Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-02T02:30:50.109Z Has data issue: false hasContentIssue false

9 - The Social Costs of Stress

How Sex Differences in Stress Responses Can Lead to Social Stress Vulnerability and Depression in Women

Published online by Cambridge University Press:  05 June 2012

Laura Cousino Klein
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania
Elizabeth J. Corwin
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania
Rachel M. Ceballos
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania
Corey L. M. Keyes
Affiliation:
Emory University, Atlanta
Sherryl H. Goodman
Affiliation:
Emory University, Atlanta
Get access

Summary

Men and women differ in their mental and physical disease vulnerability, and sex differences appear to matter in the biological contributions to human health (Institute of Medicine, 2001). With respect to depression, approximately 12 million women in the United States experience depression annually, a rate of diagnosis that is at least twice the frequency of that found among men (National Mental Health Association, 2004). Although genetic factors, including sex, certainly play a role in the development of psychiatric illness, we now know that genotype alone does not singly determine whether an individual will develop a given psychiatric disorder (Plomin, DeFries, Craig, & McGuffin, 2003). For example, although there are well-known familial risks and sex differences in the prevalence rates of schizophrenia, depression, anxiety, and attention deficit/hyperactivity disorder (ADHD) (American Psychiatric Association, 1994), recent data suggest that environmental and biological factors, including stress, age, social support, and socioeconomic status, also contribute to the expression of these disorders (e.g., depression, anxiety, and posttraumatic stress disorder (PTSD); Kubzansky, Berkman, & Seeman, 2000; McEwen, 1998; Sapolsky, 1994; Vinokur, Price, & Caplan, 1996). A recent report proposes that there are sex differences in biological and behavioral responses to stress — the tend-and-befriend response (Taylor, Klein, Lewis, Gruenewald, Gurung, & Updegraff, 2000) – and suggests that social stressors may influence the manifestation of some psychiatric disorders, such as depression, differently in men and women (Klein & Corwin, 2002).

Type
Chapter
Information
Women and Depression
A Handbook for the Social, Behavioral, and Biomedical Sciences
, pp. 199 - 218
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altemus, M., Redwine, L. S., Leong, Y. M., Frye, C. A., Porges, S. W., & Carter, C. S. (2001). Responses to laboratory psychosocial stress in postpartum women. Psychosomatic Medicine, 63, 814–821CrossRefGoogle ScholarPubMed
Altemus, M., Roca, C., Galliven, E., Romanos, C., & Deuster, P. (2001). Increased vasopressin and adrenocorticotropin responses to stress in the midluteal phase of the menstrual cycle. Journal of Clinical Endocrinology and Metabolism, 86, 2525–2530CrossRefGoogle ScholarPubMed
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association
Anderberg, U. M., & Uvnas-Moberg, K. (2000). Plasma oxytocin levels in female fibromyalgia syndrome patients. Zeitschrift fur Rheumatologie, 59, 373–379CrossRefGoogle ScholarPubMed
Anisman, H., & Merali, Z. (2002). Cytokines, stress, and depressive illness. Brain, Behavior, and Immunity, 16, 513–524CrossRefGoogle ScholarPubMed
Anisman, H., & Merali, Z. (2003). Cytokines, stress and depressive illness: Brain-immune interactions. Annals of Medicine, 35, 2–11CrossRefGoogle ScholarPubMed
Ballenger, J. C. (2001). Overview of different pharmacotherapies for attaining remission in generalized anxiety disorder. Journal of Clinical Psychiatry, 62 (Suppl. 19), 11–19Google ScholarPubMed
Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21, 1155–1166CrossRefGoogle ScholarPubMed
