian, E. L., Kaplan, R. F. & Steere, A. C. (1990). Chronic neurologic manifestations of Lyme disease. New England Journal of Medicine 323, 1438–1444.CrossRefGoogle ScholarPubMed
Magid, D., Schwartz, B., Craft, J. & Schwartz, J. S. (1992). Prevention of Lyme disease after tick bites: a cost effectiveness analysis. New England Journal of Medicine 327, 534–541.CrossRefGoogle ScholarPubMed
Manweiler, S. A., Lane, R. S., Block, W. M. & Morrison, M. L. (1990). Survey of birds and lizards for ixodid ticks (Acari) and spirochetal infection in northern California. Journal of Medical Entomology 27, 1011–1015.CrossRefGoogle ScholarPubMed
Marconi, R. T., Liveris, D. & Schwartz, I. (1995). Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. Journal of Clinical Microbiology 33, 2427–2434.Google ScholarPubMed
Mather, T. N., Ribeiro, J. M. & Spielman, A. (1987). Lyme disease and babesiosis: acaricide focused on potentially infected ticks. American Journal of Tropical Medicine and Hygiene 36, 609–614.CrossRefGoogle ScholarPubMed
Mather, T. N., Telford, S. R. III, Maclachlan, A. B. & Spielman, A. (1989 a). Incompetence of catbirds as reservoirs for the Lyme disease spirochete (Borrelia burgdorferi). Journal of Parasitology 75, 66–69.CrossRefGoogle Scholar
Mather, T. N., Wilson, M. L., Moore, S. I., Ribeiro, J. M. & Spielman, A. (1989 b). Comparing the relative potential of rodents as reservoirs of the Lyme disease spirochete (Borrelia burgdorferi). American Journal of Epidemiology 130, 143–150.CrossRefGoogle Scholar
Mathiesen, D. A., Oliver, J. H. JrKolbert, C. P., et al. (1997). Genetic heterogeneity of Borrelia burgdorferi in the United States. Journal of Infectious Diseases 175, 98–107.CrossRefGoogle ScholarPubMed
Matuschka, F. R., Allgöwer, R., Spielman, A. & Richter, D. (1999). Characteristics of garden dormice that contribute to their capacity as reservoirs for Lyme disease spirochetes. Applied and Environmental Microbiology 65, 707–711.Google ScholarPubMed
Matuschka, F. R., Eiffert, H., Ohlenbusch, A., et al. (1994 a). Transmission of the agent of Lyme disease on a subtropical island. Tropical Medicine and Parasitology 45, 39–44.Google ScholarPubMed
Matuschka, F. R., Eiffert, H., Ohlenbusch, A. & Spielman, A. (1994 b). Amplifying role of edible dormice in Lyme disease transmission in Central Europe. Journal of Infectious Diseases 170, 122–127.CrossRefGoogle ScholarPubMed
Matuschka, F. R., Endepols, S., Richter, D., et al. (1996). Risk of urban Lyme disease enhanced by the presence of rats. Journal of Infectious Diseases 174, 1108–1111.CrossRefGoogle ScholarPubMed
Matuschka, F. R., Endepols, S., Richter, D. & Spielman, A. (1997). Competence of urban rats as reservoir hosts for Lyme disease spirochetes. Journal of Medical Entomology 34, 489–493.CrossRefGoogle ScholarPubMed
Matuschka, F. R., Fischer, P., Heiler, M., Richter, D. & Spielman, A. (1992). Capacity of European animals as reservoir hosts for the Lyme disease spirochete. Journal of Infectious Diseases 165, 479–483.CrossRefGoogle ScholarPubMed
Matuschka, F. R., Schinkel, T. W., Klug, B., Spielman, A. & Richter, D. (2000). Relative incompetence of European rabbits for Lyme disease spirochaetes. Parasitology 121, 297–302.CrossRefGoogle ScholarPubMed
Maupin, G. O., Fish, D., Zultowsky, J., Campos, E. G. & Piesman, J. (1991). Landscape ecology of Lyme disease in a residential area of Westchester County, New York. American Journal of Epidemiology 133, 1105–1113.CrossRefGoogle Scholar
McCoy, K. D., Boulinier, T., Chardine, J. W., Danchin, E. & Michalakis, Y. (1999). Dispersal and distribution of the tick Ixodes uriae within and among seabird populations: the need for a population genetic approach. Journal of Parasitology 85, 196–202.CrossRefGoogle ScholarPubMed
McLean, R. G., Ubico, S. R., Hughes, C. A., Engstrom, S. M. & Johnson, R. C. (1993). Isolation and characterization of Borrelia burgdorferi from blood of a bird captured in the Saint Croix River Valley. Journal of Clinical Microbiology 31, 2038–2043.Google ScholarPubMed
McLeod, J. (1935). Ixodes ricinus in relation to its physical environment. IV. An analysis of the ecological complexes controlling distribution and activities. Parasitology 28, 295–319.CrossRefGoogle Scholar
Mejlon, H. A. & Jaenson, T. G. T. (1997). Questing behaviour of Ixodes ricinus ticks (Acari: Ixodidae). Experimental and Applied Acarology 21, 747–754.CrossRefGoogle Scholar
Mejlon, H., Jaenson, T. G. T. & Mather, T. N. (1995). Evaluation of host-targeted applications of permethrin for control of Borrelia-infected Ixodes ricinus (Acari: Ixodidae). Medical and Veterinary Entomology 9, 207–210.CrossRefGoogle Scholar
