Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-30T11:27:02.062Z Has data issue: false hasContentIssue false

21 - Pheromones and other semiochemicals of ticks and their use in tick control

Published online by Cambridge University Press:  21 August 2009

D. E. Sonenshine
Affiliation:
Department of Biological Sciences, 45th Street and Elkhorn Avenue, Old Dominion University, Norfolk, Virginia 2329 USA
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

In ticks, as in most animals, chemical mediators guide behaviour. These information-bearing compounds, known as semiochemicals, are secreted external to the animal body and, when recognized, direct a specific behavioural response such as food and mate location, escape and other behaviours. Chemical signalling between individuals is clearly one of the earliest types of information exchange to appear in the long history of life on Earth, long before visual or auditory stimuli developed. Indeed, chemical communication via semiochemicals remains the dominant form of communication among many animals. Despite similarities with cell signalling (e.g. cytokines) among the cells of the metazoan animal, or hormones (e.g. ecydsteroids) that stimulate specific physiological responses (e.g. moulting), semiochemicals are fundamentally different in that they are secreted outside of the animal body, are recognized externally and modify the behaviour of the entire individual. With the advances in modern chemistry, biochemistry and molecular biology during the past several decades, a vast literature has accumulated concerning the variety of semiochemicals, their chemical composition, biosynthesis, secretion and perception, and the varying biological roles that these compounds regulate.

Collectively, the repertoire of chemical compounds used within a species or among competing species forms a simple chemical communication system, or chemical language. In many species, this chemical language consists of an ordered hierarchy of specific compounds that are secreted and perceived in a precise, sequential order leading to a desired end result. In others, a single compound (e.g.

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 470 - 491
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Rahman, M. S., Fahmy, M. M. & Aggour, M. G. (1998). Trials for control of ixodid ticks using pheromone–acaricide tick decoys. Journal of the Egyptian Society of Parasitology 28, 551–557.Google ScholarPubMed
Allan, S. A. & Sonenshine, D. E. (2002). Evidence of an assembly pheromone in the black-legged deer tick, Ixodes scapularis. Journal of Chemical Ecology 28, 15–27.CrossRefGoogle Scholar
Allan, S. A., Barré, N., Sonenshine, D. E. & Burridge, M. J. (1998). Efficacy of tags impregnated with pheromone and acaricides for control of Amblyomma variegatum. Medical and Veterinary Acarology 12, 141–150.Google Scholar
Allan, S. A., Phillips, J. S. & Sonenshine, D. E. (1989). Species recognition elicited by differences in composition of the genital sex pheromone in Dermacentor variablis and Dermacentor andersoni (Acari: Ixodidae). Journal of Medical Entomology 26, 539–546.CrossRefGoogle Scholar
Allan, S. A., Phillips, J. S. & Sonenshine, D. E. (1991). Amblyomma americanum and Amblyomma maculatum (Acari: Ixodidae): role of genital sex pheromones. Experimental and Applied Acarology 11, 9–21.CrossRefGoogle ScholarPubMed
Allan, S. A., Phillips, J. S., Taylor, D. E. & Sonenshine, D. E. (1988). Genital sex pheromones of ixodid ticks: evidence for the role of fatty acids from the anterior reproductive tract in mating of Dermacentor variabilis and Dermacentor andersoni. Journal of Insect Physiology 34, 315–323.CrossRefGoogle Scholar
Allan, S. A., Sonenshine, D. E. & Burridge, M. J. (2002). Tick pheromones and uses thereof. United States Patent Office, Patent No. 6,331,297.Google Scholar