Baum, A., Grunberg, N. E., & Singer, J. E. (1982). The use of psychological and neuroendocrinological measurements in the study of stress. Health Psychology, 1, 217–236CrossRefGoogle Scholar
Beck, C. T. (1995). The effects of postpartum depression on maternal-infant interaction: A meta-analysis. Nursing Research, 44, 298–304CrossRefGoogle ScholarPubMed
Beck, C. T., & Gable, R. K. (2001). Further validation of the postpartum depression screening scale. Nursing Research, 50, 201–209CrossRefGoogle ScholarPubMed
Boath, E. H., Pryce, A. J., & Cox, J. L. (1998). Postnatal depression: The impact on the family. Journal of Reproductive and Infant Psychology, 16, 199–203CrossRefGoogle Scholar
Bozoky, I., & Corwin, E. J. (2002). Fatigue as a predictor of postpartum depression. Journal of Obstetric Gynecologic, and Neonatal Nursing, 31, 436–443CrossRefGoogle ScholarPubMed
Brett, M., & Baxendale, S. (2001). Motherhood and memory: A review. Psychoneuroendocrinology, 26, 339–362CrossRefGoogle ScholarPubMed
Cannon, W. B. (1932). The wisdom of the body. New York: NortonGoogle Scholar
Cannon, J. G., & St. Pierre, B. (1997). Gender differences in host defense mechanisms. Journal of Psychiatric Research, 31, 99–113CrossRefGoogle ScholarPubMed
Carter, C. S. (2003). Developmental consequences of oxytocin. Physiology & Behavior, 79, 383–397CrossRefGoogle ScholarPubMed
Carter, C. S., & Altemus, M. (1997). Integrative functions of lactational hormones in social behavior and stress management. Annals of the New York Academy of Sciences, 807, 164–174CrossRefGoogle ScholarPubMed
Cho, M. M., DeVries, A. C., Williams, J. R., & Carter, C. S. (1999). The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster). Behavioral Neuroscience, 113, 1071–1079CrossRefGoogle Scholar
Chrousos, G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. New England Journal of Medicine, 332, 1351–1362CrossRefGoogle ScholarPubMed
Cohen, S., Tyrell, D. A., & Smith, A. P. (1991). Psychological stress and susceptibility to the common cold. New England Journal of Medicine, 325, 606–612CrossRefGoogle ScholarPubMed
Cooper, P., & Murray-Kolb, L. (1998) Postnatal depression. British Medical Journal, 316, 1884–1886CrossRefGoogle ScholarPubMed
Corwin, E. J., Brownstead, J., Barton, N., Heckard, S., & Morin, K. (in press). The impact of fatigue on the development of postpartum depression. Journal of Obstetric, Gynecological, and Neonatal NursingGoogle Scholar
Corwin, E. J., Murray-Kolb, L., & Beard, J. L. (2003). Low hemoglobin level is a risk factor for postpartum depression. Journal of Nutrition, 133, 4139–4142CrossRefGoogle ScholarPubMed
Cox, A. D., Puckering, C., Pound, A., & Mills, M. (1987). The impact of maternal depression in young children. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 28, 917–928CrossRefGoogle ScholarPubMed
Crick, N. R., & Grotpeter, J. K. (1995). Relational aggression, gender, and social-psychological adjustment. Child Development, 66, 710–722CrossRefGoogle ScholarPubMed
Crofton, J. T., Ratliff, D. L., Brooks, D. P., & Share, L. (1986). The metabolic clearance rate of and pressor responses to vasopressin in male and female rats. Endocrinology, 118, 1777–1781CrossRefGoogle ScholarPubMed
Crofton, J. T., Share, L., & Brooks, D. P. (1988). Pressor responsiveness to and secretion of vasopressin during the estrous cycle. American Journal of Physiology, 255, R1041–R1048Google ScholarPubMed
Dantzer, R., Aubert, A., Bluthe, R., Gheusi, G., Cremona, S., Laye, S.. (1999). Mechanisms of the behavioural effects of cytokines. Advances in Experimental Medicine and Biology, 461, 83–106CrossRefGoogle ScholarPubMed
Wied, D., Diamant, M., & Fodor, M. (1993). Central nervous effects of neurohypophysial hormones and related peptides. Neuroendocrinology, 14, 251–302CrossRefGoogle ScholarPubMed
Engelmann, M., Ebner, K., Landgraf, R., Holsboer, F., & Wotjak, C. T. (1999). Emotional stress triggers intrahypothalamic but not peripheral release of oxytocin in male rats. Journal of Neuroendocrinology, 11, 867–872CrossRefGoogle Scholar