Melkert, P. W. & Stel, H. V. (1991). Neonatal Borrelia infections (relapsing fever): report of five cases and review of the literature. East African Medical Journal 68, 999–1005.Google ScholarPubMed
Michel, H., Wilske, B., Hettche, G., et al. (2004). An OspA-polymerase chain reaction/restriction fragment length polymorphism-based method for sensitive detection and reliable differentiation of all European Borrelia burgdorferi sensu lato species and OspA types. Medical Microbiology and Immunology 193, 219–226.CrossRefGoogle ScholarPubMed
Misonne, M. C., Impe, G. & Hoet, P. P. (1998). Genetic heterogeneity of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in Belgium. Journal of Clinical Microbiology 36, 3352–3354.Google ScholarPubMed
Miyamoto, K. & Masuzawa, T. (2002). Ecology of Borrelia burgdorferi sensu lato in Japan and East Asia. In Lyme Borreliosis: Biology, Epidemiology and Control, eds. Gray, J., Kahl, O., Lane, R. S. & Stanek, G., pp. 201–222. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Mizak, B. & Krol, J. (2000). Analysis of Polish isolates of Borrelia burgdorferi by amplification of (5S)-rrl (23S) intergenic spacer. Bulletin of the Veterinary Institute in Pulawy 44, 147–154.Google Scholar
Morel, P. C. (1965). Les tiques d'Afrique et du bassin méditerranéen. Maison Alfort (I.E.M.T.Y.). Photocopied document.
Nadelman, R. B. & Wormser, G. P. (2002). Recognition and treatment of erythema migrans: are we off target?Annals of Internal Medicine 136, 477–479.CrossRefGoogle ScholarPubMed
Nadelman, R. B., Nowakowski, J., Fish, D., et al. (2001). Prophylaxis with single-dose doxycycline for the prevention of Lyme disease after an Ixodes scapularis tick bite. New England Journal of Medicine 345, 79–84.CrossRefGoogle ScholarPubMed
Nelson, D. R., Rooney, S., Miller, N. J. & Mather, T. R. (2000). Complement-mediated killing of Borrelia burgdorferi by nonimmune sera from sika deer. Journal of Parasitology 86, 1232–1238.CrossRefGoogle ScholarPubMed
Nocton, J. J., Dressler, F., Rutledge, B. J., et al. (1994). Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis. New England Journal of Medicine 330, 229–234.CrossRefGoogle ScholarPubMed
Norris, D. E., Klompen, J. S. H., Keirans, J. E., et al. (1996). Population genetics of Ixodes scapularis (Acari: Ixodidae) based on mitochondrial 16S and 12S genes. Journal of Medical Entomology 33, 78–89.CrossRefGoogle ScholarPubMed
Nowakowski, J., Schwartz, I., Liveris, D., et al. (2001). Laboratory diagnostic techniques for patients with early Lyme disease associated with erythema migrans: a comparison of different techniques. Clinical Infectious Diseases 33, 2023–2037.CrossRefGoogle ScholarPubMed
Nuncio, M. S., Péter, O., Alves, M. J., Bacellar, F. & Filipe, A. R. (1993). Isolamento e caracterizacão de borrélias de Ixodes ricinus L. em Portugal. Revista Portuguesa Doencas Infecciosas 16, 175–179.Google Scholar
Ogden, N. H., Nuttall, P. A. & Randolph, S. E. (1997). Natural Lyme disease cycles maintained via sheep by co-feeding ticks. Parasitology 115, 591–599.CrossRefGoogle ScholarPubMed
Ohnishi, J., Piesman, J. & Silva, A. M. (2001). Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proceedings of the National Academy of Sciences of the USA 98, 670–675.CrossRefGoogle ScholarPubMed
Oliver, J. H. Jr, Cummins, G. A. & Joiner, M. S. (1993 a). Immature Ixodes scapularis (Acari: Ixodidae) parasitizing lizards from the southeastern USA. Journal of Parasitology 79, 684–689.CrossRefGoogle Scholar
Oliver, J. H. Jr., Hutcheson, H. J., et al. (1993 b). Conspecificity of the ticks Ixodes scapularis and I. dammini (Acari: Ixodidae). Journal of Medical Entomology 30, 54–63.CrossRefGoogle Scholar
Olsen, B. (1995). Birds and Borrelia. Unpublished Ph.D. thesis, Umeå University, Umeå, Sweden.Google ScholarPubMed
Olsen, B., Duffy, D. C., Jaenson, T. G. T., et al. (1995 a). Transhemispheric exchange of Lyme disease spirochetes by seabirds. Journal of Clinical Microbiology 33, 3270–3274.Google ScholarPubMed
Olsen, B., Jaenson, T. G. T., Noppa, L., Bunikis, J. & Bergström, S. (1993). A Lyme borreliosis cycle in seabirds and Ixodes uriae ticks. Nature 362, 340–342.CrossRefGoogle ScholarPubMed
Olsen, B., Jaenson, T. G. T. & Bergström, S. (1995 b). Prevalence of Borrelia burgdorferi sensu lato-infected ticks on migrating birds. Applied and Environmental Microbiology 61, 3082–3087.Google ScholarPubMed
Olson, C. A., Cupp, E. W., Luckhart, S., Ribeiro, J. M. C. & Levy, C. (1992). Occurrence of Ixodes pacificus (Parasitoformes: Ixodidae) in Arizona. Journal of Medical Entomology 29, 1060–1062.CrossRefGoogle Scholar
