Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-06T00:07:11.546Z Has data issue: false hasContentIssue false

6 - Tick lectins and fibrinogen-related proteins

Published online by Cambridge University Press:  21 August 2009

L. Grubhoffer
Affiliation:
Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic
R. O. M. Rego
Affiliation:
Laboratory of Zoonotic Pathogens Rocky Mountain Laboratories NIAID NIH 903 South 4th Street Hamilton MT 59840 USA
O. Hajdušek
Affiliation:
Faculty of Biological Sciences University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic
V. Hypša
Affiliation:
Faculty of Biological Sciences University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic
V. Kovář
Affiliation:
Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic
N. Rudenko
Affiliation:
Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic
J. H. Oliver
Affiliation:
Georgia Southern University Institute of Arthropodology and Parasitology P.O. Box 8056 Statesboro GA 30460 USA
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

Tissue-specific lectin/haemagglutinin activities have been investigated for both soft and hard ticks, although there are comparatively few papers published. Some tick lectins are proteins with binding affinity for sialic acid, various derivatives of hexosamines and different glycoconjugates. Most tick lectin/haemagglutinin activities are blood-meal enhanced, and could serve as molecular factors of self/non-self recognition in defence reactions against bacteria or fungi, as well as in pathogen/parasite transmission. Dorin M, the plasma lectin of Ornithodoros moubata, is the first tick lectin to be purified from tick haemolymph, and the first that has been fully characterized. Partial characterization of other tick lectins/haemagglutinins has been performed mainly with respect to their carbohydrate-binding specificities and immunochemical features. The main goal of this review is to provide an overview of our knowledge of lectins as tissue specific carbohydrate-binding proteins of ticks with emphasis on their structural properties and functional roles either in defence reactions or pathogen transmission. Other lectin reviews have been published dealing with tissue-specific lectins in blood-sucking arthropods (e.g. Ingram & Molyneux, 1991; Grubhoffer, Hypša & Volf, 1997; Grubhoffer & Jindrák, 1998). In addition, several publications have drawn attention to plant and animal lectins, and to lectins as tools in modern glycobiological research (e.g. Jacobson & Doyle, 1996; Rhodes & Milton, 1998).

Research on lectins began in 1888 with publication of the doctoral thesis of Herman Stilmark at the University of Dorpat, Estonia, on the agglutinins of the seeds of castor bean Ricinus communis (Sharon & Lis, 1988).

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 127 - 142
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abubakar, L. U., Bulimo, W. D., Mulaa, F. J. & Osir, E. O. (2006). Molecular characterization of a tsetse fly midgut proteolytic lectin that mediates differentiation of African trypanosomes. Insect Biochemistry and Molecular Biology 36, 344–352.CrossRefGoogle ScholarPubMed
Adema, C. M., Hertel, L. A., Miller, R. D. & Loker, E. S. (1997). A family of fibrinogen-related proteins that precipitates a parasite-derived molecule is produced by an invertebrate after infection. Proceedings of the National Academy of Sciences of the USA 94, 8691–8696.CrossRefGoogle Scholar
Akov, S., Samish, M. & Galun, R. (1976). Protease activity in female Ornithodoros tholozani ticks. Acta Tropica 33, 36–52.Google ScholarPubMed
Balashov, Y. S. (1972). Bloodsucking ticks (Ixodidae): vector of disease of man and animals. Miscellaneous Publications of the Entomological Society of America 8, 161–362.Google Scholar