Engelmann, M., Wotjak, C. T., Ebner, K., & Landgraf, R. (2000). Behavioural impact of intraseptally released vasopressin and oxytocin in rats. Experimental Physiology, 85S, 125S–130SCrossRefGoogle Scholar
Federenko, I. S., & Wadhwa, P. D. (2004). Women's mental health during pregnancy influences fetal and infant developmental and health outcomes. CNS Spectrums, 9, 198–206CrossRefGoogle ScholarPubMed
Ferguson, J. N., Young, L. J., & Insel, T. R. (2002). The neuroendocrine basis of social recognition. Frontiers in Neuroendocrinology, 23, 200–224CrossRefGoogle ScholarPubMed
Field, T. (1998). Early interventions for infants of depressed mothers. Pediatrics, 102, 1305–1310Google ScholarPubMed
Field, T. (2002). Massage therapy. The Medical Clinics of North America, 86, 163–171CrossRefGoogle ScholarPubMed
Field, T., Healy, B., Goldstein, S., Perry, S., Bendell, D., Schanberg, S.. (1988). Infants of depressed mothers show “depressed” behavior even with nondepressed adults. Child Development, 59, 1569–1579CrossRefGoogle ScholarPubMed
Field, T., Pickens, J., Prodromidis, M., Malphurs, J., Fox, N., Bendell, D.. (2000). Targeting adolescent mothers with depressive symptoms for early intervention. Adolescence, 35, 381–414Google ScholarPubMed
Gabay, C., & Kushner, I. (1999). Acute-phase proteins and other systemic responses to inflammation. The New England Journal of Medicine, 340, 448–454CrossRefGoogle ScholarPubMed
Gash, D. M., & Boer, G. J. (1987). Vasopressin, principles and properties. New York: PlenumCrossRefGoogle Scholar
Geracioti, T. D., Baker, D. G., Ekhator, N. N., West, S. A., Hill, K. K., Bruce, A. B.. (2001). CSF norepinephrine concentrations in posttraumatic stress disorder. American Journal of Psychiatry, 158, 1227–1230CrossRefGoogle ScholarPubMed
Gibbs, D. M. (1986). Vasopressin and oxytocin: Hypothalamic modulators of the stress response: A review. Psychoneuroendocrinology, 11, 131–140CrossRefGoogle ScholarPubMed
Glaser, R., Kiecolt-Glaser, J. K., Malarkey, W. B., & Sheridan, J. F. (1998). The influence of psychological stress on the immune response to vaccines. Annals of the New York Academy of Sciences, 840, 649–655CrossRefGoogle ScholarPubMed
Glaser, R., Robles, T. F., Sheridan, J., Malarkey, W. B., & Kiecolt-Glaser, J. K. (2003). Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Archives of General Psychiatry, 60, 1009–1014CrossRefGoogle ScholarPubMed
Glaser, R., Sheridan, J., Malarkey, W. B., MacCallum, R. C., & Kiecolt-Glaser, J. K. (2000). Chronic stress modulates the immune response to a pneumococcal pneumonia vaccine. Psychosomatic Medicine, 62, 804–807CrossRefGoogle ScholarPubMed
Glover, V., Onozawa, K., & Hodgkinson, A. (2002). Benefits of infant massage for mothers with postnatal depression. Seminars in Neonatology, 7, 495–500CrossRefGoogle ScholarPubMed
Goldstein, D. J., Lu, Y., Detke, M. J., Wiltse, C., Mallinckrodt, C., & Demitrack, M. A. (2004). Duloxetine in the treatment of depression: A double-blind placebo-controlled comparison with Paroxetine. Journal of Clinical Psychopharmacology, 24, 389–399CrossRefGoogle ScholarPubMed
Gray, J. (1971). Sex differences in emotional behavior in mammals including man: Endocrine bases. Acta Psycholgie, 35, 29–46CrossRefGoogle ScholarPubMed
Greeno, C. G., & Wing, R. R. (1994). Stress-induced eating. Psychological Bulletin, 115, 444–464CrossRefGoogle ScholarPubMed
Griebel, G., Simiand, J., Serradeil-Le Gal, C., Wagnon, J., Pascal, M., Scatton, B.. (2002). Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proceedings of the National Academy of Sciences, 99, 6370–6375CrossRefGoogle ScholarPubMed
Hammen, C. (2003a). Interpersonal stress and depression in women. Journal of Affective Disorders, 74, 49–57CrossRefGoogle Scholar
Hammen, C. (2003b). Social stress and women's risk for recurrent depression. Archives of Womens Mental Health, 6, 9–13CrossRefGoogle Scholar
