Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-09T15:18:17.125Z Has data issue: false hasContentIssue false

Diagenesis and Rheology of a Recent-Pleistocene Volcanogenic Sedimentary Sequence, Mexican Basin

Published online by Cambridge University Press:  01 January 2024

Liberto de Pablo-Galán*
Affiliation:
Instituto de Geología, Universidad Nacional A. de Mexico, Mexico, 04510 Mexico, D.F.
Juan J. de Pablo
Affiliation:
Chemical Engineering Department, University of Wisconsin, Madison, Wisconsin, USA
M. de Lourdes Chávez-García
Affiliation:
Facultad de Química, Universidad Nacional A. de Mexico, 04510 Mexico, D.F.
*
*E-mail address of corresponding author: liberto@servidor.unam.mx

Abstract

Diagenesis of the Holocene-Pleistocene volcanogenic sediments of the Mexican Basin produced, in strata of gravel and sand, 1H2O- and 2H2O-smectite, kaolinite, R3-2H2O-smectite (0.75)-kaolinite, R1-2H2O-smectite (0.75)-kaolinite, R3-kaolinite (0.75)-2H2O-smectite and R1-1H2O-smectite (0.75)-kaolinite. Smectite platelets were formed from volcanic glass by loss of Si4+. Partially-formed platelets have Si4+ between 4.55−4.10 a.p.f.u., Mg+Mn and the interlayer charge are relatively uniform while VIAl+Fe3++Ti varies between 0.98 and 1.63 a.p.f.u. Almost fully transformed platelets have Si4+ of 4.08−4.04 a.p.f.u.; Mg+Mn and the interlayer charge decrease proportionally to increasing VIAl+Fe3++Ti. Smectite-kaolinite mixed layers have octahedral occupancies of 2.01–2.15 a.p.f.u., IVAl3+ 0.09–0.55 a.p.f.u. and interlayer charges about half that of smectite; structural formulae corresponding to smectite (0.75–0.80)-kaolinite indicate octahedral occupancy of 2.50 a.p.f.u., tetrahedral replacement 0–0.31 a.p.f.u., and interlayer charge 0.24–0.51 equivalents, some indicating interstratifications of beidellite. Kaolinite is presumed to have formed from K-feldspar; smectite-kaolinite interstratifications sustain the transformation of kaolinite to smectite in an increasingly siliceous high-cation environment. In the mudstones of low-hydraulic conductivity and practically stagnant alkaline fluids, glass was transformed to 2H2O-smectite lamellae of IVAl between 0 and 0.47 a.p.f.u., octahedral occupancy 1.70–2.00 a.p.f.u. and interlayer charge of 0.23–1.21 equivalents, some corresponding to beidellite. The interlayer charge increases with IVAl and decreasing occupancy of the octahedral sheet; the abundance of Mg+Mn is inverse to that of VIAl+Fe3++Ti.

