Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-07T21:14:41.642Z Has data issue: false hasContentIssue false

Chapter 26 - MELAS Syndrome and Other Mitochondrial Disorders

from Section 3 - Hereditary and Genetic Conditions and Malformations

Published online by Cambridge University Press:  15 June 2018

Louis Caplan
Affiliation:
Beth Israel-Deaconess Medical Center, Boston
José Biller
Affiliation:
Loyola University Stritch School of Medicine, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Hassnan, Z. N., Rashed, M. S., Al-Dirbashi, O. Y., et al. 2008. Hyperornithinemia–hyperammonemia–homocitrullinuria syndrome with stroke-like imaging presentation: Clinical, biochemical and molecular analysis, J Neurol Sci, 264: 187–94.Google Scholar
Bersano, A., Markus, H. S., Quaglini, S., et al. 2016. Clinical pregenetic screening for stroke monogenic diseases: Results from Lombardia GENS Registry, Stroke, 47: 1702–9.Google Scholar
Betts, J., Jaros, E., Perry, R. H., et al. 2006. Molecular neuropathology of MELAS: Level of heteroplasmy in individual neurones and evidence of extensive vascular involvement, Neuropathol Appl Neurobiol, 32: 359–73.Google Scholar
Calfee, C. S. and Matthay, M. A.. 2010. Clinical immunology: Culprits with evolutionary ties, Nature, 464: 41–2.Google Scholar
Chan, D. C. 2006. Mitochondria: Dynamic organelles in disease, aging, and development, Cell, 125: 1241–52.Google Scholar
Chomyn, A., Enriquez, J. A., Micol, V., Fernandez-Silva, P., and Attardi, G.. 2000. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes, J Biol Chem, 275: 19198–209.Google Scholar
Deschauer, M., Tennant, S., Rokicka, A., et al. 2007. MELAS associated with mutations in the POLG1 gene, Neurology, 68: 1741–2.Google Scholar
Desquiret-Dumas, V., Gueguen, N., Barth, M. et al. 2012. Metabolically induced heteroplasmy shifting and L-arginine treatment reduce the energetic defect in a neuronal-like model of MELAS, Biochim Biophys Acta, 1822: 1019–29.Google Scholar
DiMauro, S. and Hirano, M.. 1993. MELAS. In Pagon, R. A., Adam, M. P., Ardinger, H. H., et al. (eds.), GeneReviews(R), Seattle, WA: University of Washington.Google Scholar
DiMauro, S., Schon, E. A., Carelli, V., and Hirano, M.. 2013. The clinical maze of mitochondrial neurology, Nat Rev Neurol, 9: 429–44.Google Scholar
El-Hattab, A. W., Hsu, J. W., Emrick, L. T., et al. 2012. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation, Mol Genet Metab, 105: 607–14.Google Scholar
El-Hattab, A. W., Adesina, A. M., Jones, J., and Scaglia, F.. 2015. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options, Mol Genet Metab, 116: 412.Google Scholar
Finsterer, J. 2009. Management of mitochondrial stroke-like-episodes, Eur J Neurol, 16: 1178–84.Google Scholar
Frederiksen, A. L., Andersen, P. H., Kyvik, K. O., et al. 2006. Tissue specific distribution of the 3243A>G mtDNA mutation, J Med Genet, 43: 671–7.Google Scholar
Giles, R. E., Blanc, H., Cann, H. M., and Wallace, D. C.. 1980. Maternal inheritance of human mitochondrial DNA, Proc Natl Acad Sci U S A, 77: 6715–9.Google Scholar
Gorman, G. S., Schaefer, A. M., Ng, Y., et al. 2015. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease, Ann Neurol, 77: 753–9.Google Scholar
Goto, Y., Nonaka, I., and Horai, S.. 1990. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies, Nature, 348: 651–3.Google Scholar
Goto, Y., Horai, S., Matsuoka, T., et al. 1992. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): A correlative study of the clinical features and mitochondrial DNA mutation, Neurology, 42: 545–50.CrossRefGoogle Scholar
Hamalainen, R. H., Manninen, T., Koivumaki, H., et al. 2013. Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model, Proc Natl Acad Sci USA, 110: E362230.Google Scholar
Hasegawa, H., Matsuoka, T., Goto, Y., and Nonaka, I.. 1991. Strongly succinate dehydrogenase-reactive blood vessels in muscles from patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes, Ann Neurol, 29: 601–5.Google Scholar
Hess, J. F., Parisi, M. A., Bennett, J. L., and Clayton, D. A.. 1991. Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies, Nature, 351: 236–9.Google Scholar