Pal, U., Silva, A. M., Montgomery, R. R., et al. (2000). Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein A. Journal of Clinical Investigation 106, 561–569.CrossRefGoogle Scholar
Peavey, C. A. & Lane, R. S. (1995). Transmission of Borrelia burgdorferi by Ixodes pacificus nymphs and reservoir competence of deer mice (Peromyscus maniculatus) infected by tick-bite. Journal of Parasitology 81, 175–178.CrossRefGoogle ScholarPubMed
Peavey, C. A., Lane, R. S. & Kleinjan, J. E. (1997). Role of small mammals in the ecology of Borrelia burgdorferi in a peri-urban park in north coastal California. Experimental and Applied Acarology 21, 569–584.CrossRefGoogle Scholar
Perret, J. L., Guigoz, E., Rais, O. & Gern, L. (2000). Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitology Research 86, 554–557.CrossRefGoogle Scholar
Perret, J. L., Rais, O. & Gern, L. (2004). Influence of climate on the proportion of Ixodes ricinus nymphs and adults questing in a tick population. Journal of Medical Entomology 41, 361–365.CrossRefGoogle Scholar
Philipp, M. T., Bowers, L. C., Fawcett, P. T., et al. (2001). Antibody response to IR6, a conserved immunodominant region of the vlsE lipoprotein, wanes rapidly after antibiotic treatment of Borrelia burgdorferi infection in experimental animals and in humans. Journal of Infectious Diseases 184, 870–878.CrossRefGoogle ScholarPubMed
Phillips, C. B., Liang, M. H., Sangha, O., et al. (2001). Lyme disease and preventive behaviors in residents of Nantucket Island, Massachusetts. American Journal of Preventive Medicine 20, 219–224.CrossRefGoogle ScholarPubMed
Pichon, B., Godfroid, E., Hoyois, B., et al. (1995). Simultaneous infection of Ixodes ricinus by two Borrelia burgdorferi sensu lato species: possible implications for clinical manifestations. Emerging Infectious Diseases 1, 89–90.CrossRefGoogle ScholarPubMed
Picken, R. N. & Picken, M. M. (2000). Molecular characterization of Borrelia spp. isolates from greater metropolitan Chicago reveals the presence of Borrelia bissettii: preliminary report. Journal of Molecular Microbiology and Biotechnology 2, 505–507.Google Scholar
Picken, R. N., Strle, F., Picken, M. M., et al. (1998). Identification of three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B. garinii, and B. afzelii) among isolates from acrodermatitis chronica atrophicans lesions. Journal of Investigative Dermatology 110, 211–214.CrossRefGoogle Scholar
Piesman, J. (1989). Transmission of Lyme disease spirochetes (Borrelia burgdorferi). Experimental and Applied Acarology 7, 71–80.CrossRefGoogle Scholar
Piesman, J. & Gern, L. (2004). Lyme borreliosis in Europe and North America. Parasitology129 (Suppl.), S191–S220.Google ScholarPubMed
Piesman, J. & Spielman, A. (1979). Host-associations and seasonal abundance of immature Ixodes dammini in southeastern Massachusetts. Annals of the Entomological Society of America 72, 829–832.CrossRefGoogle Scholar
Piesman, J., Mather, T. N., Dammin, G. J., et al. (1987 a). Seasonal variation of transmission risk: Lyme disease and human babesiosis. American Journal of Epidemiology 126, 1187–1189.CrossRefGoogle ScholarPubMed
Piesman, J., Mather, T. N., Sinsky, R. J. & Spielman, A. (1987 b). Duration of tick attachment and Borrelia burgdorferi transmission. Journal of Clinical Microbiology 25, 557–558.Google ScholarPubMed
Piesman, J., Maupin, G. O., Campos, E. G. & Happ, C. M. (1991). Duration of adult female Ixodes dammini attachment and transmission of Borrelia burgdorferi, with description of a needle aspiration isolation method. Journal of Infectious Diseases 163, 895–897.CrossRefGoogle ScholarPubMed
Piesman, J., Schneider, B. S. & Zeidner, N. S. (2001). Use of quantitative PCR to measure the density of Borrelia burgdorferi in the midgut and salivary glands of feeding tick vectors. Journal of Clinical Microbiology 39, 4145–4148.CrossRefGoogle ScholarPubMed
Piesman, J., Spielman, A., Etkind, P., Ruebush, T. K. II & Juranek, D. D. (1979). Role of deer in the epizootiology of Babesia microti in Massachusetts, USA. Journal of Medical Entomology 15, 437–440.CrossRefGoogle Scholar
Porcella, S. F., Raffel, S. J., Schrumpf, M. E., et al. (2000). Serodiagnosis of louse-borne relapsing fever with glycerophosphodiester phosphodiesterase (GlpQ) from Borrelia recurrentis. Journal of Clinical Microbiology 38, 3561–3571.Google ScholarPubMed
Postic, D., Assous, M. V., Grimont, P. A. & Baranton, G. (1994). Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. International Journal of Systematic Bacteriology 44, 743–752.CrossRefGoogle ScholarPubMed