Clay suspensions containing 1H2O- and 2H2O-smectite, kaolinite and R3-2H2O-smectite (0.75)-kaolinite lead to low-energy edge-to-edge particle associations, non-Newtonian pseudoplastic behavior, and maximum apparent viscosity of 180 Pa s at 0.008 s−1 followed by rapid descent. Clay fractions with slightly larger 2H2O-smectite contents and smaller kaolinite contents reach maximum viscosity of 3611 Pa s at a shear rate of 0.0018 s−1 and of 3300 Pa s at 0.0024 s−1. They denote two high-energy face-to-face particle associations, followed by slow descent of the apparent viscosity under viscous flow. Suspensions change from elastic to viscous behavior at shear stresses of 1.03 and 5.91 Pa, respectively. Clay suspension vibrated at a frequency of 1 Hz develops a shear storage dynamic modulus greater than the shear dynamic loss modulus or the energy is preferentially stored, whereas at 5 Hz more energy is dissipated than stored.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almon, W.R. Fullerton, L.B. and Davies, D.K., (1976) Pore space reduction in Cretaceous sandstone through chemical precipitation of clay minerals Journal of Sedimentary Petrology 46 89 96.Google Scholar
April, R.H., (1981) Trioctahedral smectite and interstratified chlorite/smectite in Jurassic strata of the Connecticut Valley Clays and Clay Minerals 29 3139 10.1346/CCMN.1981.0290105.CrossRefGoogle Scholar
Bailey, S.W. and Bailey, S.W., (1988) Structures and composition of other trioctahedral 1:1 phyllosilicates Hydrous Phyllosilicates Washington, D.C. Mineralogical Society of America 10.1515/9781501508998 Pp. 169–188.CrossRefGoogle Scholar
Bailey, S.W. and Bailey, S.W., (1988) Chlorites: Structure and crystal chemistry Hydrous Phyllosilicates Washington, D.C. Mineralogical Society of America 10.1515/9781501508998 Pp. 347–404.CrossRefGoogle Scholar
Bailey, S.W. and Brown, B.E., (1982) Chlorite polytypism: I. Regular and semi-random one-layer structures American Mineralogist 47 819 850.Google Scholar
Barrenechea, J.F. Rodas, M. Frey, M. Alonso-Azcarate, J. and Mas, J.R., (2000) Chlorite, corrensite, and chlorite-mica in Late Jurassic fluvio-lacustrine sediments of the Cameros Basin of Northeastern Spain Clays and Clay Minerals 48 256265 10.1346/CCMN.2000.0480212.CrossRefGoogle Scholar
Bettison-Varga, L. and Mackinnon, I.D.R., (1997) The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite Clays and Clay Minerals 45 506516 10.1346/CCMN.1997.0450403.CrossRefGoogle Scholar
Bodine, M.W. Madsen, B.M., Schultz, L.G. van Olphen, H. and Mumpton, F.A., (1987) Mixed-layer chlorite/smectites from a Pennsylvanian evaporite cycle, Grand County, Utah Proceedings of the International Conference, Denver Bloomington, Indiana The Clay Minerals Society Pp. 85–93.Google Scholar
Brandenburg, U. and Lagaly, G., (1988) Rheological properties of sodium montmorillonite dispersions Applied Clay Science 124 624 631.Google Scholar
Brindley, G.W., (1982) Chemical composition of berthierine — a review Clays and Clay Minerals 30 153155 10.1346/CCMN.1982.0300211.CrossRefGoogle Scholar
Chang, H.K. Mackenzie, F.T. and Schoonmaker, J., (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite Brazilian offshore basins Clays and Clay Minerals 34 407423 10.1346/CCMN.1986.0340408.CrossRefGoogle Scholar
Chen, J.S. Cushman, J.H. and Low, P.F., (1990) Rheological behavior of Na-montmorillonite suspensions at low electrolyte concentration Clays and Clay Minerals 38 5762 10.1346/CCMN.1990.0380108.CrossRefGoogle Scholar
Durazo, J. and Farvolden, R.N., (1989) The groundwater regime of the Valley of México from historic evidence and field observations Journal of Hydrology 112 171190 10.1016/0022-1694(89)90187-X.CrossRefGoogle Scholar