Harmon, A. C., Huhman, K. L., Moore, T. O., & Albers, H. E. (2002). Oxytocin inhibits aggression in female Syrian hamsters. Journal of Neuroendocrinology, 14, 963–969CrossRefGoogle ScholarPubMed
Hatton, G. I. (1990). Emerging concepts of structure-function dynamics in adult brain: The hypothalamo-neurohypophysial system. Progressive Neurobiology, 34, 437–504CrossRefGoogle ScholarPubMed
Hawkley, L. C., & Cacioppo, J. T. (2003). Loneliness and pathways to disease. Brain Behavior and Immunity, 17, S98–105CrossRefGoogle ScholarPubMed
Heffelfinger, A. K., & Newcomer, J. W. (2001). Glucocorticoid effects on memory function over the human life span. Development and Psychopathology, 13, 491–513CrossRefGoogle ScholarPubMed
Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 1389–1398CrossRefGoogle ScholarPubMed
Hendrick, V., Altshuler, L. L., & Suri, R. (1998). Hormonal changes in the postpartum and implications for postpartum depression. Psychosomatics, 39, 93–101CrossRefGoogle ScholarPubMed
Holden, J. M. (1991). Postnatal depression: its nature, effects, and identification using the Edinburgh Postnatal Depression scale. Birth, 18, 211–221CrossRefGoogle ScholarPubMed
Holmes, A., Heilig, M., Rupniak, N. M., Steckler, T., & Griebel, G. (2003). Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends in Pharmacological Sciences, 24, 580–588CrossRefGoogle ScholarPubMed
Hopkins, J., Marcus, M., & Campbell, S. B. (1984). Postpartum depression: A critical review. Psychological Bulletin, 95, 498–515CrossRefGoogle ScholarPubMed
Insel, T. R., Winslow, J. T., Wang, Z., & Young, L. J. (1998). Oxytocin, vasopressin, and the neuroendocrine basis of pair bond formation. In Zingg, H. H., Bourque, C. W., & Bichet, D. G. (Eds.). Vasopressin and oxytocin: Molecular, cellular, and clinical advances (pp. 215–224). New York: Plenum PressCrossRefGoogle Scholar
Institute of Medicine. (2001). Exploring the biological contributions to human health: Does sex matter?Washington, DC: National Academy Press
Jezova, D., Jurankova, E., Mosnarova, A., Kriska, M., & Skultetyova, I. (1996). Neuroendocrine response during stress with relation to gender differences. Acta Neurobiologae Experimentalis, 56, 779–785Google ScholarPubMed
Kant, G. J., Lenox, R. H., Bunnell, B. N., Mougey, E. H., Pennington, L. L., & Meyerhoff, J. L. (1983). Comparison of the stress response in male and female rats: Pituitary cyclic AMP and plasma prolactin, growth hormone and corticosterone. Psychoneuroendocrinology, 8, 421–28CrossRefGoogle ScholarPubMed
Kendrick, K. M. (2000). Oxytocin, motherhood and bonding. Experimental Physiology, 85, 111S–124SCrossRefGoogle Scholar
Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., Malarkey, W. B., & Sheridan, J. (1996). Chronic stress alters the immune response to influenza virus vaccine in older adults. Proceedings of the National Academy of Sciences, 93, 3043–3047CrossRefGoogle ScholarPubMed
Klein, L. C., & Corwin, E. J. (2002). Seeing the unexpected: How sex differences in stress responses may provide a new perspective on the manifestation of psychiatric disorders. Current Psychiatry Reports, 4, 441–448CrossRefGoogle ScholarPubMed
Klein, L. C., Faraday, M. M., Quigley, K. S., & Grunberg, N. E. (2004). Gender differences in biobehavioral aftereffects of stress on eating, frustration, and cardiovascular responses. Journal of Applied Social Psychology, 34, 538–562CrossRefGoogle Scholar
Klein, L. C., Popke, E. J., & Grunberg, N. E. (1997). Sex differences in effects of predictable and unpredictable footshock on fentanyl self-administration in rats. Experiments in Clinical Psychopharmacology, 5, 99–106CrossRefGoogle ScholarPubMed
Kubzansky, L. D., Berkman, L. F., & Seeman, T. E. (2000). Social conditions and distress in elderly persons: Findings from the MacArthur Studies of Successful Aging. Journal of Gerontology: Psychological Sciences, 55, 238–246CrossRefGoogle ScholarPubMed