Postic, D., Korenberg, E., Gorelova, N., et al. (1997). Borrelia burgdorferi sensu lato in Russia and neighbouring countries: high incidence of mixed isolates. Research in Microbiology 148, 691–702.CrossRefGoogle ScholarPubMed
Postic, D., Ras, N. M., Lane, R. S., Hendson, M. & Baranton, G. (1998). Expanded diversity among California Borrelia isolates and description of Borrelia bissettii sp. nov. (formerly Borrelia group DN127). Journal of Clinical Microbiology 36, 3497–3504.Google Scholar
Pound, J. M., Miller, J. A. & George, J. E. (2000). Efficacy of amitraz applied to white-tailed deer by the ‘four-poster’ topical treatment device in controlling free-living lone star ticks (Acari: Ixodidae). Journal of Medical Entomology 37, 878–884.CrossRefGoogle Scholar
Poupon, M.-A., Lommano, E., Humair, P.-F., et al. (2006). Prevalence of Borrelia burgdorferi sensu lato in ticks collected from migratory birds in Switzerland. Applied and Environmental Microbiology 72, 976–979.CrossRefGoogle Scholar
Qiu, W. G., Dykhuizen, D. E., Acosta, M. S. & Luft, B. J. (2002). Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. Genetics 160, 833–849.Google ScholarPubMed
Ramamoorthi, N., Narasimhan, S., Pal, U., et al. (2005). The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436, 573–577.CrossRefGoogle ScholarPubMed
Randolph, S. E. & Craine, N. G. (1995). General framework for comparative quantitative studies on transmission of tick-borne diseases using Lyme borreliosis in Europe as an example. Journal of Medical Entomology 32, 765–777.CrossRefGoogle ScholarPubMed
Randolph, S. E. & Storey, K. (1999). Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. Journal of Medical Entomology 36, 741–748.CrossRefGoogle ScholarPubMed
Randolph, S. E., Gern, L. & Nuttall, P. A. (1996). Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitology Today 12, 472–479.CrossRefGoogle ScholarPubMed
Randolph, S. E., Green, R. M., Hoodless, A. N. & Peacey, M. F. (2002). An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. International Journal for Parasitology 32, 979–989.CrossRefGoogle ScholarPubMed
Randolph, S. E., Green, R. M., Peacey, M. F. & Rogers, D. J. (2000). Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121, 15–23.CrossRefGoogle ScholarPubMed
Rauter, C. & Hartung, T. (2005). Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: a metaanalysis. Applied and Environmental Microbiology 71, 7203–7216.CrossRefGoogle ScholarPubMed
Reik, L., Steere, A. C., Bartenhagen, N. H., Shope, R. E. & Malawista, S. E. (1979). Neurologic abnormalities of Lyme disease. Medicine (Baltimore) 58, 281–294.CrossRefGoogle ScholarPubMed
Rich, S. M., Armstrong, P. M., Smith, R. D. & Telford, S. R. III (2001). Lone star tick-infecting borreliae are most closely related to the agent of bovine borreliosis. Journal of Clinical Microbiology 39, 494–497.CrossRefGoogle ScholarPubMed
Rich, S. M., Caporale, D. A., Telford, S. R., et al. (1995). Distribution of the Ixodes ricinus-like ticks of eastern North America. Proceedings of the National Academy of Sciences of the USA 92, 6284–6288.CrossRefGoogle ScholarPubMed
Richter, D., Endepols, S., Ohlenbusch, A., et al. (1999). Genospecies diversity of Lyme disease spirochetes in rodent reservoirs. Emerging Infectious Diseases 5, 291–296.CrossRefGoogle ScholarPubMed
Richter, D., Postic, D., Sertour, N., et al. (2006). Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of B. spielmanii sp. nov. International Journal of Systematic and Evolutionary Microbiology 56, 873–881.CrossRefGoogle Scholar
Richter, D., Schlee, D. B., Allgover, R. & Matuschka, F. R. (2004). Relationships of a novel Lyme disease spirochete, Borrelia spielmanii sp. nov., with its hosts in Central Europe. Applied and Environmental Microbiology 70, 6414–6419.CrossRefGoogle Scholar
Richter, D., Schlee, D. B. & Matuschka, F. R. (2003). Relapsing fever-like spirochetes infecting European vector tick of Lyme disease agent. Emerging Infectious Diseases 9, 697–701.CrossRefGoogle ScholarPubMed
Richter, D., Spielman, A., Komar, N. & Matuschka, F. R. (2000). Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerging Infectious Diseases 6, 133–138.CrossRefGoogle ScholarPubMed
Rijpkema, S. G. T., Golubic, D., Molkenboer, M., Verbeeek-De Kruif, N. & Schellenkens, J. F. P. (1996). Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Experimental and Applied Acarology 20, 23–30.Google Scholar
Rijpkema, S. G. T., Molkenboer, M. J. C. H., Schouls, L. M., Jongejan, F. & Schellenkens, J. P. P. (1995). Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23 S rRNA genes. Journal of Clinical Microbiology 33, 3091–3095.Google Scholar