Furbish, W.J., (1975) Corrensite of deuteric origin American Mineralogist 60 928 930.Google Scholar
Gasca, D.A. and Reyes, C.M. (1977) La cuenca lacustre Plio-Pleistocenica de Tula-Zumpango. Instituto Nacional Antropologia e Historia, Informe 2, 85 pp.Google Scholar
Güven, N. and Bailey, S.W., (1988) Smectites Hydrous Phyllosilicates Washington, D.C. Mineralogical Society of America Pp. 497–559.Google Scholar
Heller, H. and Keren, R., (2001) Rheology of Na-rich montmorillonite suspension as affected by electrolyte concentration and shear rate Clays and Clay Minerals 49 286291 10.1346/CCMN.2001.0490402.CrossRefGoogle Scholar
Hillier, S., (1993) Origin, diagenesis and mineralogy of chlorite minerals in Devonian Lacustrine mudrocks, Orcadian Basin, Scotland Clays and Clay Minerals 41 240259 10.1346/CCMN.1993.0410211.CrossRefGoogle Scholar
Hillier, S. and Velde, B., (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites Clay Minerals 26 149168 10.1180/claymin.1991.026.2.01.CrossRefGoogle Scholar
Hoffman, J. and Hower, J., (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, USA Society of Economic Paleontology Mineralogy Special Publication 26 55 79.Google Scholar
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., (1976) Mechanism of burial metamorphism of argillaceous sediments: I. Mineralogical and chemical evidence Geological Society of America Bulletin 87 727737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Hutcheon, I. Oldershaw, A. and Ghent, E.D., (1980) Diagenesis of Cretaceous sandstones of the Kootenay Formation at Elk Valley (southeastern British Columbia) and Mt. Allan (southwestern Alberta) Geochimica et Cosmochimica Acta 44 14251435 10.1016/0016-7037(80)90108-8.CrossRefGoogle Scholar
Inoue, A. and Utada, M., (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan American Mineralogist 76 628 640.Google Scholar
Jiang, W.T. and Peacor, D.R., (1994) Prograde transitions of corrensite and chlorite in low-grade pelitic rocks from the Gaspe Peninsula, Quebec Clays and Clay Minerals 42 497517 10.1346/CCMN.1994.0420501.CrossRefGoogle Scholar
Jiang, W.T. Peacor, D.R. and Buseck, P.R., (1994) Chlorite geothermometry: Contamination and apparent octahedral vacancies Clays and Clay Minerals 42 593605 10.1346/CCMN.1994.0420512.CrossRefGoogle Scholar
Karpova, G.V., (1969) Clay mineral post-sedimentary ranks in terrigenous rocks Sedimentology 13 520 10.1111/j.1365-3091.1969.tb01118.x.CrossRefGoogle Scholar
Kopp, O.C. and Fallis, S.M., (1974) Corrensite in the Wellington Formation, Lyons, Kansas American Mineralogist 59 623 624.Google Scholar
Kübler, B., (1973) La corrensite, indicateour possible de milleux de sedimentation et du degree de transformation d’un sediment Bulletin Centre Recherche Pau-SNPA 7 543 556.Google Scholar
Lopez-Ramos, E., (1979) Geología de México, III Mexico Universidad Nacional A. de Mexico.Google Scholar
Marsal, R.J. and Mazari, M., (1962) El Subsuelo de la Ciudad de México México Facultad de Ingenieria, Universidad Nacional A. de México.Google Scholar
Mering, J. and Pedro, G., (1969) Discussion a propos des criteres de classification des phyllosilicates 2: 1 Bulletin de Groupe Francaise Argiles 21 130 10.3406/argil.1969.1105.CrossRefGoogle Scholar
Meunier, A. Clement, J. Bouchet, A. and Beaufort, D., (1988) Chlorite-calcite and corrensite-dolomite crystallization during two superimposed events of hydrothermal alteration in the ‘les Cetes’ granite, Vosge, France The Canadian Mineralogist 26 413 422.Google Scholar
Mooser, F., (1956) Vulcanismo y Rocas Sedimentarias Cuenca de México y Edo. De Morelos, Excursion C-9 México XX Congreso Geologico Internacional, Universidad Nacional A. de México.Google Scholar