Apps, P. J., Viljoen, H. W. & Pretorius, V. (1988). Aggregation pheromones of the bont tick Amblyomma hebraeum: identification of candidates for bioassay. Onderstepoort Journal of Veterinary Research 55, 135–137.Google ScholarPubMed
Ayasse, M., Paxton, R. J. & Tengo, J. (1995). Mating behavior and chemical communication in the order Hymenoptera. Annual Review of Entomology 46, 31–78.CrossRefGoogle Scholar
Barré, N., Garris, G. I. & Lorvelec, O. (1997). Field sampling of the tick Amblyomma variegatum (Acari: Ixodidae) on pastures in Guadeloupe: attraction of CO2 and/or tick pheromones and conditions of use. Experimental and Applied Acarology 21, 95–108.CrossRefGoogle ScholarPubMed
Berger, R. S. (1972). 2,6-Dichlorophenol, sex pheromone of the lone star tick. Science 177, 704–705.CrossRefGoogle ScholarPubMed
Blum, M. S. (1985). Fundamentals of Insect Physiology. New York: John Wiley.Google Scholar
Cardé, R. T. & Baker, T. C. (1984). Sexual communication with pheromones. In Chemical Ecology of Insects, eds. Bell, W. C. & Cardé, R. T., pp. 355–383. Sunderland, MA: Sinauer Associates.CrossRefGoogle Scholar
Carroll, J. F., Mills, G. D. & Schmidtmann, E. T. (1996). Field and laboratory responses of adult Ixodes scapularis (Acari: Ixodidae) to kairomones produced by white-tailed deer. Journal of Medical Entomology 33, 640–644.CrossRefGoogle ScholarPubMed
Bruyne, M. & Guerin, P. M. (1998). Contact chemostimuli in the mating behaviour of the cattle tick, Boophilus microplus. Archives of Insect Biochemistry and Physiology 39, 65–80.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Diehl, P. A., Guerin, P. M., Vlimant, M. M. & Steullet, P. (1991). Biosynthesis, production site and emission rates of the aggregation–attachment pheromone in males of two Amblyomma ticks. Journal of Chemical Ecology 17, 833–847.CrossRefGoogle Scholar
Dinnik, J. & Zumpt, F. (1949). The integumentary sense organs of the larvae of the Rhipicephalinae (Acarina). Psyche 56, 1–17.CrossRefGoogle Scholar
Dusbábek, F., Simek, P., Jegorov, A. & Troska, J. (1991). Identification of xanthine and hypoxanthine as components of assembly pheromone in excreta of argasid ticks. Experimental and Applied Acarology 11, 307–316.CrossRefGoogle ScholarPubMed
Evenden, M. L., Judd, J. R. & Borden, J. H. (1999). A synomone imparting distinct sex pheromone communication channels for Choristoneura rosaceana (Harris) and Pandemis limitata (Robinson) (Lepidoptera: Tortricidae). Chemoecology 9, 73–80.CrossRefGoogle Scholar
Fauvergue, X., Hopper, K. R. & Antolin, M. F. (1995). Mate finding via a trial sex pheromone by a parasitoid wasp. Proceedings of the National Academy of Sciences of the USA 92, 900–904.CrossRefGoogle Scholar
Gladney, W. J., Gabbe, R. R., Ernst, S. E. & Oehler, D. D. (1974). The Gulf Coast tick: evidence of a pheromone produced by males. Journal of Medical Entomology 11, 303–306.CrossRefGoogle ScholarPubMed
Gothe, R. & Neitz, A. W. H. (1985). Investigation into the participation of male pheromones of Rhipicephalus evertsi evertsi during infestation. Onderstepoort Journal of Veterinary Research 52, 6–70.Google ScholarPubMed
Graf, J. F. (1974). Ecologie et éthologie d'Ixodes ricinus L. en Suisse (Ixodoidea: Ixodidae). III. Copulation, nutrition et ponte. Acarologia 16, 636–642.Google Scholar
Graf, J. F. (1978). Ecologie et éthologie d'lxodes ricinus L. en Suisse (Ixodoidea: Ixodidae). III. Bulletin de la Société Entomologique Suisse 51, 241–253.Google Scholar
Grenacher, S., Kröber, T., Guerin, P. M. & Vlimant, M. (2001). Behavioral and chemoreceptor cell responses of the tick, Ixodes ricinus to its own faeces and faecal constituents. Experimental and Applied Acarology 25, 641–660.CrossRefGoogle ScholarPubMed
Haggart, D. A. & Davis, E. E. (1979). Electrophysiological responses of two types of ammonia-sensitive receptors on the first tarsi of ticks. In Recent Advances in Acarology, ed. Rodriguez, J. G., pp. 421–425. New York: Academic Press.Google Scholar
