Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-03T19:00:43.039Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 September 2023

Carlo F. Barenghi
Affiliation:
Newcastle University
Ladislav Skrbek
Affiliation:
Charles University, Prague
Katepalli R. Sreenivasan
Affiliation:
New York University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quantum Turbulence , pp. 287 - 310
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo-Shaeer, J. R., Raman, C., Vogels, J. M., and Ketterle, W., Observation of vortex lattices in Bose–Einstein condensates, Science 292, 476 (2001).Google Scholar
Achenbach, E., The effects of surface roughness and tunnel blockage on the flow past spheres, J. Fluid Mech. 65, 113 (1974).Google Scholar
Adachi, H., Fujiyama, S., and Tsubota, M., Steady state counterflow quantum turbulence: Simulation of vortex filaments using the full Biot–Savart law, Phys. Rev. B 81, 104511 (2010).Google Scholar
Ahlstrom, S. L., Bradley, D. I., Fisher, S. N., Guénault, A. M., Guise, E. A., Haley, R. P., Holt, S., Kolosov, O., McClintock, P. V. E., Pickett, G. R., Poole, M., Schanen, R., Tsepelin, V., and Woods, A. J., A quasiparticle detector for imaging quantum turbulence in superfluid 3He-B, J. Low Temp. Phys. 175, 725 (2014).Google Scholar
Allen, J. F., and Jones, M., New phenomena connected with heat flow in helium II, Nature 141, 243 (1938).Google Scholar
Allen, J. F., and Misener, A. D., Flow of liquid He II, Nature 424, 1022 (1938).Google Scholar
Allen, J. F., and Reekie, J., Momentum transfer and heat flow in liquid helium II, Proc. Cambr. Phil. Soc. 35, 114 (1939).Google Scholar
Allum, D. R., McClintock, P. V. E., Phillips, A., and Bowley, R. M., The breakdown of superfluidity in liquid 4He: An experimental test of Landau’s theory. Phil. Trans. Roy. Soc. A 284, 179 (1976).Google Scholar
Van Alphen, W. M., Van Haasteren, G. J., De Bruyn Ouboter, R., and Taconis, K. W., The dependence of the critical velocity of the superfluid on channel diameter and film thickness, Phys. Lett. 20, 474 (1966).Google Scholar
Amelio, I., Galli, D. E., and Reatto, L., Probing quantum turbulence in 4He by quantum evaporation measurements, Phys. Rev. Lett. 121, 015302 (2018).Google Scholar
Andronikashvili, E., A direct observation of two kinds of motion in helium II, J. Phys. USSR 10, 201 (1946).Google Scholar
Andronikashvili, E., Temperaturnaya zavisimost normalnoi plotnosti Geliya-II, Zh. Eksp. Teor. Fiz. 18, 424 (1948).Google Scholar
Annett, J. F., Superconductivity, Superfluids and Condensates, Oxford University Press (2004).CrossRefGoogle Scholar
Araki, T., Tsubota, M., and Nemirovskii, S. K., Energy spectrum of vortex tangle, J. Low Temp. Phys. 126, 203 (2002a).CrossRefGoogle Scholar
Araki, T., Tsubota, M., and Nemirovskii, S. K., Energy spectrum of superfluid turbulence with no normal-fluid component, Phys. Rev. Lett. 89, 145301 (2002b).CrossRefGoogle ScholarPubMed
Arp, V. D., and McCarty, R. D., The Properties of Critical Helium Gas, Tech. Rep., U. of Oregon (1998).Google Scholar
Ashton, A., Opatowsky, L. B., and Tough, J. T., Turbulence in pure superfluid flow, Phys. Rev. Lett. 46, 658 (1981).Google Scholar
Autti, S., Ahlstrom, S. L., Haley, R. P., Jennings, A., Pickett, G. R., Poole, M., Schanen, R., Soldatov, A. A., Tsepelin, V., Vonka, J., Wilcox, T., Woods, A. J., and Zmeev, D. E., Fundamental dissipation due to bound fermions in the zero-temperature limit, Nature Comm. 11, 4742 (2020).CrossRefGoogle ScholarPubMed
Awschalom, D. D., and Schwarz, K. W., Observation of a remanent vortex-line density in superfluid helium, Phys. Rev. Lett. 52, 49 (1984).Google Scholar
Awschalom, D. D., Milliken, F. P., and Schwarz, K. W., Properties of superfluid turbulence in a large channel, Phys. Rev. Lett. 53, 1372 (1984).CrossRefGoogle Scholar
Babuin, S., Stammeier, M., Varga, E., Rotter, M., and Skrbek, L., Quantum turbulence of bellows-driven 4He superflow: Steady state, Phys. Rev. B 86, 134515 (2012).Google Scholar
Babuin, S., Varga, E., and Skrbek, L., Effective viscosity in quantum turbulence: A steady state approach, Europhys. Lett. 106, 24006 (2014a).Google Scholar
Babuin, S., Varga, E., and Skrbek, L., The decay of forced turbulent coflow of He II past a grid, J. Low Temp. Phys. 175, 324 (2014b).Google Scholar
Babuin, S., Varga, E., Vinen, W. F., and Skrbek, L., Quantum turbulence of bellows-driven 4He superflow: Decay, Phys. Rev. B 92, 184503 (2015).Google Scholar
Babuin, S., L’vov, V. S., Pomyalov, A., Skrbek, L., and Varga, E., Coexistence and interplay of quantum and classical turbulence in superfluid 4He: Decay, velocity decoupling, and counterflow energy spectra. Phys. Rev. B 94, 174504 (2016).Google Scholar
Baehr, M. L., Opatowsky, L. B., and Tough, J. T., Transition from dissipationless superflow to homogeneous superfluid turbulence, Phys. Rev. Lett. 51, 2295 (1983).Google Scholar
Baehr, M. L., Opatowsky, L. B., and Tough, J. T., Critical velocity in two-fluid flow of He II, Phys. Rev. Lett. 53, 1669 (1984).Google Scholar