Barondes, S. H. (1988). Bifunctional properties of lectins: lectins redefined. Trends in Biochemical Sciences 12, 480–482.CrossRefGoogle Scholar
Bettler, B., Hofstetter, H., Yokoyama, W. M., Kilchherr, F. & Conrad, D. H. (1989). Molecular structure and expression of the murine lymphocyte low-affinity receptor for IgE (Fc epsilon RII). Proceedings of the National Academy of Sciences of the USA 86, 7566–7570.CrossRefGoogle Scholar
Boyd, W. C. & Shapleigh, E. (1954). Specific precipitating activity of plant agglutinins (lectins). Science 119, 419.CrossRefGoogle Scholar
Chen, C. L. & Billingsley, P. F. (1999). Detection and characterization of a mannan-binding lectin from the mosquito, Anopheles stephensi (Liston). European Journal of Biochemistry 263, 360–366.CrossRefGoogle Scholar
Chinzei, Y. (1988). A new method for determining vitellogenin in hemolymph of female Ornithodoros moubata (Acari: Argasidae). Journal of Medical Entomology 25, 548–550.CrossRefGoogle Scholar
Chinzei, Y., Chino, H. & Takahashi, K. (1983). Purification and properties of vitellogenin and vitellin from a tick Ornithodoros moubata. Journal of Comparative Physiology B 152, 13–21.CrossRefGoogle Scholar
Chinzei, Y. & Yano, I. (1985). Fat body is the site of vitellogenin synthesis in the soft tick, Ornithodoros moubata. Journal of Comparative Physiology B 155, 671–678.CrossRefGoogle Scholar
Coleman, J. E., Gebbia, J. A., Piesman, J., et al. (1997). Plasminogen is required for efficient dissemination of Borrelia burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89, 1111–1119.CrossRefGoogle ScholarPubMed
Dimopoulos, G., Casavant, T. L., Chang, S. R., et al. (2000). Anopheles gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proceedings of the National Academy of Sciences of the USA 97, 6619–6624.CrossRefGoogle ScholarPubMed
Dodd, R. B. & Drickamer, K. (2001). Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11, 71R–79R.CrossRefGoogle ScholarPubMed
Doolittle, R. F., Spraggon, G. & Everse, S. J. (1997). Evaluation of vertebrate fibrin formation and the process of its dissolution. Ciba Foundation Symposium 212, 4–17.Google Scholar
Doyle, R. J. & Slifkin, M. (eds.) (1994). Lectin–Microorganism Interactions. New York: Marcel Dekker.Google Scholar
Drickamer, K. (1988). Two distinct classes of carbohydrate-recognition domains in animal lectins. Journal of Biological Chemistry 263, 9557–9560.Google ScholarPubMed
Drickamer, K. (1993). Evolution of Ca2+-dependent animal lectins. Progress in Nucleic Acid Research Molecular Biology 45, 207–232.CrossRefGoogle Scholar
Drickamer, K. & Taylor, M. E. (1993). Biology of animal lectins. Annual Review of Cell Biology 1993, 236–264.Google Scholar
Drickamer, K., Dordal, M. S. & Reynolds, (1986). Mannose-specific binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails: complete primary structures and homology with pulmonary surfactant apoprotein. Journal of Biological Chemistry 261, 6878–6887.Google Scholar
Durnová, E. (1998). Gut agglutinins (lectins) of common sheep tick, Ixodes ricinus L. (Ixodida, Ixodidae): isolation and partial characterization. Unpublished M.Sc. thesis, University of South Bohemia, České Budějovice (in Czech).
Epstein, J., Eichbaum, Q., Sheriff, S. & Ezekowitz, B. A. R. (1996). The collectins in inmate immunity. Current Opinion in Immunology 8, 29–35.CrossRefGoogle Scholar
Ezekowitz, R. A. B., Sastry, K. N. & Reid, K. B. M. (eds.) (1996). Collectins and Innate Immunity. Heidelberg, Germany: Springer-Verlag.Google Scholar
Friedhoff, K. T. (1990). Interaction between parasite and tick vector. International Journal of Parasitology 20, 525–535.CrossRefGoogle ScholarPubMed