Robertson, J., Guy, E., Andrews, N., et al. (2000). A European multicenter study of immunoblotting in serodiagnosis of Lyme borreliosis. Journal of Clinical Microbiology 38, 2097–2102.Google ScholarPubMed
Rothermel, H., Hedges, T. R. III & Steere, A. C. (2001). Optic neuropathy in children with Lyme disease. Pediatrics 108, 477–481.CrossRefGoogle ScholarPubMed
Sarih, M., Jouda, F., Gern, L. & Postic, D. (2003). First isolation of Borrelia burgdorferi sensu lato from Ixodes ricinus ticks in Morocco. Vector Borne and Zoonotic Diseases 3, 133–139.CrossRefGoogle ScholarPubMed
Schneider, B. S., Zeidner, N. S., Burkot, T. R., Maupin, G. O. & Piesman, J. (2000). Borrelia isolates in northern Colorado identified as Borrelia bissettii. Journal of Clinical Microbiology 38, 3103–3105.Google ScholarPubMed
Schulze, T. L., Jordan, R. A. & Hung, R. W. (1995). Suppression of subadult Ixodes scapularis (Acari: Ixodidae) following removal of leaf litter. Journal of Medical Entomology 32, 730–733.CrossRefGoogle ScholarPubMed
Schulze, T. L., Jordan, R. A. & Hung, R. W. (1998). Comparison of Ixodes scapularis (Acari: Ixodidae) populations and their habitats in established and emerging Lyme disease areas in New Jersey. Journal of Medical Entomology 35, 64–70.CrossRefGoogle ScholarPubMed
Schulze, T. L., Jordan, R. A., Hung, R. W., et al. (2001). Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. Journal of Medical Entomology 38, 344–346.CrossRefGoogle ScholarPubMed
Schwan, T. G. & Piesman, J. (2002). Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks (Perspectives). Emerging Infectious Diseases 8, 115–121.CrossRefGoogle Scholar
Schwartz, I., Wormser, G. P., Schwartz, J. J., et al. (1992). Diagnosis of early Lyme disease by polymerase chain reaction amplification and culture of skin biopsies from erythema migrans lesions. Journal of Clinical Microbiology 30, 3082–3088.Google ScholarPubMed
Scoles, G. A., Papero, M., Beati, L. & Fish, D. (2001). A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne and Zoonotic Diseases 1, 21–34.CrossRefGoogle ScholarPubMed
Seinost, G., Dykhuizen, D. E., Dattwyler, R. J., et al. (1999). Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infection and Immunity 67, 3518–3524.Google ScholarPubMed
Sigal, L. H., Zahradnik, J. M., Lavin, P., et al. (1998). A vaccine consisting of recombinant Borrelia burgdorferi outer-surface protein A to prevent Lyme disease: recombinant outer surface protein A Lyme disease vaccine study consortium. New England Journal of Medicine 339, 216–222.CrossRefGoogle ScholarPubMed
Slajchert, T., Kitron, U. D., Jones, C. J. & Mannelli, A. (1997). Role of the eastern chipmunk (Tamias striatus) in the epizootiology of Lyme borreliosis in northwestern Illinois, USA. Journal of Wildlife Diseases 33, 40–46.CrossRefGoogle ScholarPubMed
Smith, R. P. JrRand, P. W., Lacombe, E. H., et al. (1993). Norway rats as reservoir hosts for Lyme disease spirochetes on Monhegan Island, Maine. Journal of Infectious Diseases 168, 687–691.CrossRefGoogle ScholarPubMed
Smith, R. P., Schoen, R. T., Rahn, D. W., et al. (2002). Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Annals of Internal Medicine 136, 421–428.CrossRefGoogle ScholarPubMed
Sonenshine, D. E. & Haines, G. (1985). A convenient method for controlling populations of the American dog tick, Dermacentor variabilis (Acari: Ixodidae), in the natural environment. Journal of Medical Entomology 22, 577–583.CrossRefGoogle Scholar
Sood, S. K., Salzman, M. B., Johnson, B. J. B., et al. (1997). Duration of tick attachment as a predictor of the risk of Lyme disease in an area in which Lyme disease is endemic. Journal of Infectious Diseases 175, 996–999.CrossRefGoogle Scholar
Spielman, A. (1988). Lyme disease and human babesiosis: evidence incriminating vector and reservoir hosts. In Biology of Parasitism, eds. Englund, P. T. & Sher, A., pp. 147–165. New York: Alan R. Liss.Google Scholar
Spielman, A., Clifford, C. M., Piesman, J. & Corwin, M. D. (1979). Human babesiosis on Nantucket Island: description of the vector, Ixodes (Ixodes) dammini, n. sp. (Acarina: Ixodidae). Journal of Medical Entomology 15, 218–234.CrossRefGoogle Scholar
Spielman, A., Levine, J. F. & Wilson, M. L. (1984). Vectorial capacity of North American Ixodes ticks. Yale Journal of Biology and Medicine 57, 507–513.Google ScholarPubMed
Spielman, A., Wilson, M. L., Levine, J. L. & Piesman, J. (1985). Ecology of Ixodes dammini-borne human babesiosis and Lyme disease. Annual Review of Entomology 30, 439–460.CrossRefGoogle ScholarPubMed