Baggaley, A. W., The sensitivity of the vortex filament method to different reconnections models, J. Low Temp. Phys. 68, 18 (2012).Google Scholar
Baggaley, A. W., and Barenghi, C. F., Vortex density fluctuations in quantum turbulence, Phys. Rev. B 84, 020504(R) (2011a).CrossRefGoogle Scholar
Baggaley, A. W., and Barenghi, C. F., Quantum turbulent velocity statistics and quasiclassical limit, Phys. Rev. E 84, 067301 (2011b).CrossRefGoogle ScholarPubMed
Baggaley, A. W., and Barenghi, C. F., Tree method for quantum vortex dynamics, J. Low Temp. Phys. 166, 3 (2012).Google Scholar
Baggaley, A. W., and Barenghi, C. F., Acceleration statistics in thermally driven superfluid turbulence, Phys. Rev. E 89, 033006 (2014).Google Scholar
Baggaley, A. W., and Hänninen, R., Vortex filament method as a tool for computational visualization of quantum turbulence, Proc. Nat. Acad. Sci. USA 111 suppl. 1, 4667 (2014).Google Scholar
Baggaley, A. W., and Laurie, J., Kelvin-wave cascade in the vortex filament model, Phys. Rev. B 89, 014504 (2014).Google Scholar
Baggaley, A. W., and Laurie, J., Thermal counterflow in a periodic channel with solid boundaries, J. Low Temp. Phys. 178, 35 (2015).Google Scholar
Baggaley, A. W., Barenghi, C. F., and Sergeev, Y. A., Quasiclassical and ultraquantum decay of superfluid turbulence, Phys. Rev. B 85, 060501(R) (2012a).Google Scholar
Baggaley, A. W., Barenghi, C. F., Shukurov, A., and Sergeev, Y. A., Coherent vortex structures in quantum turbulence, Europhys. Lett. 98, 26002 (2012b).CrossRefGoogle Scholar
Baggaley, A. W., Laurie, J., and Barenghi, C. F., Vortex-density fluctuations, energy spectra, and vortical regions in superfluid turbulence, Phys. Rev. Lett. 109, 205304 (2012c).CrossRefGoogle ScholarPubMed
Baggaley, A. W., Sherwin, L. K., Barenghi, C. F., and Sergeev, Y. A., Thermally and mechanically driven quantum turbulence in helium II, Phys. Rev. B 86, 104501 (2012d).Google Scholar
Baggaley, A. W., Barenghi, C. F., and Sergeev, Y. A., Three-dimensional inverse energy transfer induced by vortex reconnections, Phys. Rev. E 89, 013002 (2014).Google Scholar
Baggaley, A. W., Tsepelin, V., Barenghi, C. F., Fisher, S. N., Pickett, G. R., Sergeev, Y. A., and Suramlishvili, N., Visualizing pure quantum turbulence in superfluid 3He: Andreev reflection and its spectral properties, Phys. Rev. Lett. 115, 015302 (2015).Google Scholar
Balibar, S., The discovery of superfluidity, J. Low Temp. Phys. 146, 441 (2007).Google Scholar
Barenghi, C. F., Quantum Turbulence. Ph.D. thesis, University of Oregon (1982).Google Scholar
Barenghi, C. F., Vortices and the Couette flow of helium II, Phys. Rev. B 45, 2290 (1992).Google Scholar
Barenghi, C. F., and Donnelly, R. J., Vortex rings in classical and quantum systems, Fluid Dyn. Res. 41, 051401 (2009).Google Scholar
Barenghi, C. F., and Parker, N. G., A Primer on Quantum Fluids, Springer (2016).Google Scholar
Barenghi, C. F., and Samuels, D. C., Evaporation of a packet of quantized vorticity, Phys. Rev. Lett. 89, 155302 (2002).Google Scholar
Barenghi, C. F., Swanson, C. E., and Donnelly, R. J., Induced vorticity fluctuations in counterflowing He II, Phys. Rev. Lett. 48, 1187 (1982).CrossRefGoogle Scholar
Barenghi, C. F., Donnelly, R. J., and Vinen, W. F, Friction on quantized vortices in helium II. A review, J. Low Temp. Phys. 52 189 (1983).Google Scholar
Barenghi, C. F., Samuels, D. C., Bauer, G. H., and Donnelly, R. J.. Superfluid vortex lines in a model of turbulent flow, Phys. Fluids 9, 2631 (1997).Google Scholar
Barenghi, C. F., Kivotides, D., Idowu, O., and Samuels, D. C., Can superfluid vortex lines excite normal fluid turbulence in 4He? J. Low Temp. Phys. 121, 377 (2000).CrossRefGoogle Scholar
Barenghi, C. F., Hänninen, R., and Tsubota, M., Anomalous translational velocity of vortex ring with finite amplitude Kelvin waves, Phys. Rev. E 74, 046303 (2006).Google Scholar
Barenghi, C. F., L’vov, V. S., and Roche, P.-E., Experimental, numerical and analytical velocity spectra in turbulent quantum fluid, Proc. Nat. Acad. Sci. USA 111 Suppl. 1, 4683 (2014a).Google Scholar
Barenghi, C. F., Skrbek, L., and Sreenivasan, K. R., Introduction to quantum turbulence, Proc. Nat. Acad. Sci. USA 111 Suppl. 1, 4647 (2014b).Google Scholar
Barenghi, C. F., Sergeev, Y. A., and Baggaley, A. W., Regimes of turbulence without an energy cascade, Sci. Rep. 6, 35701 (2016).Google Scholar
Barenghi, C. F., McClintock, P., Skrbek, L., and Sreenivasan, K. R., W. F. (Joe) Vinen: An obituary, Phys. Today 75, 60 (2022).Google Scholar
Barnes, J., and Hut, P., A hierarchical O(N log N) force calculation algorithm, Nature 324, 446 (1986).Google Scholar
Barquist, C. S., Jiang, W. G., Gunther, K., Eng, N., and Lee, Y., Damping of a micro-electromechanical oscillator in turbulent superfuid 4He: A novel probe of quantized vorticity in the ultra-low temperature regime, Phys. Rev. B 101, 174513 (2020).Google Scholar
Bauerle, C., Bunkov, Y. M., Fisher, S. N., Godfrin, H., and Pickett, G. R., Laboratory simulation of cosmic string formation in the early Universe using superfluid 3He, Nature 382, 332 (1996).CrossRefGoogle Scholar