Mooser, F., (1956) Informe sobre la Geología de la Cuenca del Valle de México México Secretaria de Recursos Hidraulicos, Comision Hidrologica del Valle de México.Google Scholar
Moore, D.M. and Reynolds, R.C., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
Newman, A.C.D. and Newman, A.C.D., (1987) The interaction of water with clay mineral surfaces Chemistry of Clays and Clay Minerals Harlow, Essex, UK Longmans Pp. 241–260.Google Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., (1987) The chemical constitution of clays Chemistry of Clays and Clay Minerals Harlow, Essex, UK Longmans Pp. 49–63.Google Scholar
Odin, G.S., (1985) La ‘verdine’, facies granulaire vert, marin et cotier distinct de la glauconie: distribution actualle et composition Compte Rendue Academie Science Paris 301 2 105 108.Google Scholar
Odin, G.S. Bailey, S.W. Amouric, M. Frohlich, F. Waychunas, G.S. and Odin, G.S., (1988) Mineralogy of the verdine facies Green Marine Clays Amsterdam Elsevier Pp. 159–206.Google Scholar
Pevear, D.R. and Whitney, C.G. (1982) Clay minerals in Coast Range basalts of the Pacific Northwest: Eocene seafloor metamorphism. Program with Abstracts, 19 th Annual Meeting, Clay Minerals Society, Hilo, Haway, p. 6.Google Scholar
Reynolds, R.C. Jr. and Reynolds, R.C. III (1996) NEWMOD: The calculation of one dimensional X-ray diffraction patterns of Mixed-layered Clay Minerals. Computer Program. 8 Brook Road, Hanover, New Hampshire 03755, USA.Google Scholar
Roberson, H.E. (1989) Corrensite in hydrothermally altered oceanic rocks. P. 59 in: Abstracts of the 26 th Clay Minerals Society Annual Meeting, Sacramento.Google Scholar
Ruiz-Fernandez, A., (1999) Distribucion espacial y temporal de metales pesados en sedimentos lacustres de la Cuenca de México: Chalco, Texcoco y Cuauhtitlan Izcalli, estado de México México Universidad Nacional A. de México.Google Scholar
Shau, Y.H. Peacor, D. and Essene, E., (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EPMA, XRD and optical studies Contributions to Mineralogy and Petrology 105 123142 10.1007/BF00678980.CrossRefGoogle Scholar
Schiffman, P. and Staudigel, H., (1995) The smectite to chlorite transition in a fossil seamount hydrothermal system: The basement complex of La Palma, Canary Islands Journal of Metamorphic Petrology 13 487498 10.1111/j.1525-1314.1995.tb00236.x.CrossRefGoogle Scholar
Sistema Hidraulico del Distrito Federal, Cronologia. Memoria de las Obras del Sistema de Drenaje Profundo del Dustrito Federal, Tomo I (1994) México Departamento del Distrito Federal.Google Scholar
Suquet, H. and Pezerat, H., (1987) Parameters influencing layer stacking types in saponites and vermiculites Clays and Clay Minerals 35 353362 10.1346/CCMN.1987.0350505.CrossRefGoogle Scholar
Suquet, H. and Pezerat, H., (1988) Comments on the classification of trioctahedral 2:1 phyllosilicates Clays and Clay Minerals 36 184186 10.1346/CCMN.1988.0360214.CrossRefGoogle Scholar
Suquet, H. de la Calle, C. and Pezerat, H., (1975) Swelling and structural organization of saponite Clays and Clay Minerals 23 19 10.1346/CCMN.1975.0230101.CrossRefGoogle Scholar
Suquet, H. Iiyama, J.T. Kodama, H. and Pezerat, H., (1977) Synthesis and swelling properties of saponites with increasing layer charge Clays and Clay Minerals 25 231242 10.1346/CCMN.1977.0250310.CrossRefGoogle Scholar
Urrutia-Fucugauchi, J. Lozano, S. Ortega, O. Caballero, M. Hansen, R. Bohnel, H. and Negendank, J.F.W., (1994) Paleomagnetic and paleoenvironmental studies in the southern Basin of México. I. Volcanosedimentary sequence and basin structure of Chalco lake Geofisica Internacional 33 421 430.CrossRefGoogle Scholar
Van Olphen, H., (1977) An Introduction to Clay Colloid Chemistry New York Interscience Publishers.Google Scholar