Stafford, K. C. III (1991). Effectiveness of carbaryl applications for the control of Ixodes dammini (Acari: Ixodidae) nymphs in an endemic residential area. Journal of Medical Entomology 28, 32–36.CrossRefGoogle Scholar
Stafford, K. C. III (1992). Third year evaluation of host-targeted permethrin for the control of Ixodes dammini (Acari: Ixodidae) in southeastern Connecticut. Journal of Medical Entomology 29, 717–720.CrossRefGoogle Scholar
Stafford, K. C. III (1993). Reduced abundance of Ixodes scapularis (Acari: Ixodidae) with exclusion of deer by electric fencing. Journal of Medical Entomology 30, 986–996.CrossRefGoogle ScholarPubMed
Stafford, K. C. III (1997). Pesticide use by licensed applicators for the control of Ixodes scapularis (Acari: Ixodidae) in Connecticut. Journal of Medical Entomology 34, 552–558.CrossRefGoogle Scholar
Stafford, K. C. III, Bladen, V. C. & Magnarelli, L. A. (1995). Ticks (Acari: Ixodidae) infesting wild birds (Aves) and white-footed mice in Lyme, CT. Journal of Medical Entomology 32, 453–466.CrossRefGoogle ScholarPubMed
Stafford, K. C. III, Denicola, A. J. & Magnarelli, L. A. (1996). Presence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in two populations of Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 33, 183–188.CrossRefGoogle Scholar
Stafford, K. C. III, Ward, J. S. & Magnarelli, L. A. (1998). Impact of controlled burns on the abundance of Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 35, 510–513.CrossRefGoogle Scholar
Stanczak, J., Kubica-Biernat, B., Racewicz, M., Kruminis-Lozowska, W. & Kur, J. (2000). Detection of three genospecies of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in different regions of Poland. International Journal of Microbiology 290, 559–566.Google ScholarPubMed
Stanek, G. & Kahl, O. (1999). Chemoprophylaxis for Lyme borreliosis?Zentralblatt für Bakteriologie 289, 655–695.CrossRefGoogle ScholarPubMed
Stanek, G., O'Connell, S., Cimmino, M., et al. (1996). European Union concerted action on risk assessment in Lyme borreliosis: clinical case definitions for Lyme borreliosis. Wiener klinische Wochenschrift 108, 741–747.Google ScholarPubMed
Stanek, G., Strle, J., Gray, J. & Wormser, G. P. (2002). History and characteristics of Lyme borreliosis. In Lyme Borreliosis: Biology, Epidemiology and Control, eds. Gray, J., Kahl, O., Lane, R. S. & Stanek, G., pp. 1–28. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Steele, G. M. & Randolph, S. E. (1985). An experimental evaluation of conventional control measures against the sheep tick, Ixodes ricinus (L.) (Acari: Ixodidae). I. A unimodal seasonal activity pattern. Bulletin of Entomological Research 75, 489–499.CrossRefGoogle Scholar
Steere, A. C. (1989). Lyme disease. New England Journal of Medicine 308, 586–596.CrossRefGoogle Scholar
Steere, A. C. (1994). Lyme borreliosis. In Thirteenth Edition Harrison's Principles of Internal Medicine, vol. 1, eds. Isselbacher, I., Braunwald, E., Wilson, J. D.et al., pp. 745–747. New York: McGraw-Hill.Google Scholar
Steere, A. C. (2001). Lyme disease. New England Journal of Medicine 345, 115–125.CrossRefGoogle ScholarPubMed
Steere, A. C. & Malawista, S. E. (1979). Cases of Lyme disease in the United States: locations correlated with distribution of Ixodes dammini. Annals of Internal Medicine 91, 730–733.CrossRefGoogle ScholarPubMed
Steere, A. C., Batsford, W. P., Weinberg, M., et al. (1980). Lyme carditis: cardiac abnormalities of Lyme disease. Annals of Internal Medicine 93, 8–16.CrossRefGoogle ScholarPubMed
Steere, A. C., Broderick, T. F. & Malawista, S. E. (1978). Erythema chronicum migrans and Lyme arthritis: epidemiologic evidence for a tick vector. American Journal of Epidemiology 108, 312–321.CrossRefGoogle ScholarPubMed
Steere, A. C., Malawista, S. E., Hardin, J. A., et al. (1977 a). Erythema chronicum migrans and Lyme arthritis: the enlarging clinical spectrum. Annals of Internal Medicine 86, 685–698.CrossRefGoogle ScholarPubMed
Steere, A. C., Malawista, S. E., Snydman, D. R., et al. (1977 b). Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three Connecticut communities. Arthritis and Rheumatology 20, 7–17.CrossRefGoogle ScholarPubMed
Steere, A. C., Sikand, V. K., Meurice, F., et al. (1998). Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant: Lyme disease vaccine study group. New England Journal of Medicine 339, 209–215.CrossRefGoogle ScholarPubMed
Stevenson, B., El-Hage, N., Mines, M. A., Miller, J. C. & Babb, K. (2002). Differential binding of host complement inhibition factor H by Borrelia burgdorferi erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infection and Immunity 70, 491–497.CrossRefGoogle Scholar