Gadjeva, M., Thiel, S. & Jensenius, J. C. (2001). The mannan-binding lectin pathway of the innate immune response. Current Opinion in Immunology 13, 74–78.CrossRefGoogle ScholarPubMed
Gilboa-Garber, N. & Garber, N. (1989). Microbial lectin cofunction with lytic activities as a model for a general basic lectin role. FEMS Microbiological Reviews 63, 211–222.CrossRefGoogle Scholar
Gokudan, S., Muta, T., Tsuda, R., et al. (1999). Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proceedings of the National Academy of Sciences of the USA 96, 10086–10091.CrossRefGoogle Scholar
Goldstein, I. J., Hughes, R. C., Monsigny, M., Osawa, T. & Sharon, N. (1980). What should be called a lectin?Nature 285, 66.CrossRefGoogle Scholar
Gomes, Y. M., Furtado, A. F. & Coelho, L. B. B. (1991). Partial purification and some properties of hemolymph lectin from Panstrongylus megistus (Heteroptera: Reduviidae). Applied Biochemistry and Biotechnology 31, 97–107.CrossRefGoogle Scholar
Gooding, R. H. (1972). Digestive processes of haematophagous insects. I. A literature review. Quaestiones Entomologicae 8, 5–60.Google Scholar
Grandjean, O. (1984). Blood digestion in Ornithodoros moubata female. Acarologia 25, 147–165.Google Scholar
Grubhoffer, L. & Jindrák, L. (1998). Lectin and tick-pathogen interactions: a minireview. Folia Parasitologica 45, 9–13.Google ScholarPubMed
Grubhoffer, L. & Kovář, V. (1998). Arthropod lectins: affinity approaches in the analysis and preparation of carbohydrate binding proteins. In Techniques in Insect Immunology FITC-5, eds. Wiesner, A., Dunphy, G. B., Marmaras, V. J., et al., pp. 47–57. Fair Haven, N. J.: SOS Publications.Google Scholar
Grubhoffer, L. & Maťha, V. (1991). New lectins of invertebrates. Zoological Science (Tokyo) 8, 1001–1003.Google Scholar
Grubhoffer, L., Guirakhoo, F., Heinz, F. X. & Kunz, CH. (1990). Interaction of tick-borne encephalitis virus protein E with labelled lectins. In Lectins: Biology, Biochemistry and Clinical Biochemistry, vol. 7, eds. Kocourek, J. & Feed, D. L. J., pp. 313–319. St Louis, MO: Sigma Chemical Co.Google Scholar
Grubhoffer, L., Hypša, V. & Volf, P. (1997). Lectins (agglutinins) in the gut of the important disease vectors. Parasite 4, 203–216.CrossRefGoogle Scholar
Grubhoffer, L., Uhlíř, J. & Volf, P. (1993). Functional and structural identification of a new lectin activity of Borrelia recurrentis spirochetes. Comparative Biochemistry and Physiology B 105, 535–540.CrossRefGoogle ScholarPubMed
Grubhoffer, L., Vereš, J. & Dusbábek, F. (1991). Lectins as molecular factors of recognition and defence reaction of ticks. In Modern Acarology, vol. 2, eds. Dusbábek, F. & Bukva, V., pp. 381–388. The Hague, the Netherlands: SPB Academic Publishing.Google Scholar
Gudderra, N. P., Sonenshine, D. E., Apperson, C. S. & Roe, R. M. (2002). Hemolymph proteins in ticks. Journal of Insect Physiology 48, 269–278.CrossRefGoogle ScholarPubMed
Gupta, A. P. (1985). Cellular elements in the hemolymph. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 3, eds. Kerkut, G. A. & Gilbert, L. I., pp. 401–451. Oxford, UK: Pergamon.Google Scholar
Gupta, A. P. (1991). Insect immunocytes and other hemocytes: roles in cellular and humoral immunity. In Immunology of Insects and Other Arthropods, ed. Gupta, A. P., pp. 19–118. Boca Raton, FL: CRC Press.Google Scholar
Halberg, D. F., Wager, R. E., Farell, D. C., et al. (1987). Major and minor forms of the rat liver asialoglycoprotein receptor are independent galactose-binding proteins: primary structure and glycosylation heterogeneity of minor receptor forms. Journal of Biological Chemistry 262, 9828–9838.Google ScholarPubMed
Hoffmann, J. A. (1995). Innate immunity of insects. Current Opinion in Immunology 7, 4–10.CrossRefGoogle ScholarPubMed
Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. (1999). Phylogenetic perspectives in innate immunity. Science 284, 1313–1318.CrossRefGoogle ScholarPubMed
Huang, X., Tsuji, N., Miyoshi, T., et al. (2007). Molecular characterization and oligosaccharide binding properties of a galectin from the argasid tick Ornithodoros moubata. Glycobiology 17, 313–323.CrossRefGoogle ScholarPubMed
Hulínská, D., Volf, P. & Grubhoffer, L. (1992). Characterization of Borrelia burgdorferi glycoconjugates and surface carbohydrates. Zentralblat für Bakteriologie, Microbiologie und Hygiene A 276, 473–480.CrossRefGoogle ScholarPubMed
Hutton, D., Reid, A. P. & Towson, S. (2000). Immune responses of the argasid tick Ornithodoros moubata induced by infection with the filarial worm Acanthocheilonema viteae. Journal of Helminthology 74, 233–239.Google ScholarPubMed
Hypša, V. & Grubhoffer, L. (1995). An LPS-binding hemagglutinin in the midgut of Triatoma infestans: partial characterization and tissue localization. Archives of Insect Biochemistry and Physiology 28, 247–255.CrossRefGoogle Scholar
Ingram, G. A. & Molyneux, D. H. (1991). Insect lectins: role in parasite-vector interactions. In Lectin Reviews, vol. 1, eds. Kilpatrick, D. C., Driessche, R. E. & B⊘g-Hansen, T. C., pp. 103–127. St Louis, MO: Sigma Chemical Co.Google Scholar
Iwanaga, S. (1993). The Limulus clotting reaction. Current Opinion in Immunology 5, 74–82.CrossRefGoogle ScholarPubMed
Iwanaga, S. (2002). The molecular basis of innate immunity in the horseshoe crab. Current Opinion in Immunology 14, 87–95.CrossRefGoogle ScholarPubMed
Jacobson, R. L. & Doyle, R. J. (1996). Lectin–parasite interactions. Parasitology Today 12, 55–60.CrossRefGoogle ScholarPubMed
Johns, R., Ceraul, S., Sonenshine, D. E. & Hynes, W. L. (2001 a). Tick immunity to microbial infections: control of representative bacteria in the hard tick Dermacentor variabilis (Acari: Ixodidae). In Acarology: Proceedings of the 10th International Congress, eds. Halliday, R. B., Walter, D. E., Proctor, H. C., Norton, R. A. & Colloff, M. J., pp. 638–644. Melbourne, Australia: CSIRO.Google Scholar
Johns, R., Ohnishi, J., Broadwater, A., et al. (2001 b). Contrasts in tick innate immune response to Borrelia burgdorferi challenge: immunotolerance in Ixodes scapularis versus immunocompetence in Dermacentor variabilis (Acari: Ixodidae). Journal of Medical Entomology 38, 99–107.CrossRefGoogle Scholar
Kamwendo, S. P., Ingram, G. A., Musisi, F. L. & Molyneux, D. H. (1993). Haemagglutinin activity in tick (Rhipicephalus appendiculatus) haemolymph and extracts of gut and salivary glands. Annals of Tropical Medicine and Parasitology 87, 303–305.CrossRefGoogle Scholar
Kamwendo, S. P., Musis, F. L., Trees, A. J. & Molyneux, D. H. (1995). Effect of haemagglutinin (lectin) inhibitory sugars in Theileria parva infection in Rhipicephalus appendiculatus. International Journal for Parasitology 25, 29–35.CrossRefGoogle Scholar
Kawabata, S. & Tsuda, R. (2002). Molecular basis of non-self recognition by the horshoe crab tachylectins. Biochimica et Biophysica Acta 1572, 414–421.CrossRefGoogle Scholar
Kawasaki, K., Kubo, T. & Natori, S. (1996). Presence of the Periplaneta lectin-related protein family in the American cockroach Periplaneta americana. Insect Biochemistry and Molecular Biology 26, 355–364.CrossRefGoogle ScholarPubMed
Kenjo, A., Takahashi, M., Matsushita, M., et al. (2001). Cloning and characterization of novel ficolins from the solitary ascidian, Halocynthia roretzi. Journal of Biological Chemistry 276, 19959–19965.CrossRefGoogle ScholarPubMed
Kocourek, J. & Hořejší, V. (1981). Defining a lectin. Nature 290, 188.CrossRefGoogle Scholar
Kovář, V., Kopáček, P. & Grubhoffer, L. (2000). Isolation and characterization of Dorin M, a lectin from plasma of the soft tick Ornithodoros moubata. Insect Biochemistry and Molecular Biology 30, 195–205.CrossRefGoogle Scholar