Hirano, M. and Pavlakis, S. G.. 1994. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): Current concepts, J Child Neurol, 9: 413.Google Scholar
Hirano, M., Ricci, E., Koenigsberger, M. R., et al. 1992. MELAS: An original case and clinical criteria for diagnosis, Neuromuscul Disord, 2: 125–35.Google Scholar
Kaufmann, P., Koga, Y., Shanske, S., et al. 1996. Mitochondrial DNA and RNA processing in MELAS, Ann Neurol, 40: 172–80.Google Scholar
King, M. P., Koga, Y., Davidson, M., and Schon, E. A.. 1992. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes, Mol Cell Biol, 12: 480–90.Google Scholar
Kobayashi, Y., Momoi, M. Y., Tominaga, K., et al. 1990. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), Biochem Biophys Res Commun, 173: 816–22.Google Scholar
Koga, Y., Akita, Y., Nishioka, J., et al. 2007. MELAS and L-arginine therapy, Mitochondrion, 7: 133–9.Google Scholar
Koga, Y., Akita, Y., Nishioka, J., et al. 2005. L-arginine improves the symptoms of strokelike episodes in MELAS, Neurology, 64: 710–2.Google Scholar
Koga, Y., Povalko, N., Nishioka, J., et al. 2010. MELAS and L-arginine therapy: Pathophysiology of stroke-like episodes, Ann NY Acad Sci, 1201: 104–10.Google Scholar
Koga, Y., Povalko, N., Nishioka, J., et al. 2012. Molecular pathology of MELAS and L-arginine effects, Biochim Biophys Acta, 1820: 608–14.Google Scholar
Majamaa, K., Moilanen, J. S., Uimonen, S., et al. 1998. Epidemiology of A3243 G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: Prevalence of the mutation in an adult population, Am J Hum Genet, 63: 447–54.Google Scholar
Mancuso, M., Nesti, C., Ienco, E. C., et al. 2014. Novel MTCYB mutation in a young patient with recurrent stroke-like episodes and status epilepticus, Am J Med Genet A, 164: 2922–5.Google Scholar
Nesbitt, V., Pitceathly, R. D., Turnbull, D. M., et al. 2013. The UK MRC Mitochondrial Disease Patient Cohort Study: Clinical phenotypes associated with the m.3243A>G mutation – implications for diagnosis and management, J Neurol Neurosurg Psychiatry, 84: 936–8.Google Scholar
Pavlakis, S. G., Phillips, P. C., DiMauro, S., De Vivo, D. C., and Rowland, L. P.. 1984. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: A distinctive clinical syndrome, Ann Neurol, 16: 481–8.Google Scholar
Rossignol, R., Faustin, B., Rocher, C., et al. 2003. Mitochondrial threshold effects, Biochem J, 370: 751–62.Google Scholar
Saneto, R. P. and Sedensky, M. M.. 2013. Mitochondrial disease in childhood: mtDNA encoded, Neurotherapeutics, 10: 199211.CrossRefGoogle ScholarPubMed
Saneto, R. P., Friedman, S. D., and Shaw, D. W.. 2008. Neuroimaging of mitochondrial disease, Mitochondrion, 8: 396413.Google Scholar
Schaefer, A. M., McFarland, R., Blakely, E. L., et al. 2008. Prevalence of mitochondrial DNA disease in adults, Ann Neurol, 63: 35–9.Google Scholar
Sproule, D. M. and Kaufmann, P.. 2008. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: Basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome, Ann NY Acad Sci, 1142: 133–58.Google Scholar
Tatlisumak, T., Putaala, J., Innila, M., et al. 2016. Frequency of MELAS main mutation in a phenotype-targeted young ischemic stroke patient population, J Neurol, 263: 257–62.Google Scholar
Tay, S. H., Nordli, D. R. Jr., Bonilla, E., et al. 2006. Aortic rupture in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes, Arch Neurol, 63: 281–3.Google Scholar
Tzoulis, C. and Bindoff, L. A.. 2009. Serial diffusion imaging in a case of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes, Stroke, 40: e157.Google Scholar
Uusimaa, J., Moilanen, J. S., Vainionpaa, L., et al. 2007. Prevalence, segregation, and phenotype of the mitochondrial DNA 3243A>G mutation in children, Ann Neurol, 62: 278–87.Google Scholar
Yasukawa, T., Suzuki, T., Ueda, T., Ohta, S., and Watanabe, K.. 2000. Modification defect at anticodon wobble nucleotide of mitochondrial tRNA(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes, J Biol Chem, 275: 4251–7.Google Scholar
Yatsuga, S., Povalko, N., Nishioka, J., et al. 2012. MELAS: A nationwide prospective cohort study of 96 patients in Japan, Biochim Biophys Acta, 1820: 619–24.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×