Bennett, J. C., and Corrsin, S., Small Reynolds number nearly isotropic turbulence in a straight duct and a contraction, Phys. Fluids 21, 2129 (1978).Google Scholar
Benson, C. B., and Hollis-Hallett, A. C., The oscillating sphere at large amplitudes in liquid helium, Canadian J. Phys., 34, 668 (1956).Google Scholar
Benzi, R., Biferale, L., Paladin, G., Vulpiani, A., and Vergassola, M., Multifractality in the statistics of the velocity gradients in turbulence, Phys. Rev. Lett. 67, 2299 (1991).Google Scholar
Berloff, N. G., Pad矡pproximation of solitary wave solutions of the Gross–Pitaevskii equation, J. Phys. A Math. Gen. 37, 11729 (2004).Google Scholar
Berloff, N. G., and Barenghi, C. F., Vortex nucleation by collapsing bubbles in Bose–Einstein condensates, Phys. Rev. Lett. 93, 090401 (2004).Google Scholar
Berloff, N. G., and Roberts, P. H., Motions in a bose condensate: VI. Vortices in a nonlocal model, J. Phys. A. Math Gen. 32, 5611 (1999).Google Scholar
Berloff, N. G., and Roberts, P. H., Motion in a Bose condensate: VIII. The electron bubble, J. Phys. A: Math. Gen. 34, 81 (2001).Google Scholar
Berloff, N. G., and Svistunov, B. V., Scenario of strongly nonequilibrated Bose–Einstein condensation, Phys. Rev. A 66, 013603 (2002).Google Scholar
Berloff, N. G., Brachet, M., and Proukakis, N. P., Modelling quantum turbulence of nonlinear classical matter fields, Proc. Nat. Acad. Sci. USA 111 Suppl. 1, 4675 (2014).Google Scholar
Bertolaccini, J., Leveque, E., and Roche, P.-E., Disproportionate entrance length in superfluid flows and the puzzle of counterflow instabilities, Phys. Rev. Fluids 2, 123902 (2017).Google Scholar
Bevan, T. D. C., Manninen, A. J., Cook, J. B., Alles, H., Hook, J. R., and Hall, H. E., Vortex mutual friction in superfluid 3He, J. Low Temp. Phys. 109, 423 (1997).Google Scholar
Bewley, G. P., Using Frozen Hydrogen Particles to Observe Rotating and Quantized Flows in Liquid Helium. Ph.D. thesis, Yale University (2006).Google Scholar
Bewley, G. P., and Sreenivasan, K. R., The decay of a quantized vortex ring and the influence of tracer particles, J. Low Temp. Phys. 156, 84, (2009).Google Scholar
Bewley, G. P., Lathrop, D. P., and Sreenivasan, K. R., Superfluid helium. Visualization of quantized vortices, Nature 441, 588 (2006).Google Scholar
Bewley, G. P., Lathrop, D. P., and Sreenivasan, K. R., Particles for tracing turbulent liquid helium, Exp. Fluids 44, 887 (2008a).Google Scholar
Bewley, G. P., Paoletti, M. S., Sreenivasan, K. R., and Lathrop, D. P., Characterization of reconnecting vortices in superfluid helium, Proc. Natl. Acad. Sci. USA 105, 13707 (2008b).CrossRefGoogle ScholarPubMed
Biferale, L., Shell models of energy cascade in turbulence, Ann. Rev. Fluid Mech. 35, 441 (2003).Google Scholar
Biferale, L., Musacchio, S., and Toschi, F., Inverse energy cascade in three-dimensional isotropic turbulence, Phys. Rev. Lett. 108, 164501 (2012).Google Scholar
Biferale, L., Khomenko, D., L’vov, V. S., Pomyalov, A., Procaccia, I., and Sahoo, G., Turbulent statistics and intermittency enhancement in coflowing superfluid 4He, Phys. Rev. Fluids 3, 024605 (2018).Google Scholar
Birkhoff, G., Fourier synthesis of homogeneous turbulence, Commun. Pure Appl. Math. 7, 19 (1954).Google Scholar
Blaauwgeers, R., Eltsov, V. B., Eska, G., Finne, A. P., Haley, R. P., Krusius, M., Ruohio, J. J., Skrbek, L., and Volovik, G. E., Shear flow and Kelvin–Helmholtz instability in superfluids, Phys. Rev. Lett. 89, 155301 (2002).Google Scholar
Blaauwgeers, R., Blažková, M., Človečko, M., Eltsov, V. B., de Graaf, R., Hosio, J. J., Krusius, M., Schmoranzer, D., Schoepe, W., Skrbek, L., Skyba, P., Solntsev, R. E., Zmeev, D. E., Quartz tuning fork: Thermometer, pressure- and viscometer for helium liquids, J. Low Temp. Phys. 146, 537 (2007).Google Scholar
Blažková, M., Schmoranzer, D., and Skrbek, L., Transition from laminar to turbulent drag in flow due to a vibrating quartz fork, Phys. Rev. E 75, 025302 (2007).Google Scholar
Blažková, M., Chagovets, T. V., Rotter, M., Schmoranzer, D., and Skrbek, L., Cavitation in liquid helium observed in a flow due to a vibrating quartz fork, J. Low Temp. Phys. 150, 194 (2008a).Google Scholar
Blažková, M., Človeçko, M., Eltsov, V. B., Gažo, E., Graaf, R. de, Hosio, J. J., Krusius, M., Schmoranzer, D., Schoepe, W., Skrbek, L., Skyba, P., Solncev, R. E., and Vinen, W. F., Vibrating quartz fork: A tool for cryogenic helium research, J. Low Temp. Phys. 150, 525 (2008b).Google Scholar
Blažková, M., Schmoranzer, D., Skrbek, L., and Vinen, W. F., Generation of turbulence by vibrating forks and other structures in superfluid 4He, Phys. Rev. B 79, 054522 (2009).CrossRefGoogle Scholar
Bose, S. N. Plancks Gesetz und Lichtquantenhypothese, Z. Phys. 26, 178 (1924).Google Scholar
Boue, L., Dasgupta, R., Laurie, J., L’vov, V., Nazarenko, S., and Procaccia, I., Exact solution for the energy spectrum of Kelvin wave turbulence in superfluids, Phys. Rev. B 84, 064516 (2011).Google Scholar