Legros, J. J. (2001). Inhibitory effect of oxytocin on corticotrope function in humans: Are vasopressin and oxytocin ying-yang neurohormones? Psychoneuroendocrinology, 26, 649–655CrossRefGoogle ScholarPubMed
Liao, J., Keiser, J., Scales, W. E., Kunkel, S. L., & Kluger, M. J. (1995). Role of corticosterone in TNF and IL-6 production in isolated perfused rat liver. American Journal of Physiology, 268, R6999–R7006Google ScholarPubMed
Light, K. C., Smith, T. E., Johns, J. M., Brownley, K. A., Hofheimer, J. A., & Amico, J. A. (2000). Oxytocin responsivity in mothers of infants: A preliminary study of relationships with blood pressure during laboratory stress and normal ambulatory activity. Health Psychology, 19, 560–567CrossRefGoogle ScholarPubMed
Lubin, D. A., Elliott, J. C., Black, M. C., & Johns, J. M. (2003). An oxytocin antagonist infused into the central nucleus of the amygdala increases maternal aggressive behavior. Behavioral Neuroscience, 117, 195–201CrossRefGoogle ScholarPubMed
Maciejewski, P. K., Prigerson, H. G., & Mazure, C. M. (2001). Sex differences in event-related risk for major depression. Psychological Medicine, 31(4), 593–604CrossRefGoogle ScholarPubMed
Maes, M., Meltzer, H. Y., Bosmans, E., Bergmans, R., Vandoolaeghe, E., Ranjan, R.. (1995). Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2, and transferrin receptor in major depression. Journal of Affective Disorders, 34, 301–309CrossRefGoogle ScholarPubMed
Maes, M., Bockstaele, D. R., Gastel, A., Song, C., Schotte, C., Neels, H.. (1999). The effects of psychological stress on leukocyte subset distribution in humans: evidence of immune activation. Neuropsychobiology, 39, 1–9CrossRefGoogle ScholarPubMed
Mallinckrodt, C. H., Goldstein, D. J., Detke, M. J., Lu, Y., Watkin, J. G., & Tran, P. V. (2003). Duloxetine: A new treatment for the emotional and physical symptoms of depression. Primary Care Companion to the Journal of Clinical Psychiatry, 5, 19–28CrossRefGoogle ScholarPubMed
Matthiesen, A. S., Ransjo-Arvidson, A. B., Nissen, E., & Uvnas-Moberg, K. (2001). Postpartum maternal oxytocin release by newborns: Effects of infant hand massage and sucking. Birth, 28, 13–19CrossRefGoogle ScholarPubMed
McCarthy, M. M. (1995). Estrogen modulation of oxytocin and its relation to behavior. In Ivell, R., & Russell, J. (Eds.), Oxytocin: Cellular and molecular approaches in medicine and research (pp. 235–242). New York: Plenum PressGoogle Scholar
McCarthy, M. M., & Altemus, M. (1997). Central nervous system actions of oxytocin and modulation of behavior in humans. Molecular Medicine Today, 3, 269–275CrossRefGoogle ScholarPubMed
McCoy, S. J., Beal, J. M., & Watson, G. H. (2003). Endocrine factors and postpartum depression. A selected review. Journal of Reproductive Medicine, 48, 402–408Google ScholarPubMed
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171–179CrossRefGoogle ScholarPubMed
Mezzacappa, E. S., & Katlin, E. S. (2002). Breast-feeding is associated with reduced perceived stress and negative mood in mothers. Health Psychology, 21, 187–193CrossRefGoogle ScholarPubMed
Milligan, R., Lenz, E. R., Parks, P. L., Pugh, L. C., & Kitzman, H. (1996). Postpartum fatigue: clarifying a concept. Scholarly Inquiry for Nursing Practice, 10, 279–291Google ScholarPubMed
National Mental Health Association. (2004). Depression in women. Retrieved July 2004, from http://www.nmha.org/infoctr/factsheets/23.cfm
Nemeroff, C. B., & Owens, M. J. (2004). Pharmacologic differences among the SSRIs: Focus on monoamine transporters and the HPA axis. CNS Spectrums, 9, 23–31CrossRefGoogle ScholarPubMed
Neumann, I. D., Torner, L., & Wigger, A. (2000). Brain oxytocin: Differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience, 95, 567–575CrossRefGoogle ScholarPubMed
Neumann, I. D., Wigger, A., Torner, L., Holsboer, F., & Landgraf, R. (2000). Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: Partial action within the paraventricular nucleus. Journal of Neuroendocrinology, 12, 235–243CrossRefGoogle ScholarPubMed