Kuhn, K.-H., Ritting, M., Haupl, T. & Burmester, G. R. (1994). Haemocytes of the tick Ixodes ricinus express coiling phagocytosis of Borrelia burgdorferi. Developmental and Comparative Immunology 18, S115.Google Scholar
Kuhn, K.-H., Uhlíř, J. & Grubhoffer, L. (1996). Ultrastructural localization of a sialic acid-specific hemolymph lectin in the hemocytes and other tissues of the hard tick Ixodes ricinus (Acari: Chelicerata). Parasitology Research 82, 215–221.CrossRefGoogle Scholar
Kurachi, S., Song, Z., Takagaki, M., et al. (1998). Sialic acid-binding lectin from the slug Limax flavus: cloning, expression of the polypeptide, and tissue localization. European Journal of Biochemistry 254, 217–222.CrossRefGoogle ScholarPubMed
Kurtti, T. J., Munderloh, U. G., Ahlstrand, G. G. & Johnson, R. C. (1988). Borrelia burgdorferi in tick cell culture: growth and cellular adherence. Journal of Medical Entomology 25, 256–261.CrossRefGoogle ScholarPubMed
Lee, Y. C. (1992). Biochemistry of carbohydrate–protein interaction. FASEB Journal 6, 3193–3200.CrossRefGoogle ScholarPubMed
Leonard, P. M., Adema, C. M., Zhang, S.-M. & Loker, E. S. (2001). Structure of two FREP genes that combine IgSF and fibrinogen domains, with comments on diversity of the FREP gene family in the snail Biomphalaria glabrata. Gene 269, 155–165.CrossRefGoogle ScholarPubMed
Leong, J. M., Morrissey, P. E., Ortega-Maria, E., Pereira, M. E. A. & Coburn, J. (1995). Hemagglutination and proteoglycan binding by the Lyme disease spirochete, Borrelia burgdorferi. Infection and Immunity 63, 874–883.Google ScholarPubMed
Lu, J. & Le, Y. (1998). Ficolins and the fibrinogen-like domain. Immunobiology 199, 190–199.CrossRefGoogle ScholarPubMed
Mandal, C. & Mandal, C. (1990). Sialic acid-binding lectins. Experientia 46, 433–441.CrossRefGoogle ScholarPubMed
Matsushita, M. (1996). The lectin pathway of the complement system. Microbiology and Immunology 40, 887–893.CrossRefGoogle ScholarPubMed
Matsushita, M., Endo, Y., Nonaka, M. & Fujita, T. (2001). Activation of the lectin complement pathway by ficolins. International Immunopharmacology 1, 359–363.CrossRefGoogle ScholarPubMed
Matsushita, M., Endo, Y., Taira, S., et al. (1996). A novel human serum lectin with collagen- and fibrinogen- like domains that functions as an opsonin. Journal of Biological Chemistry 271, 2448–2454.CrossRefGoogle ScholarPubMed
Maudlin, I. & Welburn, S. C. (1988). The role of lectin and trypanosome genotype in the maturation of midgut infections in Glossina morsitans. Tropical Medicine and Parasitology 39, 56–58.Google ScholarPubMed
McEver, R. P. (1994). Selectins. Current Opinion in Immunology 6, 75–84.CrossRefGoogle ScholarPubMed
Mullins, D. E. (1985). Chemistry and physiology of the hemolymph. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 3, eds. Kerkut, G. A. & Gilbert, L. I., pp. 355–400. Oxford, UK: Pergamon.Google Scholar
Munderloh, U. G. & Kurtti, T. J. (1995). Cellular and molecular interrelationships between ticks and prokaryotic tick-borne pathogens. Annual Review of Entomology 40, 221–243.CrossRefGoogle ScholarPubMed
Muta, T., Miyata, T., Tokunaga, F., et al. (1991). Limulus factor-C: an endotoxin-sensitive serine protease zymogen with a mosaic structure of complement-like, epidermal growth factor-like, and lectin like domains. Journal of Biological Chemistry 266, 6554–6561.Google ScholarPubMed
Nakajima, Y., Naters-Yasui, Goes A., Taylor, D. & Yamakawa, M. (2001). Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochemistry and Molecular Biology 31, 747–751.CrossRefGoogle Scholar