Boue, L., L’vov, V. S., and Procaccia, I., Temperature suppression of Kelvin wave turbulence in superfluids, Europhys. Lett. 99, 46003 (2012).Google Scholar
Boue, L., L’vov, V. S., Nagar, Y., Nazarenko, S. V., Pomyalov, A., and Procaccia, I., Enhancement of intermittency in superfluid turbulence, Phys. Rev. Lett. 110, 014502 (2013).Google Scholar
Boue, L., L’vov, V. S., Nagar, Y., Nazarenko, S. V., Pomyalov, A., and Procaccia, I., Energy and vorticity spectra in turbulent superfluid 4He from T = 0 to T λ , Phys. Rev. B 91, 144501 (2015).Google Scholar
Bradley, D. I., Clubb, D. O., Fisher, S. N., Guénault, A. M., Matthews, C. J., and Pickett, G. R., Vortex generation in superfluid 3He by a vibrating grid, J. Low Temp. Phys. 134, 381 (2004).Google Scholar
Bradley, D. I., Clubb, D. O., Fisher, S. N., Guénault, A. M., Haley, R. P., Matthews, C. J., Pickett, G. R., and Zaki, K. L., Turbulence generated by vibrating wire resonantors in superfluid 4He at low temperatures, J. Low Temp. Phys. 138, 493 (2005a).CrossRefGoogle Scholar
Bradley, D. I., Clubb, D. O., Fisher, S. N., Guénault, A. M., Haley, R. P., Matthews, C. J., Pickett, G. R., Tsepelin, V., and Zaki, K., Emission of discrete vortex rings by a vibrating grid in superfluid 3He-B: A precursor to quantum turbulence, Phys. Rev. Lett. 95, 035302 (2005b).Google Scholar
Bradley, D. I., Clubb, D. O., Fisher, S. N., Guénault, A. M., Haley, R. P., Matthews, C. J., Pickett, G. R., Tsepelin, V., and Zaki, K., Decay of pure quantum turbulence in superfluid 3He-B, Phys. Rev. Lett. 96, 035301 (2006).Google Scholar
Bradley, D. I., Fisher, S. N., Guénault, A. M., Haley, R. P., Tsepelin, V., Pickett, G. R., and Zaki, K. L., The transition to turbulent drag for a cylinder oscillating in superfluid 4He: A comparison of quantum and classical behavior, J. Low Temp. Phys. 154, 97 (2009a).Google Scholar
Bradley, D. I., Fear, M. J., Fisher, S. N., Guénault, A. M., Haley, R. P., Lawson, C. R., McClintock, P. V. E., Pickett, G. R., Schanen, R., Tsepelin, V., and Wheatland, L. A., Transition to turbulence for a quartz tuning fork in superfluid 4He, J. Low Temp. Phys. 156, 116 (2009b).Google Scholar
Bradley, D. I., Fisher, S. N., Guénault, A. M., Haley, R. P., Pickett, G. R., Potts, D., and Tsepelin, V., Direct measurement of the energy dissipated by quantum turbulence, Nat. Phys. 7, 473 (2011a).Google Scholar
Bradley, D. I., Guénault, A. M., Fisher, S. N., Haley, R. P., Jackson, M. J., Nye, D., Shea, K. O., Pickett, G. R., and Tsepelin, V., History dependence of turbulence generated by a vibrating wire in superfluid 4He at 1.5K, J. Low Temp. Phys. 162, 375 (2011b).Google Scholar
Bradley, D. I., Clovecko, M., Fisher, S. N., Garg, D., Guise, E., Haley, R. P., Kolosov, O., Pickett, G. R., Tsepelin, V., Schmoranzer, D., and Skrbek, L., Crossover from hydrodynamic to acoustic drag on quartz tuning forks in normal and superfluid 4He, Phys. Rev. B 85, 014501 (2012).Google Scholar
Bradley, D. I., Fisher, S. N., Ganshin, A., Guénault, A. M., Haley, R. P., Jackson, M. J., Pickett, G. R., and Tsepelin, V., The onset of vortex production by a vibrating wire in superfluid 3He-B, J. Low Temp. Phys. 171, 582 (2013).CrossRefGoogle Scholar
Bradley, D. I., Fear, M. J., Fisher, S. N., Guénault, A. M., Haley, R. P., Lawson, C. R., Pickett, G. R., Schanen, R., Tsepelin, V., and Wheatland, L. A., Hysteresis, switching and anomalous behaviour of a quartz tuning fork in superfluid 4He, J. Low Temp. Phys. 175, 379 (2014).Google Scholar
Brewer, D. F., and Edwards, D. O., Heat conduction by liquid helium in capillary tubes. 2. Measurements of the pressure gradient, Phil. Mag. 6, 1173 (1961).Google Scholar
Brewer, D. F., and Edwards, D. O., Heat conduction by liquid helium in capillary tubes. IV. Mutual friction under pressure, Phil. Mag. 6, 1173 (1961). J. Low Temp. Phys. 43, 327 (1981).Google Scholar
Buaria, D., and Sreenivasan, K. R., Dissipation range of the energy spectrum in high Reynolds number turbulence, Phys. Rev. Fluids. 5, 092601(R) (2020).Google Scholar
Buaria, D., and Sreenivasan, K. R., Scaling of acceleration statistics in high Reynolds number turbulence, Phys. Rev. Lett. 128, 234502 (2022).Google Scholar
Cao, N., Chen, S., and Sreenivasan, K. R., Properties of velocity circulation in three-dimensional turbulence, Phys. Rev. Lett. 76, 616 (1996).CrossRefGoogle ScholarPubMed
Castaing, B., Chabaud, B., and Hebral, B., Hot wire anemometer operating at cryogenic temperatures, Rev. Sci. Instrum. 63, 4167 (1992).Google Scholar
Castiglione, J., Murphy, P. J., Tough, J. T., Hayot, F., and Pomeau, Y., Propagating and stationary superfluid turbulent fronts, J. Low Temp. Phys. 100, 576 (1995).Google Scholar
Chagovets, T. V., Electric response in superfluid helium, Physica B 488, 62 (2016).Google Scholar
Chagovets, T. V., and Van Sciver, S. V., A study of thermal counterflow using particle tracking velocimetry, Phys. Fluids 23, 107102 (2011).Google Scholar