Haggart, D. A. & Davis, E. E. (1981 a). Ammonia-sensitive neurons on the first tarsi of the tick, Rhipicephalus sanguineus. Journal of Insect Physiology26, 51–523.Google Scholar
Haggart, D. A. & Davis, E. E. (1981 b). Neurons sensitive to 2,6-dichlorophenol on the tarsi of the tick, Amblyomma americanum (Acari: Ixodidae). Journal of Medical Entomology 18, 187–193.CrossRefGoogle Scholar
Hamilton, J. G. C., Papadopoulos, E., Harrison, S. J., Lloyd, C. M. & Walker, A. R. (1994). Evidence for a mounting sex pheromone in the brown ear tick Rhipicephalus appendiculatus, Neuman 1901 (Acari: Ixodidae). Experimental and Applied Acarology 18, 331–338.CrossRefGoogle Scholar
Hamilton, J. G. C. & Sonenshine, D. E. (1988). Evidence for the occurrence of mounting sex pheromone on the body surface of female Dermacentor variabilis (Say) (Acari: Ixodidae). Journal of Chemical Ecology 14, 401–410.Google Scholar
Hamilton, J. G. C. & Sonenshine, D. E. (1989). Methods and apparatus for controlling arthropod populations. United States Patent Office, Patent No. 4,884,361.Google Scholar
Harris, W. G. & Burns, E. C. (1977). Predation of the lone star tick by the imported fire ant. Environmental Entomology 1, 362–365.CrossRefGoogle Scholar
Healy, T. P., Copland, M. J., Cork, A., Przvborowska, A. & Halket, J. (2002). Landing responses of Anopheles gambiae elicited by oxocarboxylic acids. Medical and Veterinary Entomology 16, 126–132.CrossRefGoogle ScholarPubMed
Holscher, K. H., Gearhart, H. L. & Barker, R. W. (1980). Electrophysiological responses of three tick species to carbon dioxide in the laboratory and field. Annals of the Entomological Society of America 73, 288–292.CrossRefGoogle Scholar
Khalil, G. M. (1984). Fecundity-reducing pheromone in Argas (Persicargas) arboreus (Ixodoidea: Argasidae). Parasitology 88, 395–402.CrossRefGoogle Scholar
Kiszewski, A. E., Matuschka, F. R. & Spielman, A. (2001). Mating strategies and spermiogenesis in ixodid ticks. Annual Review of Entomology 46, 167–182.CrossRefGoogle ScholarPubMed
Leahy, M. G., Hajkova, Z. & Bourchalova, J. (1981). Two female pheromones in the metastriate ticks, Hyalomma dromedarii (Acarina: Ixodidae). Acta Entomologica Bohemoslavia 78, 224–230.Google Scholar
Leahy, M. G., Karuhize, G., Mango, C. C. & Galun, R. (1975). An assembly pheromone and its perception in the tick, Ornithodoros moubata (Murray) (Acari: Argasidae). Journal of Medical Entomology 12, 284–287.CrossRefGoogle Scholar
Leahy, M. G., Vandehay, R. & Galun, R. (1973). Assembly pheromones in the soft tick, Argas persicus (Olsen). Nature 246, 515–517.CrossRefGoogle Scholar
Linthicum, K. J. & Bailey, C. L. (1994). Ecology of Crimean–Congo hemorrhagic fever. In Ecological Dynamics of Tick-Borne Zoonoses, eds. Sonenshine, D. E. & Mather, T. N., pp. 392–437. New York: Oxford University Press.Google Scholar
Lusby, W. R., Sonenshine, D. E., Yunker, C. E., Norval, R. A. I. & Burridge, M. J. (1991). Comparison of known and suspected pheromonal constituents in males of the African ticks Amblyomma hebraeum Koch and Amblyomma variegatum (Fabricius). Experimental and Applied Acarology 13, 143–152.CrossRefGoogle Scholar
McMahon, C., Guerin, P. M. & Syed, Z. 2001. 1-Octen-3-ol isolated from bont ticks attracts Amblyomma variegatum. Journal of Chemical Ecology 27, 471–486.CrossRefGoogle ScholarPubMed
Mohamed, F. S. A., Khalil, G. M., Marzouk, A. S. & Roshdy, M. A. (1990). Sex pheromone recognition of mating behavior in the tick Ornithodoros (Ornithodoros) savignyi (Audouin) (Acari: Argasidae). Journal of Medical Entomology 27, 288–294.CrossRefGoogle Scholar
Neitz, A. W. H. & Gothe, R. (1984). Investigations into the volatility of female pheromones and the aggregation-inducing property of guanine in Argas (Persicargas) walkerae. Onderstepoort Journal of Veterinary Research 54, 197–201.Google Scholar