Ofek, I. & Sharon, N. (1988). Lectinophagocytosis: a molecular mechanism of recognition between cell surface sugars and lectin in the phagocytosis of bacteria. Infection and Immunity 56, 539–547.Google Scholar
Olafsen, J. A. (1986). Invertebrate lectins: biochemical heterogeneity as a possible key to their biological function. In Immunity in Invertebrates, ed. Brehélin, M., pp. 95–111. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Olafsen, J. A. (1996). Lectins: model of natural and induced molecules in invertebrates. In Advances in Comparative and Environmental Physiology, vol. 24, ed. Cooper, E. L., pp. 49–76. Heidelberg, Germany: Springer-Verlag.Google Scholar
Palánová, L. & Volf, P. (1997). Carbohydrate-binding specificities and physico-chemical properties of lectins in various tissues of phlebotominae sandflies. Folia Parasitologica 44, 71–76.Google ScholarPubMed
Parveen, N. & Leong, J. M. (2000). Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Molecular Microbiology 35, 1220–1234.CrossRefGoogle ScholarPubMed
Pearson, M. A. (1996). Scavenger receptors in innate immunity. Current Opinion in Immunology 8, 20–28.CrossRefGoogle ScholarPubMed
Pereira, M. A. E., Andrade, A. F. B. & Ribeiro, J. M. C. (1981). Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science 211, 597–600.CrossRefGoogle ScholarPubMed
Peumans, W. J. & Damme, E. J. M. (1995). Lectins as plant defense proteins. Plant Physiology 109, 347–352.CrossRefGoogle ScholarPubMed
Ratcliffe, N. A., Nigam, Y., Mello, C. B., Garcia, E. S. & Azambuja, P. (1996). Trypanosoma cruzi and erythrocyte agglutinins: a comparative study of occurrence and properties in the gut and hemolymph of Rhodnius prolixus. Experimental Parasitology 83, 83–93.CrossRefGoogle ScholarPubMed
Ratcliffe, N. A. & Rowley, A. F. (1987). Insect responses to parasites and other pathogens. In Immune Responses in Parasitic Infections, vol. 4, ed. Soulsby, E. J. L., pp. 271–332. Boca Raton, FL: CRC Press.Google Scholar
Ratcliffe, N. A., Rowley, A. F., Fitzgerald, S. W. & Rhodes, C. P. (1985). Invertebrate immunity: basic concepts and recent advances. International Review of Cytology 97, 183–349.CrossRefGoogle Scholar
Rego, R. O. M., Hajdušek, O., Kovář, V., et al. (2005). Molecular cloning and comparative analysis of fibrinogen-related proteins from the soft tick Ornithodoros moubata and the hard tick Ixodes ricinus. Insect Biochemistry and Molecular Biology 35, 991–1004.CrossRefGoogle ScholarPubMed
Rego, R. O. M., Kovář, V., Kopáček, P., et al. (2006). The tick plasma lectin, Dorin M, is a fibrinogen-related molecule. Insect Biochemistry and Molecular Biology 36, 291–299.CrossRefGoogle Scholar
Ribeiro, J. M. C., Mather, T. N., Piesman, J. & Spielman, A. (1987). Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodiae). Journal of Medical Entomology 24, 201–205.Google Scholar
Rhodes, J. M. & Milton, J. D. (1998). Lectin Methods in Protocols. Totowa, NJ: Humana Press.Google Scholar
Rudenko, N., Golovchenko, N. & Grubhoffer, L. (2000). Lectin-like sequences in genome of Borrelia burgdorferi. Folia Parasitologica 46, 81–90.Google Scholar
Sastry, K. & Ezekowitz, R. A. (1993). Collectins: pattern recognition molecules involved in first line host defense. Current Opinion in Immunology 5, 59–66.CrossRefGoogle ScholarPubMed
Sharon, N. & Lis, H. (1988). A century of lectin research (1888–1988). Trends in Biochemical Sciences 12, 488–491.CrossRefGoogle Scholar
Sharon, N. & Lis, H. (2007). Lectins. Dordrecht: Springer-Verlag.CrossRefGoogle ScholarPubMed
Slifkin, M. & Doyle, R. J. (1990). Lectins and their application to clinical microbiology. Clinical Microbiology Reviews 3, 197–217.CrossRefGoogle ScholarPubMed
Smiths, R. D., Sells, D. M., Stephenson, E. M., Ristic, M. & Huxdoll, D. L. (1976). Development of Ehrlichia canis, causative agent of canine ehrlichiosis, in the tick Rhipicephalus sanguineus and its differentiation from a symbiotic Rickettsia. American Journal of Veterinary Research 37, 119–126.Google Scholar