Chagovets, T. V., Gordeev, A. V., and Skrbek, L., Effective kinematic viscosity of turbulent He II, Phys. Rev. E 76, 027301 (2007).Google Scholar
Chapman, S. J., A mean field model of superconducting vortices in three dimensions, SIAM J. Appl. Math. 55, 1259 (1995).Google Scholar
Charalambous, D., Skrbek, L., Hendry, P. C., McClintock, P. V. E., and Vinen, W. F., Experimental investigation of the dynamics of a vibrating grid in superfluid 4He over a range of temperatures and pressures, Phys. Rev. E 74, 036307 (2006).Google Scholar
Chase, C. E., Thermal conduction in liquid He II. 1. Temperature dependence, Phys. Rev. 127, 361 (1962); Thermal conduction in liquid He II. 2. Effects of channel geometry, Phys. Rev. 131, 1898 (1963).Google Scholar
Cheng, D. K., Cromar, M. W., and Donnelly, R. J., Influence of an axial heat current on negative-ion trapping in rotating helium II, Phys. Rev. Lett. 31, 433 (1973).Google Scholar
Childers, R. K., and Tough, J. T., Critical velocities as a test of the Vinen theory, Phys. Rev. Lett. 31, 911 (1973).Google Scholar
Chillà, F., and Schumacher, J., New perspectives in turbulent Rayleigh–B譡rd convection, Eur. Phys. J. E 35, 58 (2012).Google Scholar
Cidrim, A., White, A. C., Allen, A. J., Bagnato, V. S., and Barenghi, C. F., Vinen turbulence via the decay of multicharged vortices in trapped atomic Bose–Einstein condensates, Phys. Rev. A 96, 023617 (2017).Google Scholar
Cockburn, S. P., and Proukakis, N. P., The stochastic Gross–Pitaevskii equation and some applications, Laser Physics 19, 558 (2009).Google Scholar
Coddington, I., Haljan, P. C., Engels, P., Schweikhard, V., Tung, S., and Cornell, E. A., Experimental studies of equilibrium vortex properties in a Bose-condensed gas, Phys. Rev. A 70, 063607 (2004).Google Scholar
Collin, E., Kofler, J., Heron, J.-S., Bourgeois, O., Bunkov, Yu. M., and Godfrin, H., Novel vibrating wire like NEMS and MEMS structures for low temperature physics, J. Low Temp. Phys. 158, 678 (2010).Google Scholar
Comte-Bellot, G., and Corrsin, S., The use of a contraction to improve the isotropy of grid-generated turbulence, J. Fluid Mech. 25, 657 (1966).Google Scholar
Connaughton, C., and Nazarenko, S., Warm cascades and anomalous scaling in a diffusion model of turbulence, Phys. Rev. Lett. 92, 044501 (2004).CrossRefGoogle Scholar
Cooper, R. G., Mesgarnezhad, M., Baggaley, A. W., and Barenghi, C. F., Knot spectrum of turbulence, Sci. Reports 9, 10545 (2019).Google Scholar
Craig, P. P., and Pellam, J. R., Observation of perfect potential flow in superfluid, Phys. Rev. 108, 1109 (1957).Google Scholar
Davis, S. I., Hendry, P. C., and McClintock, P. V. E., Decay of quantized vorticity in superfluid 4He at mK temperatures, Physica B 280, 43 (2000).Google Scholar
De Waele, A. T. A. M., and Aarts, R. G. K. M., Route to vortex reconnection, Phys. Rev. Lett. 72, 482 (1994).Google Scholar
di Leoni, P. C., Mininni, P., and Brachet, M. E., Dual cascade and dissipation mechanisms in helical quantum turbulence, Phys. Rev. A 95, 053636 (2017).Google Scholar
Dimotakis, P. E., and Broadwell, J. E., Local temperature measurements in supercritical counterflow in liquid He II, Phys. Fluids 16, 1787 (1973).Google Scholar
Diribarne, P., Mardion, M. Bon, Girard, A., Moro, J.-P., Rousset, B., Chilla, F., Salort, J., Braslau, A., Daviaud, F., Dubrulle, B., Gallet, B., Moukharski, I., Saw, E.-W., Baudet, C., Gibert, M., Roche, P.-E., Rusaouen, E., Golov, A., L’vov, V., and Nazarenko, S., Investigation of properties of superfluid 4He turbulence using a hot-wire signal, Phys. Rev. Fluids 6, 094601 (2021).Google Scholar
Donnelly, R. J., Quantized Vortices in Helium II, Cambridge University Press (1991).Google Scholar
Donnelly, R. J., and Barenghi, C. F., The observed properties of liquid helium at saturated vapor pressure, J. Phys. Chem. Ref. Data 27, 1217 (1998).Google Scholar
Donnelly, R. J., and Hollis-Hallett, A. C., Periodic boundary layer experiments in liquid helium. Ann. Phys. 3, 320 (1958).CrossRefGoogle Scholar
Donnelly, R. J., and Penrose, O., Oscillation of liquid helium in a U-tube, Phys. Rev. 103 1137 (1956).Google Scholar
Donnelly, R. J., and Sreenivasan, K. R. (eds), Flow at Ultra-High Reynolds and Rayleigh Numbers, Springer-Verlag (1998).Google Scholar
Donnelly, R. J., and Swanson, C. E., Quantum turbulence, J. Fluid Mech. 173, 387 (1986).Google Scholar
van Doorn, E., White, C. M., and Sreenivasan, K. R., The decay of grid turbulence in polymer and sufactant solutions, Phys. Fluids 11, 2387 (1999).Google Scholar
Dormy, E., and Soward, A. M., Mathematical Aspects of Natural Dynamos, Grenoble Sciences, CRC Press, Chapman and Hall (2007).Google Scholar
Dubrulle, B., Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariancea, Phys. Rev. Lett. 73, 959 (1994).Google Scholar
Duda, D., La Mantia, M., Rotter, M., and Skrbek, L., On the visualization of thermal counterflow of He II past a circular cylinder, J. Low Temp. Phys. 175, 331 (2014).Google Scholar
Duda, D., Švančara, P., La Mantia, M., Rotter, M., and Skrbek, L., Visualization of viscous and quantum flows of liquid 4He due to an oscillating cylinder of rectangular cross section, Phys. Rev. B 92, 064519 (2015).Google Scholar