Norval, R. A. I., Andrew, H. R. & Yunker, C. E. (1989). Pheromone mediation of host selection in bont ticks (Amblyomma hebraeum Koch). Science 243, 364–365.CrossRefGoogle Scholar
Norval, R. A. I., Peter, T., Meltzer, M. I., Sonenshine, D. E. & Burridge, M. J. (1992 b). Response of the ticks Amblyomma hebraeum and A. variegatum to known or potential components of the aggregation–attachment pheromone. IV. Attachment stimulation of nymphs. Experimental and Applied Acarology 16, 247–253.CrossRefGoogle ScholarPubMed
Norval, R. A. I., Peter, T., Yunker, C. E., Sonenshine, D. E. & Burridge, M. J. (1991 a). Response of the ticks Amblyomma hebraeum and A. variegatum to known or potential components of the aggregation–attachment pheromone. I. Long-range attraction. Experimental and Applied Acarology 13, 11–18.CrossRefGoogle Scholar
Norval, R. A. I., Peter, T., Yunker, C. E., Sonenshine, D. E. & Burridge, M. J. (1991 b). Response of the ticks Amblyomma hebraeum and A. variegatum to known or potential components of the aggregation–attachment pheromone. II. Attachment stimulation. Experimental and Applied Acarology 13, 19–26.CrossRefGoogle Scholar
Norval, R. A. I., Peter, T., Yunker, C. E., Sonenshine, D. E. & Burridge, M. J. (1992 a). Response of the ticks Amblyomma hebraeum and A. variegatum to known or potential components of the aggregation–attachment pheromone. III. Aggregation. Experimental and Applied Acarology 16, 237–245.CrossRefGoogle ScholarPubMed
Norval, R. A. I., Sonenshine, D. E., Allan, S. A. & Burridge, M. J. (1996). Efficacy of pheromone–acaricide impregnated tail-tag decoys for control of bont ticks, Amblyomma hebraeum, on cattle in Zimbabwe. Experimental and Applied Acarology 20, 31–46.Google ScholarPubMed
Obenchain, F. D. (1984). Behavioral interactions between the sexes and aspects of species specificity pheromone mediated aggregation and attachment in Amblyomma. In Acarology, vol. 1, eds. Griffith, D. A. & Bowman, C. E., pp. 387–392. Chichester, UK: Ellis Horwood.Google Scholar
Osterkamp, J., Wahl, U., Schmalfuss, G. & Haas, W. (1999). Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles. Journal of Comparative Physiology A 185, 59–67.CrossRefGoogle Scholar
Otieno, D. A., Hassanali, A., Obenchain, F. D., Steinberg, A. & Galun, R. (1985). Identification of guanine as an assembly pheromone of ticks. Insect Science Applications 6, 667–670.Google Scholar
Pavis, C. & Barré, N. (1993). Kinetics of male pheromone production by Amblyomma variegatum (Acari: Ixodidae). Journal of Medical Entomology 30, 961–965.CrossRefGoogle Scholar
Perritt, D. W., Couger, G. & Barker, R. W. (1993). Computer-controlled olfactometer system for studying behavioral responses of ticks to carbon dioxide. Journal of Medical Entomology 30, 571–578.CrossRefGoogle ScholarPubMed
Phillips, J. S. & Sonenshine, D. E. (1993). Role of the male claw sensilla in perception of female mounting sex pheromone in Dermacentor variabilis, Dermacentor andersoni and Amblyomma americanum. Experimental and Applied Acarology 17, 631–653.CrossRefGoogle Scholar
Price, T. L. Jr, Sonenshine, D. E., Norval, R. A. I., Yunker, C. E. & Burridge, M. J. (1994). Pheromonal composition of two species of African Amblyomma ticks: similarities, differences and possible species specific components. Experimental and Applied Acarology 18, 37–50.CrossRefGoogle ScholarPubMed
Rechav, Y. & Whitehead, G. B. (1978). Field trials with pheromone–acaricide mixtures for control of Amblyomma hebraeum. Journal of Economic Entomology 71, 149–151.CrossRefGoogle Scholar
Rechav, Y., Goldberg, M. & Fielden, L. J. (1997). Evidence for attachment pheromone in the Cayenne tick (Acari: Ixodidae). Journal of Medical Entomology 34, 234–237.CrossRefGoogle Scholar
Rechav, Y., Norval, R. A. I., Tannock, J. & Colborne, J. (1978). Attraction of the tick Ixodes neitzi to twigs marked by the klipspringer antelope. Nature 275, 310–311.CrossRefGoogle Scholar