Stunzner, D., Hubalek, Z., Halouzka, J., et al. (1998). Prevalence of Borrelia burgdorferi s.l. in Ixodes ricinus ticks from Styria (Austria) and species identification by PCR-RFLP analysis. Zentralblatt für Bakteriologie 228, 471–478.CrossRefGoogle Scholar
Tälleklint, L. & Jaenson, T. G. T. (1993). Maintenance by hares of European Borrelia burgdorferi in ecosystems without rodents. Journal of Medical Entomology 30, 273–276.CrossRefGoogle ScholarPubMed
Tälleklint, L. & Jaenson, T. G. T. (1994). Transmission of Borrelia burgdorferi s.l. from mammal reservoirs to the primary vector of Lyme borreliosis, Ixodes ricinus (Acari: Ixodidae), in Sweden. Journal of Medical Entomology 31, 880–886.CrossRefGoogle Scholar
Tälleklint, L. & Jaenson, T. G. T. (1995). Control of Lyme borreliosis in Sweden by reduction of tick vectors: an impossible task?International Journal of Angiology 4, 34–37.CrossRefGoogle Scholar
Tälleklint, L. & Jaenson, T. G. T. (1996). Seasonal variations in density of questing Ixodes ricinus (Acari: Ixodidae) nymphs and prevalence of infection with Borrelia burgdorferi sl in south central Sweden. Journal of Medical Entomology 33, 592–597.CrossRefGoogle Scholar
Tälleklint-Eisen, L. & Lane, R. S. (1999). Variation in the density of questing Ixodes pacificus (Acari: Ixodidae) nymphs infected with Borrelia burgdorferi at different spatial scales in California. Journal of Parasitology 85, 824–831.CrossRefGoogle ScholarPubMed
Telford, S. R. III, Mather, T. N., Adler, G. H. & Spielman, A. (1990). Short-tailed shrews as reservoirs of the agents of Lyme disease and human babesiosis. Journal of Parasitology 76, 681–683.Google ScholarPubMed
Telford, S. R. III, Mather, T. N., Moore, S. L., Wilson, M. L. & Spielman, A. (1988). Incompetence of deer as reservoirs of the Lyme disease spirochete. American Journal of Tropical Medicine and Hygiene 39, 105–109.CrossRefGoogle ScholarPubMed
Toutoungi, L. N., Gern, L., Aeschlimann, A. & Debrot, S. (1991). A propos du genre Pholeoixodes, parasite des carnivores en Suisse. Acarologia 32, 311–328.Google Scholar
Toutoungi, L., Aeschlimann, A. & Gern, L. (1993). Biology of immature stages of Pholeoixodes hexagonus under laboratory conditions. Experimental and Applied Acarology 17, 655–662.CrossRefGoogle Scholar
Tsao, J. I., Wootton, J. R., Bunikis, J., et al. (2004). An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proceedings of the National Academy of Sciences of the USA 101, 18159–18164.CrossRefGoogle ScholarPubMed
Ullmann, A. J., Gabitzsch, E. S., Schulze, T. L., Zeidner, N. S. & Piesman, J. (2005). Three multiplex assays for detection of Borrelia burgdorferi sensu lato and Borrelia miyamotoi sensu lato in field-collected Ixodes nymphs in North America. Journal of Medical Entomology 42, 1057–1062.CrossRefGoogle ScholarPubMed
Dam, A. P., Kuiper, H., Vos, K., et al. (1993). Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clinical Infectious Disease 17, 708–717.Google ScholarPubMed
Dam, A. P., Oei, A., Jaspars, R., et al. (1997). Complement-mediated serum sensitivity among spirochetes that cause Lyme disease. Infection and Immunity 65, 1228–1236.Google ScholarPubMed
Varela, A. S., Luttrell, M. P., Howerth, E. W., et al. (2004). First culture isolation of Borrelia lonestari, putative agent of southern tick-associated rash illness. Journal of Clinical Microbiology 42, 1163–1169.CrossRefGoogle ScholarPubMed
Vasiliu, V., Herzer, P., Roessler, D., Lehnert, G. & Wilske, B. (1998). Heterogeneity of Borrelia burgdorferi sensu lato demonstrated by an ospA-type specific PCR in synovial fluid from patients with Lyme arthritis. Medical Microbiology and Immunology 187, 97–102.CrossRefGoogle ScholarPubMed
Walker, A. R. (2001). Age structure of a population of Ixodes ricinus (Acari: Ixodidae) in relation to its seasonal questing. Bulletin of Entomological Research 91, 69–78.Google ScholarPubMed
Wang, G., Dam, A. P. & Dankert, J. (1999 a). Phenotypic and genetic characterization of a novel Borrelia burgdorferi sensu lato isolate from a patient with Lyme borreliosis. Journal of Clinical Microbiology 37, 3025–3028.Google ScholarPubMed
Wang, G., Dam, A. P., Fleche, A., et al. (1997). Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and Ml9). International Journal of Systematic Bacteriology 47, 926–932.CrossRefGoogle Scholar
Wang, G., Dam, A. P., Schwartz, I. & Dankert, J. (1999 b). Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological and clinical implications. Clinical Microbiology Review 12, 633–635.Google ScholarPubMed