Duda, D., La Mantia, M., and Skrbek, L., Streaming flow due to a quartz tuning fork oscillating in normal and superfluid 4He, Phys. Rev. B 96, 024519 (2017).Google Scholar
Dudley, M. L., and James, R. W., Time-dependent kinematic dynamos with stationary flows, Proc. R. Soc. Lond. A 425, 407 (1989).Google Scholar
Duri, D., Baudet, C., Charvin, P., Virone, J., Rousset, B., Poncet, J.-M., and Diribarne, P., Liquid helium inertial jet for comparative study of classical and quantum turbulence, Rev. Sci. Instrum. 82, 115109 (2011).Google Scholar
Duri, D., Baudet, C., Moro, J.-P, Roche, P.-E., and Diribarne, P., Hot-wire anemometry for superfluid turbulent coflows, Rev. Sci. Instrum. 86, 025007 (2015).Google Scholar
Eckert, M., The Turbulence Problem. A Persistent Riddle in Historical Perspective. Springer (2019).Google Scholar
Einstein, A., Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung (Quantum theory of the monoatomic ideal gas. Second treatise), Sitzungsberichte I, 3 (1925).Google Scholar
Ekinci, K. L., Yakhot, V., Rajauria, S., Colosquiac, C., and Karabacak, D. M., High-frequency nanofluidics: A universal formulation of the fluid dynamics of MEMS and NEMS, Lab Chip 10, 3013 (2010).Google Scholar
Eltsov, V. B., and L’vov, V. S., Amplitude of waves in the Kelvin-wave cascade, JETP Letters 111, 389 (2020).Google Scholar
Eltsov, V. B., Finne, A. P., Hänninen, R., Kopu, J., Krusius, M., Tsubota, M., and Thuneberg, E. V., Twisted vortex state, Phys. Rev. Lett. 96, 215302 (2006).Google Scholar
Eltsov, V. B., Golov, A. I., de Graaf, R., Hänninen, R., Krusius, M., L’vov, V. S., and Solntsev, R. E., Quantum turbulence in a propagating superfluid vortex front, Phys. Rev. Lett. 99, 265301 (2007).Google Scholar
Eltsov, V. B., Graaf, R. de, Hänninen, R., Krusisus, M., Solntsev, R. E., L’vov, V. S., Golov, A. I., and Walmsley, P. M., Turbulent dynamics in rotating helium superfluids. In Progress in Low-Temperature Physics, vol. 14, Halperin, W. P. (ed.). Elsevier (2009).Google Scholar
Eltsov, V. B., Hänninen, R., and Krusisus, M., Quantum turbulence in superfluids with wall-clamped normal component, Proc. Nat. Acad. Sci. USA 111 Suppl. 1, 4711 (2014).Google Scholar
Eltsov, V. B., Gordeev, A., and Krusius, M., Kelvin–Helmholtz instability of AB interface in superfluid 3He, Phys. Rev. B 99, 054104 (2019).Google Scholar
Eyink, G. L., and Thomson, D. J., Free decay of turbulence and breakdown of self-similarity, Phys. Fluids 12, 477 (2000).Google Scholar
Farge, M., Pellegrino, G., and Schneider, K., Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets, Phys. Rev. Lett. 87, 054501 (2001).Google Scholar
Farge, M., Schneider, K., Pellegrino, G., Wray, A. A., and Rogallo, R. S., Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelets and POD-Fourier decomposition, Phys. Fluids 15, 2886 (2003).Google Scholar
Feynman, R. P., Application of quantum mechanics to liquid helium. In Progress in Low-Temperature Physics, vol. 1, Gorter, C. J. (ed.). North Holland (1955).Google Scholar
Feynman, R. P., The Feynman Lectures on Physics, Vol. II: The New Millennium Edition: Mainly Electromagnetism and Matter. Hachette Book Group, Inc. (2011).Google Scholar
Fijimoto, K., and Tsubota, M., Spin turbulence with small spin magnitude in spin-1 spinor Bose–Einstein condensates, Phys. Rev. A 88, 063628 (2013).Google Scholar
Finne, A. P., Araki, T., Blaauwgeers, R., Eltsov, V. B., Kopnin, N. B., Krusius, M., Skrbek, L., Tsubota, M., and Volovik, G. E., Observation of an intrinsic velocity-independent criterion for superfluid turbulence, Nature 424, 1022 (2003).Google Scholar
Finne, A. P., Eltsov, V. B., Eska, G., Hänninen, R., Kopu, J., Krusius, M., Thuneberg, E. V., and Tsubota, M., Vortex multiplication in applied flow: A precursor to superfluid turbulence, Phys. Rev. Lett. 96, 085301 (2006).Google Scholar
Fisher, S. N., and Pickett, G. R., Quantum turbulence in superfluid 3He at very low temperatures. In Progress in Low-Temperature Physics, vol. 16, Tsubota, M. and Halperin, W. P. (eds), Elsevier (2009).Google Scholar
Fisher, S. N., Hale, A. J., Guénault, A. M., and Pickett, G. R., Generation and detection of quantum turbulence in superfluid 3He-B, Phys. Rev. Lett. 86, 244 (2001).Google Scholar
Fonda, E., Meichle, D. P., Oullette, N. T., Hormoz, S., and Lathrop, D. P., Direct observation of Kelvin waves excited by quantized vortex reconnection, Proc. Nat. Acad. Sci. USA 111 Suppl. 1, 4707 (2014).Google Scholar
Fonda, E., Sreenivasan, K. R., and Lathrop, D. P., Sub-micron solid air tracers for quantum vortices and liquid helium flows, Rev. Sci. Instrum. 87, 025106 (2016).Google Scholar
Fonda, E., Sreenivasan, K. R., and Lathrop, D. P., Reconnection scaling in quantum fluids, Proc. Nat. Acad. Sci. USA 116, 1924 (2019).Google Scholar
Frisch, U., Turbulence. The Legacy of A. N. Kolmogorov, Cambridge University Press (1995).Google Scholar