Rechav, Y., Parolis, H., Whitehead, G. B. & Knight, M. M. (1977). Evidence of an assembly pheromone(s) produced by males of the bont tick Amblyomma hebraeum (Acarina: Ixodidae). Journal of Medical Entomology 14, 71–78.CrossRefGoogle Scholar
Roelofs, W. L. (1995). Chemistry of sex attraction. Proceedings of the National Academy of Sciences of the USA 92, 44–49.CrossRefGoogle ScholarPubMed
Schlein, Y. & Gunders, A. E. (1981). Pheromone of Ornithodoros spp. (Argasidae) in the coxal fluid of female ticks. Parasitology 83, 467–471.CrossRefGoogle Scholar
Schöni, R., Hess, E., Blum, W. & Ramstein, K. (1984). The aggregation–attachment pheromone of the tropical bont tick Amblyomma variegatum Fabricius (Acari: Ixodidae): isolation, identification and action of its components. Journal of Insect Physiology 30, 613–618.CrossRefGoogle Scholar
Sobby, H., Aggour, M. G., Sonenshine, D. E. & Burridge, M. J. (1994). Cholesteryl esters on the body surface of the camel tick Hyalomma dromedarii (Koch, 1844) and the brown dog tick, Rhipicephalus sanguineus (Latreille, 1806). Experimental and Applied Acarology 18, 265–280.CrossRefGoogle Scholar
Sonenshine, D. E. (1985). Pheromones and other semiochemicals of the Acari. Annual Review of Entomology 30, 1–28.CrossRefGoogle ScholarPubMed
Sonenshine, D. E. (1991). Biology of Ticks, vol. 1. Oxford, UK: Oxford University Press.Google Scholar
Sonenshine, D. E. (1993). Biology of Ticks, vol. 2. Oxford, UK: Oxford University Press.Google Scholar
Sonenshine, D. E., Adams, T., Sallan, S. A., McLaughlin, J. R. & Webster, F. X. (2003). Chemical composition of some components of the arrestment pheromone of the black-legged tick, Ixodes scapularis (Acari: Ixodidae) and their use in tick control. Journal of Medical Entomology 40, 849–859.CrossRefGoogle ScholarPubMed
Sonenshine, D. E., Hamilton, J. G. C. & Lusby, W. R. (1992). Use of cholesteryl esters as mounting sex pheromone in combination with 2,6-dichlorophenol and pesticides to control populations of hard ticks. United States Patent Office, Patent No. 5,149,526.Google Scholar
Sonenshine, D. E., Hamilton, J. G. C., Phillips, J. S. & Lusby, W. R. (1991). Mounting sex pheromone: its role in regulation of mate recognition in the Ixodidae. In Modern Acarology, eds. Dusbabek, F. & Bukva, V., vol. 1, pp. 69–78. The Hague: SPB Academic Publishing.Google Scholar
Sonenshine, D. E., Homsher, P. J., Dees, W. H., Carson, K. A. & Wang, V. B. (1984). Evidence of the role of the cheliceral digits in the perception of genital sex pheromones during mating in the American dog tick, Dermacentor variabilis (Say). Journal of Medical Entomology 21, 296–306.CrossRefGoogle Scholar
Sonenshine, D. E., Khalil, G. M., Homsher, P. J., et al. (1983). Development, ultrastructure and activity of the foveal glands and foveae dorsales of the camel tick, Hyalomma dromedarii (Acari: Ixodidae). I. Journal of Medical Entomology 20, 424–439.CrossRefGoogle Scholar
Sonenshine, D. E., Taylor, D. & Corrigan, G. (1985). Studies to evaluate the effectiveness of sex pheromone impregnated formulations for control of populations of the American dog tick Dermacentor variabilis (Say) (Acari: Ixodidae). Experimental and Applied Acarology 1, 23–34.CrossRefGoogle Scholar
Steullet, P. & Guerin, P. M. (1992 a). Perception of breath components by the tropical bont tick Amblyomma variegatum Fabricius (Ixodidae). I. CO2-excited and CO2-inhibited receptors. Journal of Comparative Physiology A 170, 665–676.CrossRefGoogle ScholarPubMed
Steullet, P. & Guerin, P. M. (1992 b). Perception of breath components by the tropical bont tick Amblyomma variegatum Fabricius (Ixodidae). II. Sulfide receptors. Journal of Comparative Physiology A 170, 677–685.CrossRefGoogle ScholarPubMed