Taylor, M. E., Conary, J. T., Lennertz, M. R., Stahl, P. D. & Drickamer, K. (1990). Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. Journal of Biological Chemistry 265, 12156–12162.Google ScholarPubMed
Thiel, S. & Reid, K. B. M. (1989). Structures and functions associated with the group of mammalian lectins containing collagen-like sequences. FEBS Letters 250, 78–84.CrossRefGoogle Scholar
Uhlíř, J., Grubhoffer, L., Borský, I. & Dusbábek, F. (1994). Antigens and glycoproteins of larvae, nymphs and adults of the tick Ixodes ricinus. Medical and Veterinary Entomology 8, 141–150.CrossRefGoogle ScholarPubMed
Uhlíř, J., Grubhoffer, L. & Volf, P. (1996). Novel agglutinin in the midgut of the tick Ixodes ricinus. Folia Parasitologica 43, 233–239.Google ScholarPubMed
Vasta, G. R. (1991). The multiple biological roles of invertebrate lectins: their participation in nonself recognition mechanisms. In Phylogenesis of Immune Functions, eds. Warr, G. W. & Cohen, N., pp. 183–199. Boca Raton, FL: CRC Press.Google Scholar
Vasta, G. R. & Marchalonis, J. J. (1983). Humoral recognition factors in the arthropoda: the specificity of chelicerate serum lectins. American Zoology 23, 157–171.CrossRefGoogle Scholar
Vasta, G. R. & Marchalonis, J. J. (1984). Summation: immunobiological significance of invertebrate lectins. Progress in Clinical Biological Research 154, 177–191.Google Scholar
Vasta, G. R., Ahmed, H., Fink, N. E., et al. (1994). Animal lectins as self/non-self recognition molecules: biochemical and genetic approaches to understanding their roles and evolution. Annals of the New York Academy of Sciences 712, 55–73.CrossRefGoogle ScholarPubMed
Vasta, G. R., Ahmed, H. & Quesenberry, M. S. (1996). Invertebrate C-type lectins and pentraxins as non-self recognition molecules. In New Directions in Invertebrate Immunology, eds. Söderhäll, K., Iwanaga, S. & Vasta, G. R., pp. 189–227. Fair Haven, NJ: SOS Publications.Google Scholar
Vasta, G. R., Quesenberry, M. S., Ahmed, H. A. & O'Leary, N. (1999). C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Developmental and Comparative Immunology 23, 401–420.CrossRefGoogle ScholarPubMed
Vereš, J. & Grubhoffer, L. (1990). Detection and partial characterization of a new plasma lectin in the hemolymph of the tick Ornithodoros tartakovskyi. Microbios Letters 45, 61–64.Google Scholar
Volf, P. (1993). Lectin activity in the gut extract of sandfly Lutzomyia longipalpis. Folia Parasitologica 40, 155–156.Google Scholar
Volf, P., Killick-Kendrick, R., Bates, P. & Molyneux, D. H. (1994). Comparison of the haemagglutination activities in the gut and head extracts of various species and geographical populations of phlebotominae sandflies. Annals of Tropical Medicine and Parasitology 88, 337–340.CrossRefGoogle Scholar
Volf, P., Škařupová, S. & Man, P. (2002). Characterization of the lectin from females of Phlebotomus duboscqi sandflies. European Journal of Biochemistry 269, 6294–6301.CrossRefGoogle Scholar
Wagner, M. (1990). Sialic acid specific lectins. Advances in Lectin Research3, 36–82.Google Scholar
Wallbanks, K. R., Ingram, G. A. & Molyneux, D. H. (1986). The agglutination of erythrocytes and Leishmania parasites by sandfly gut extracts: evidence for lectin activity. Tropical Medicine and Parasitology 37, 409–413.Google ScholarPubMed
Wang, X., Rocheleau, T. A., Fuchs, J. F., et al. (2004). A novel lectin with a fibrinogen-like domain and its potential involvement in the innate immune response of Armigeres subalbatus against bacteria. Insect Molecular Biology 133, 273–282.CrossRefGoogle Scholar