Fujiyama, S., Mitani, A., Tsubota, M., Bradley, D. I., Fisher, S. N., Guénault, A. M., Haley, R. P., Pickett, G. R., and Tsepelin, V., Generation, evolution, and decay of pure quantum turbulence: A full Biot–Savart simulation, Phys. Rev. B 81, 026309R (2010).Google Scholar
Galantucci, L., Sciacca, M., and Barenghi, C. F., Coupled normal fluid and superfluid profiles of turbulent helium in channels, Phy. Rev. B 92, 174530 (2015).Google Scholar
Galantucci, L., Sciacca, M., and Barenghi, C. F., Large-scale normal fluid circulation in helium superflows, Phy. Rev. B 95, 014509 (2017).Google Scholar
Galantucci, L., Baggaley, A. W., Parker, N. G., and Barenghi, C. F., Crossover from interaction to driven regimes in quantum vortex reconnections. Proc. Nat. Acad. Sci. USA 116, 12204 (2019).Google Scholar
Galantucci, L., Baggaley, A. W., Barenghi, C. F., and Krstulovic, G., A new self-consistent approach of quantum turbulence in superfluid helium, Euro. Phys. J. Plus 135, (2020).Google Scholar
Galantucci, L., Barenghi, C. F., Parker, N. G., and Baggaley, A. W., Mesoscale helicity distinguishes Vinen from Kolmogorov turbulence in helium II, Phys. Rev. B 103, 144503 (2021).Google Scholar
Galli, D. E., Reatto, L., and Rossi, M., Quantum Monte Carlo study of a vortex in superfluid 4He and search for a vortex state in the solid, Phys. Rev. B 89, 224516 (2014).Google Scholar
Gao, J., Marakov, A., Guo, W., Pawlowski, B. T., Van Sciver, S. W., Ihas, G. G., McKinsey, D. N., and Vinen, W. F., Producing and imaging a thin line of He*2 molecular tracers in helium-4, Rev. Sci. Instrum. 86, 093904 (2015).Google Scholar
Gao, J., Guo, W., and Vinen, W. F., Determination of the effective kinematic viscosity for the decay of quasiclassical turbulence in superfluid 4He, Phys. Rev. B 94, 094502 (2016a).Google Scholar
Gao, J., Guo, W., L’vov, V. S., Pomyalov, A., Skrbek, L., Varga, E., and Vinen, W. F., Decay of counterflow turbulence in superfluid 4He, JETP Letters 103, 648 (2016b).Google Scholar
Gao, J., Varga, E., Guo, W., and Vinen, W. F., Energy spectrum of thermal counterflow turbulence in superfluid helium-4, Phys. Rev. B 96, 094511 (2017).Google Scholar
Gao, J., Guo, W., and Vinen, W. F., Dissipation in quantum turbulence in superfluid 4He above 1K, Phys. Rev. B 97, 184518 (2018).Google Scholar
Garcia-Orozco, A. D., Madeira, L., Galantucci, L., Barenghi, C. F., and Bagnato, V. S., Intra-scales energy transfer during the evolution of turbulence in a trapped Bose–Einstein condensate, Europhys. Lett. 130, 46001 (2020).Google Scholar
Garg, D., Efimov, V. B., Giltrow, M., McClintock, P. V. E., Skrbek, L., and Vinen, W. F., Behavior of quartz forks oscillating in isotopically pure 4He in the T→0 limit, Phys. Rev. B 85, 144518 (2012).Google Scholar
Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., and Hadzibabic, Z., Bose–Einstein condensation of atoms in a uniform potential, Phys. Rev. Lett. 110, 200406 (2013).Google Scholar
Gibbs, M. R., Andersen, K. H., Stirling, W. G., and Schober, H., The collective excitations of normal and superfluid 4He: The dependence on pressure and temperature, J. Phys. C 11, 603 (1999).Google Scholar
Glaberson, W. I., Johnson, W. W., and Ostermeier, R. M., Instability of a vortex array in He II, Phys. Rev. Lett. 33, 1197 (1974).CrossRefGoogle Scholar
Gledzer, E., System of hydrodynamic type admitting two quadratic integrals of motion, Phys. Dok. 18, 216 (1973).Google Scholar
Golov, A. I., Walmsley, P. M., and Tompsett, P. A., Charged tangles of quantized vortices in superfluid He-4, J. Low Temp. Phys. 161, 509 (2010).Google Scholar
Gorter, C. J., and Mellink, J. H., On irreversible processes in liquid helium-II, Physica 15, 285 (1949).Google Scholar
Goto, R., Fujiyama, S., Yano, H., Nago, Y., Hashimoto, N., Obara, K., Ishikawa, O., Tsubota, M., and Hata, T., Turbulence in boundary flow of superfluid 4He triggered by free vortex rings, Phys. Rev. Lett. 100, 045301 (2008).Google Scholar
Greenspan, H. P., The Theory of Rotating Fluids, Cambridge University Press (1968).Google Scholar
Groszek, A. J., Simula, T. P., Paganin, D. M., and Helmerson, K., Onsager vortex formation in Bose–Einstein condensates in two-dimensional power-law traps, Phys. Rev. A 93, 043614 (2016).Google Scholar
Guo, W., Cahn, S. B., Nikkel, J. A., Vinen, W. F., and McKinsey, D. N., Visualization study of counterflow in superfluid 4He using metastable helium molecules, Phys. Rev. Lett. 105, 045301 (2010).Google Scholar
Guo, W., La Mantia, M., Lathrop, D. P., and Van Sciver, S. W., Visualization of two-fluid flows of superfluid helium-4, Proc. Nat. Acad. Sci. USA 111 Suppl. 1, 4653 (2014).Google Scholar
Guthrie, A., Kafanov, S., Noble, T., Pashkin, Y., Pickett, G., Tsepelin, V., Dorofeev, A., Krupenin, V., and Presnov, D., Nanoscale real-time detection of quantum vortices at millikelvin temperatures, Nat. Commun. 12, 2645 (2021).Google Scholar
Hall, H. E., and Vinen, W. F., The rotation of liquid helium II. I. Experiments on the propagation of second sound in uniformly rotating helium II, Proc. Roy. Soc. A238, 204 (1957); II. The theory of mutual friction in uniformly rotating helium II, A238, 215 (1957).Google Scholar