Nutt, D. J. (2001). Neurobiological mechanisms in generalized anxiety disorder. Journal of Clinical Psychiatry, 62, 22–27Google ScholarPubMed
O'Connor, T. M., O'Halloran, D. J., & Shanahan, F. (2000). The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM: Monthly Journal of the Association of Physicians, 93, 323–333CrossRefGoogle ScholarPubMed
O'Hara, M. W., Schlechte, J. A., Lewis, D. A., & Varner, M. W. (1991). Controlled prospective study of postpartum mood disorders: psychological, environmental, and hormonal variables. Journal of Abnormal Psychology, 100, 63–73CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., Craig, I. W., & McGuffin, P. (2003). Behavioral genetics in the postgenomic era. Washington, DC: American Psychological AssociationCrossRefGoogle ScholarPubMed
Ressler, K. J., & Nemeroff, C. B. (2000). Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depression and Anxiety, 12, 2–193.0.CO;2-4>CrossRefGoogle ScholarPubMed
Rhodes, M. E., & Rubin, R. T. (1999). Functional sex differences (sexual diergism) of central nervous system cholinergic systems, vasopressin, and hypothalamic-pituitary-adrenal axis activity in mammals: A selective review. Brain Research Reviews, 30, 135–152CrossRefGoogle ScholarPubMed
Robles, T. F., & Kiecolt-Glaser, J. K. (2003). The physiology of marriage: pathways to health. Physiology & Behavior, 79, 409–416CrossRefGoogle Scholar
Russell, J. A. (2002). Editorial: Neuroendocrinology with feeling. Journal of Neuroendocrinology, 14, 1–3CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (1994). Why zebras don't get ulcers: A guide to stress, stress-related disease, and coping. New York: FreemanGoogle Scholar
Sapolsky, R. M. (1996). Why stress is bad for your brain. Science, 273, 749–750CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (2000a). Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of General Psychiatry, 57, 925–935CrossRefGoogle Scholar
Sapolsky, R. M. (2000b). The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biological Psychiatry, 48, 755–765CrossRefGoogle Scholar
Savino, W., Arzt, E., & Dardenne, M. (1999). Immunoneuroendocrine connectivity: The paradigm of the thymus-hypothalamus/pituitary axis. Neuroimmunomodulation, 6, 126–136CrossRefGoogle ScholarPubMed
Schmeelk, K. H., Granger, D. A., Susman, E. J., & Chrousos, G. P. (1999). Maternal depression and risk for postpartum complications: Role of prenatal corticotropin-releasing hormone and interleukin-1 receptor antagonist. Behavioral Medicine, 25, 88–94CrossRefGoogle ScholarPubMed
Scott, K. D., Klaus, P. H., & Klaus, M. H. (1999). The obstetrical and postpartum benefits of continuous support during childbirth. Journal of Women's Health and Gender-Based Medicine, 8, 1257–1264CrossRefGoogle ScholarPubMed
Segerstrom, S. C., & Miller, G. E. (2004). Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychological Bulletin, 130, 601–630CrossRefGoogle ScholarPubMed
Sherrill, J. T., Anderson, B., Frank, E., Reynolds, C. F. 3rd, Tu, X. M., Patterson, D.. (1997). Is life stress more likely to provoke depressive episodes in women than in men? Depression and Anxiety, 6, 95–1053.0.CO;2-4>CrossRefGoogle ScholarPubMed
Stein, A., Gath, D. H., Bucher, J., Bond, A., Day, A., & Cooper, P. J. (1991). The relationship between post-natal depression and mother-child interaction. British Journal of Psychiatry, 158, 46–52CrossRefGoogle ScholarPubMed
Steiner, M. (1998). Perinatal mood disorders: Position paper. Psychopharmacology Bulletin, 34, 301–306Google ScholarPubMed
Stratakis, C. A., & Chrousos, G. P. (1995). Neuroendocrinology and pathophysiology of the stress system. In Chrousos, G. P., McCarty, R., Pacák, K., Cizza, G., Sternberg, E., Gold, P. W., & Kvetňanský, R. (Eds.), Stress: Basic mechanisms and clinical implications (Vol. 771, pp. 1–18). New York: New York Academy of SciencesGoogle Scholar