Welburn, S. C. & Maudlin, I. (1990). Haemolymph lectin and the maturation of trypanosome infections in tsetse. Medical and Veterinary Entomology 4, 43–48.CrossRefGoogle ScholarPubMed
Xu, X. & Doolittle, R. F. (1990). Presence of a vertebrate fibrinogen-like sequence in an echinoderm. Proceedings of the National Academy of Sciences of the USA 87, 2097–2101.CrossRefGoogle Scholar
Yeaton, R. W. (1982 a). Invertebrate lectins. I. Occurrence. Developmental and Comparative Immunology 5, 391–402.CrossRefGoogle Scholar
Yeaton, R. W. (1982 b). Invertebrate lectins. II. Diversity of specificity, biological synthesis and function in recognition. Developmental and Comparative Immunology 5, 535–545.CrossRefGoogle Scholar
Yoshizaki, N. (1990). Functions and properties of animal lectins. Zoological Science (Tokyo) 7, 581–591.Google Scholar
Zeng, F. Y. & Gabius, H. J. (1992). Sialic acid-binding proteins: characterization, biological function and application. Zeitschrift für Naturforschung C 47, 641–653.Google ScholarPubMed
Zung, J. L., Lewengrub, S., Rudzinska, M. A., et al. (1989). Fine structural evidence for the penetration of the Lyme disease spirochete Borrelia burgdorferi through the gut and salivary tissues of Ixodes dammini. Canadian Journal of Zoology 67, 1737–1748.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Tick lectins and fibrinogen-related proteins
    • By L. Grubhoffer, Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic, R. O. M. Rego, Laboratory of Zoonotic Pathogens Rocky Mountain Laboratories NIAID NIH 903 South 4th Street Hamilton MT 59840 USA, O. Hajdušek, Faculty of Biological Sciences University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic, V. Hypša, Faculty of Biological Sciences University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic, V. Kovář, Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic, N. Rudenko, Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic, J. H. Oliver, Georgia Southern University Institute of Arthropodology and Parasitology P.O. Box 8056 Statesboro GA 30460 USA
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Tick lectins and fibrinogen-related proteins
    • By L. Grubhoffer, Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic, R. O. M. Rego, Laboratory of Zoonotic Pathogens Rocky Mountain Laboratories NIAID NIH 903 South 4th Street Hamilton MT 59840 USA, O. Hajdušek, Faculty of Biological Sciences University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic, V. Hypša, Faculty of Biological Sciences University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic, V. Kovář, Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic, N. Rudenko, Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic, J. H. Oliver, Georgia Southern University Institute of Arthropodology and Parasitology P.O. Box 8056 Statesboro GA 30460 USA
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Tick lectins and fibrinogen-related proteins
    • By L. Grubhoffer, Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic, R. O. M. Rego, Laboratory of Zoonotic Pathogens Rocky Mountain Laboratories NIAID NIH 903 South 4th Street Hamilton MT 59840 USA, O. Hajdušek, Faculty of Biological Sciences University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic, V. Hypša, Faculty of Biological Sciences University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic, V. Kovář, Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic, N. Rudenko, Biology Centre of the Academy of Sciences of the Czech Republic Institute of Parasitology Branisovska 31 370 05 Ceske Budejovice Czech Republic, J. H. Oliver, Georgia Southern University Institute of Arthropodology and Parasitology P.O. Box 8056 Statesboro GA 30460 USA
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.007
Available formats
×