Steullet, P. & Guerin, P. M. (1994). Identification of vertebrate volatiles stimulating olfactory receptors on tarsus I of the tick Amblyomma variegatum Fabricius (Ixodidae). II. Receptors outside the Haller's organ capsule. Journal of Comparative Physiology A 174, 39–47.CrossRefGoogle Scholar
Stowe, M. K., Turlings, T. C., Loughrin, J. H., Lewis, W. J. & Tumlinson, J. H. (1995). The chemistry of eavesdropping, alarm and deceit. Proceedings of the National Academy of Sciences of the USA 92, 23–28.CrossRefGoogle ScholarPubMed
Taylor, D., Phillips, J. S., Allan, S. A. & Sonenshine, D. E. (1987). Absence of assembly pheromones in the hard ticks, Dermacentor variabilis and Dermacentor andersoni (Acari: Ixodidae). Journal of Medical Entomology 24, 628–632.CrossRefGoogle Scholar
Taylor, D., Sonenshine, D. E. & Phillips, J. S. (1991). Ecdysteroids as a component of the genital sex pheromone in two species of hard ticks, Dermacentor variabilis (Say) and Dermacentor andersoni Stiles (Acari: Ixodidae). Experimental and Applied Acarology 12, 275–296.CrossRefGoogle Scholar
Tkachev, A. V., Dobrotvorsky, A. K., Vjalkov, A. I. & Morozov, S. V. (2000). Chemical composition of lipophylic compounds from the body surface of adult Ixodes persulcatus ticks (Acari: Ixodidae). Experimental and Applied Acarology 24, 145–158.CrossRefGoogle Scholar
Treverrow, N. L., Stone, B. F. & Cowie, M. (1977). Aggregation pheromone in two Australian hard ticks, Ixodes holocyclus and Aponomma concolor. Experientia 33, 680–682.CrossRefGoogle Scholar
Wheeler, J. W. (1976). Insect and mammalian pheromones. Lloydia 39, 53–59.Google ScholarPubMed
Wilkinson, P. R. (1970). Factors affecting the distribution and abundance of the cattle tick in Australia: observations and hypotheses. Acarologia 3, 492–508.Google Scholar
Yoder, J. A. & Domingus, J. L. (2003). Identification of hydrocarbons that protect ticks (Acari: Ixodidae) against fire ants (Hymenoptera: Formicidae) but not lizards (Squamata: Polychrotidae), in allomonal defense secretion. International Journal of Acarology 29, 87–91.CrossRefGoogle Scholar
Yoder, J. A. & Knapp, D. C. (1999). Cluster-promoted water conservation by larvae of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). International Journal of Acarology 25, 5–57.CrossRefGoogle Scholar
Yoder, J. A. & Stevens, B. W. (2000). Attraction of immature stages of the American dog tick (Dermacentor variabilis) to 2,6-dichlorophenol. Experimental and Applied Acarology 24, 159–164.CrossRefGoogle Scholar
Yoder, J. A., Atwood, A. D. & Stevens, B. W. (1998). Attraction to squalene by ticks (Acari: Ixodidae): first demonstration of a host-derived attractant. International Journal of Acarology 24, 143–147.CrossRefGoogle Scholar
Yoder, J. A., Hanson, P. E., Pizzuli, J. L., Sanders, C. I. & Domingus, J. L. (2002). Sex pheromone production and its relationship to water conservation: studies on a trichlorophenol in the American dog tick, Dermacentor variabilis (Acari: Ixodidae). International Journal of Acarology (submitted).CrossRefGoogle Scholar
Yoder, J. A., Pollack, R. J. & Spielman, A. (1993 a). An ant-diversionary secretion of ticks: first demonstration of an acarine allomone. Journal of Insect Physiology 39, 42–435.CrossRefGoogle Scholar
Yoder, J. A., Pollack, R. J., Spielman, A., Sonenshine, D. E. & Johnston, D. E. (1993 b). Secretion of squalene by ticks. Journal of Insect Physiology 39, 291–296.CrossRefGoogle Scholar
Yoder, J. A., Stevens, B. W. & Crouch, K. C. (1999). Squalene: a naturally abundant mammalian skin secretion and long distance tick-attractant. Journal of Medical Entomology 36, 526–529.CrossRefGoogle ScholarPubMed
Yoder, J. A., Wittenberg, T. L. & Blomquist, G. J. (1997). Dietary contribution to the defense secretion of ixodid ticks. In Acarology IX, Proceedings, eds. Mitchell, R., Horn, D. J., Needham, G. R. & Welbourn, W. C., pp. 713–714. Columbus, OH: Ohio Biological Survey.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×