Stroud, L. R., Salovey, P., & Epel, E. S. (2002). Sex differences in stress responses: social rejection versus achievement stress. Biological Psychiatry, 15, 318–327CrossRefGoogle Scholar
Swaab, D. F., Fliers, E., Hoogendijk, W. J. G., Veltman, D. J., & Zhou, J. N. (2000). Interaction of prefrontal cortical and hypothalamic systems in the pathogenesis of depression. Progress in Brain Research, 126, 369–396CrossRefGoogle Scholar
Swaab, D. F., Hofman, M. A., Lucassen, P. J., Purba, J. S., Raadsheer, F. C., & Nes, J. A. P. (1993). Functional neuroanatomy and neuropathology of the human hypothalamus. Anatomy and Embryology, 187, 317–330CrossRefGoogle ScholarPubMed
Taylor, S. E., Dickerson, S. S., & Klein, L. C. (2002). Toward a biology of social support. In Snyder, C. R., & Lopez, S. J. (Eds). Handbook of positive psychology (pp. 556–569). New York: Oxford University PressGoogle Scholar
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A. R., & Updegraff, J. A. (2000). Female responses to stress: Tend-and-befriend, not fight-or-flight. Psychological Review, 107, 411–429CrossRefGoogle Scholar
Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., & Navalta, C. P. (2002). Developmental neurobiology of childhood stress and trauma. Psychiatric Clinics of North America, 25, 397–426CrossRefGoogle ScholarPubMed
Troy, N. W. (1999). A comparison of fatigue and energy levels at 6 weeks and 14 to 19 months postpartum. Clinical Nursing Research, 8, 135–152CrossRefGoogle ScholarPubMed
Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53, 865–871CrossRefGoogle Scholar
Turner, R. A., Altemus, M., Enos, T., Cooper, B., & McGuinness, T. (1999). Preliminary research on plasma oxytocin in healthy, normal cycling women investigating emotion and interpersonal distress. Psychiatry, 62, 97–113CrossRefGoogle ScholarPubMed
Uvnas-Moberg, K. (1997). Oxytocin linked antistress effects–the relaxation and growth response. Acta Psychologica Scandinavica, 640, 38–42Google ScholarPubMed
Uvnas-Moberg, K., Bjokstrand, E., Hillegaart, V., & Ahlenius, S. (1999). Oxytocin as a possible mediator of SSRI-induced antidepressant effects. Psychopharmacology, 142, 95–101CrossRefGoogle ScholarPubMed
Vinokur, A. D., Price, R. H., & Caplan, R. D. (1996). Hard times and hurtful partners: How financial strain affects depression and relationship satisfaction of unemployed persons and their spouses. Journal of Personality and Social Psychology, 71, 166–179CrossRefGoogle ScholarPubMed
Watkins, L. R., Nguyen, K. T., Lee, J. E., & Maier, S. F. (1999). Dynamic regulation of proinflammatory cytokines. Advances in Experimental Medicine and Biology, 461, 153–178CrossRefGoogle ScholarPubMed
Weich, S., Sloggett, A., & Lewis, G. (2001). Social roles and the gender difference in rates of the common mental disorders in Britain: A 7-year, population-based cohort study. Psychological Medicine, 31, 1055–1064CrossRefGoogle ScholarPubMed
Werner, N. E., & Crick, N. R. (1999). Relational aggression and social-psychological adjustment in a college sample. Journal of Abnormal Psychology, 108, 615–623CrossRefGoogle Scholar
Whiffen, V. E. (1992). Is postpartum depression a distinct diagnosis? Clinical Psychology Review, 12, 495–508CrossRefGoogle Scholar
Whiffen, V. E., & Gotlib, I. H. (1989). Infants of postpartum depressed mothers: Temperament and cognitive status. Journal of Abnormal Psychology, 98, 274–279CrossRefGoogle ScholarPubMed
Windle, R. J., Shanks, N., Lightman, S. L., & Ingram, C. D. (1997). Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 138, 2829–2834CrossRefGoogle ScholarPubMed
Wood, A. F., Thomas, S. P., Droppleman, P. G., & Meighan, M. (1997). The downward spiral of postpartum depression. MCN: The American Journal of Maternal Child Nursing, 22, 308–316Google ScholarPubMed
Young, L. J., & Lim, M. M., Gingrich, B., & Insel, T. R. (2001). Cellular mechanisms of social attachment. Hormones and Behaviors, 40, 133–138CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×