Weber, K. & Pfister, H.-W. (1993). History of Lyme borreliosis in Europe. In Aspects of Lyme Borreliosis, eds. Weber, K. & Burgdorfer, W., pp. 1–20. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Weisbrod, A. R. & Johnson, R. C. (1989). Lyme disease and migrating birds in the Saint Croix River Valley. Applied and Environmental Microbiology 55, 1921–1924.Google ScholarPubMed
Westrom, D. R., Lane, R. S. & Anderson, J. R. (1985). Ixodes pacificus (Acari: Ixodidae): population dynamics and distribution on Columbian black-tailed deer (Odocoileus hemionus columbianus). Journal of Medical Entomology 22, 507–511.CrossRefGoogle Scholar
Will, G., Jauris-Heipke, S., Schwab, E., et al. (1995). Sequence analysis of ospA genes shows homogeneity within Borrelia burgdorferi sensu stricto and Borrelia afzelii strains but reveals major subgroups within the Borrelia garinii species. Medical Microbiology and Immunology 184, 73–80.CrossRefGoogle ScholarPubMed
Wilske, B., Busch, U., Eiffert, H., et al. (1996). Diversity of OspA and OspC among cerebrospinal fluid isolates of Borrelia burgdorferi sensu lato from patients with neuroborreliosis in Germany. Medical Microbiology and Immunology 184, 195–201.CrossRefGoogle ScholarPubMed
Wilske, B., Jauris-Heipke, S., Lobentanzer, R., et al. (1995). Phenotypic analysis of outer surface protein C (OspC) of Borrelia burgdorferi sensu lato by monoclonal antibodies: relationship to genospecies and OspA serotype. Journal of Clinical Microbiolology 33, 103–109.Google ScholarPubMed
Wilske, B., Preac-Mursic, V., Göbel, B. U., et al. (1993). An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. Journal of Clinical Microbiolology 31, 340–350.Google ScholarPubMed
Wilson, M. L. (1986). Reduced abundance of adult Ixodes dammini (Acari: Ixodidae) following destruction of vegetation. Journal of Economic Entomology 79, 693–696.CrossRefGoogle ScholarPubMed
Wilson, M. L., Adler, G. H. & Spielman, A. (1985). Correlation between deer abundance and that of the deer tick Ixodes dammini (Acari: Ixodidae). Annals of the Entomological Society of America 78, 172–176.CrossRefGoogle Scholar
Wilson, M. L., Telford, S. R. III, Piesman, J. & Spielman, A. (1988). Reduced abundance of immature Ixodes dammini (Acari: Ixodidae) following elimination of deer. Journal of Medical Entomology 25, 224–228.CrossRefGoogle ScholarPubMed
Wormser, G. P., Bittker, S., Cooper, D., et al. (2001). Yield of large-volume blood cultures in patients with early Lyme disease. Journal of Infectious Diseases 184, 1070–1072.CrossRefGoogle ScholarPubMed
Wormser, G. P., Dattwyler, R. J., Shapiro, E. D., et al. (2006). The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clinical Infectious Diseases 43, 1089–1134.CrossRefGoogle ScholarPubMed
Wormser, G. P., Liveris, D., Nowakowski, J., et al. (1999). Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination of early Lyme disease. Journal of Infectious Diseases 180, 720–725.CrossRefGoogle ScholarPubMed
Wormser, G. P., Nadelman, R. D., Dattwyler, R. J., et al. (2000). Practice guidelines for the treatment of Lyme disease. Clinical Infectious Diseases 31 (Suppl.), S1–S14.CrossRefGoogle ScholarPubMed
Wright, S. A., Thompson, M. A., Miller, M. J., et al. (2000). Ecology of Borrelia burgdorferi in ticks (Acari: Ixodidae), rodents, and birds in the Sierra Nevada foothills, Placer County, California. Journal of Medical Entomology 37, 909–918.CrossRefGoogle Scholar
Younsi, H., Postic, D., Baranton, G. & Bouattour, A. (2001). High prevalence of Borrelia lusitaniae in Ixodes ricinus ticks in Tunisia. European Journal of Epidemiology 17, 53–56.CrossRefGoogle ScholarPubMed
Yuval, B. & Spielman, A. (1990). Duration and regulation of the development cycle of Ixodes dammini (Acari: Ixodidae). Journal of Medical Entomology 27, 196–201.CrossRefGoogle Scholar
Zeidner, N. S., Nuncio, M. S., Schneider, B. S., et al. (2001). A Portuguese isolate of Borrelia lusitaniae induces disease in C3H/HeN mice. Journal of Medical Microbiology 50, 1055–1060.CrossRefGoogle ScholarPubMed
Zhioua, E., Bouattour, A., Hu, C. M., et al. (1999). Infections of Ixodes ricinus (Acari: Ixodidae) by Borrelia burgdorferi sensu lato in North Africa (Tunisia). Journal of Medical Entomology 36, 216–218.CrossRefGoogle Scholar
Zhioua, E., Lebrun, R. A., Ginsberg, H. S. & Aeschlimann, A. (1995). Pathogenicity of Steinernema carpocapsae and S. glaseri (Nematoda: Steinernematidae) to Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 32, 900–905.CrossRefGoogle Scholar
Zhu, Z. (1998). Histological observations on Borrelia burgdorferi growth in naturally infected female Ixodes ricinus. Acarologia 39, 11–22.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×