Hammel, E. F., and Keller, W. E., The flow of liquid helium II through a narrow channel, Cryogenics 5, 245 (1965).Google Scholar
Hammer, P. W., Sreenivasan, K. R., and Niemela, J. J., Russell James Donnelly: An obituary, Phys. Today 68, 59 (2015).Google Scholar
Hänninen, R., and Schoepe, W., Universal critical velocity for the onset of turbulence of oscillatory superfluid flow, J. Low Temp. Phys. 153, 189 (2008).Google Scholar
Hänninen, R., and Schoepe, W., Universal onset of quantum turbulence in oscillating flows and crossover to steady flows, J. Low Temp. Phys. 158, 410 (2010).Google Scholar
Hänninen, R., Hietala, N., and Salman, H., Helicity within the vortex filament model, Sci. Rep. 6, 37571 (2016).Google Scholar
Hashimoto, N., Goto, R., Yano, H., Obara, K., Ishikawa, O., and Hata, T., Control of turbulence in boundary layers of superfluid 4He by filtering out remanent vortices, Phys. Rev. B 76, 020504 (2007).Google Scholar
Haskell, B., Antonopoulou, D., and Barenghi, C. F., Turbulent, Pinned superfluids in neutron stars and pulsar glitch recoveries, Month. Roy. Astronom. Soc. 499, 161170 (2020).Google Scholar
Henberger, J. D., and Tough, J. T., Uniformity of the temperature gradient in the turbulent counterflow of He II, Phys. Rev. B 25, 3123 (1982).Google Scholar
Henderson, K. L., and Barenghi, C. F., Vortex waves in a rotating superfluid, Europhys. Lett. 67, 56 (2004).Google Scholar
Henderson, K. L., Barenghi, C. F., and Jones, C. A., Nonlinear Taylor–Couette flow of helium II, J. Fluid Mech. 283, 329 (1995).Google Scholar
Hendry, P. C., and McClintock, P. V. E., Continuous-flow apparatus for preparing isotopically pure 4He, Cryogenics 27, 131 (1987).Google Scholar
Henn, E. A. L., Seman, J. A., Roati, G., Magalhães, K. M. F., and Bagnato, V. S., Emergence of turbulence in an oscillating Bose–Einstein condensate, Phys. Rev. Lett. 103, 045301 (2009).Google Scholar
Hills, R. N., and Roberts, P. H., Superfluid mechanics of a high density of vortex lines, Arch. Rat. Mech. Anal. 66, 43 (1977).Google Scholar
Hollis-Hallett, A. C., Experiments with oscillating disk systems in liquid helium II, Proc. Roy. Soc. A 210, 404 (1952).Google Scholar
Holt, S., and Skyba, P., Electrometric direct current I/V converter with wide bandwidth, Rev. Sci. Instrum. 83, 064703 (2012).Google Scholar
Hosio, J. J., Eltsov, V. B., de Graaf, R., Heikkinen, P. J., Hänninen, R., Krusius, M., L’vov, V. S., and Volovik, G. E., Superfluid vortex front at T → 0: Decoupling from the reference frame, Phys. Rev. Lett. 107, 135302 (2011).Google Scholar
Hosio, J. J., Eltsov, V. B., Krusius, M., and Mäkinen, J. T., Quasiparticle-scattering measurements of laminar and turbulent vortex flow in the spin-down of superfluid 3He-B, Phys. Rev. B 85, 224526 (2012).Google Scholar
Hosio, J. J., Eltsov, V. B., Heikkinen, P. J., Hänninen, R., Krusius, M., and L’vov, V. S., Energy and angular momentum balance in wall-bounded quantum turbulence at very low temperatures, Nat. Commun. 4, 1614 (2013).Google Scholar
Howe, M. S., Acoustics of Fluid-Structure Interaction, Cambridge University Press 1998.Google Scholar
Hrubcová, P., Švančara, P., and Mantia, M. La, Vorticity enhancement in thermal counterflow of superflow helium, Phys. Rev. B 97, 064512 (2018).Google Scholar
Ishihara, T., Gotoh, T., and Kaneda, Y., Study of high-Reynolds number isotropic turbulence by direct numerical simulations, Annu. Rev. Fluid Mech. 41, 165 (2009).Google Scholar
Iyer, K. P., Sreenivasan, K. R., and Yeung, P. K., Circulation in high Reynolds number isotropic turbulence is a bifractal, Phys. Rev. X 9, 041006 (2019).Google Scholar
Jackson, B., Proukakis, N. P., Barenghi, C. F., and Zaremba, E., Finite-temperature vortex dynamics in Bose–Einstein condensates, Phys. Rev. A 79, 053615 (2009).Google Scholar
Jager, J., Schuderer, B., and Schoepe, W., Turbulent and laminar drag of superfluid helium on an oscillating microsphere, Phys. Rev. Lett. 74, 566 (1995).Google Scholar
John, J. P., Donzis, D. A., and Sreenivasan, K. R., Laws of turbulence decay from direct numerical simulations, Phil. Trans. R. Soc. A 380, 20210089 (2022).Google Scholar
Kafkalidis, J. F., and Tough, J. T., Thermal counterflow in a diverging channel: A study of radial heat transfer in He II, Cryogenics 31, (1991) 705.Google Scholar
Kafkalidis, J. F., Klinich, G. III, and Tough, J. T., Superfluid turbulence in a nonuniform rectangular channel, Phys. Rev. B 50, 15909 (1994).Google Scholar
Kagan, Y., and Svistunov, B. V., Kinetics of the onset of long-range order during Bose condensation in an interacting gas, JETP 78, 187 (1994).Google Scholar
Kamppinen, T., and Eltsov, V. B., Nanomechanical resonators for cryogenic research, J. Low Temp. Phys. 196, 82 (2018).Google Scholar
Kapitza, P. L., Viscosity of liquid helium below the λ-point, Nature 424, 1022 (1938).Google Scholar
von Kármán, T., and Howarth, L., On the statistical theory of isotropic turbulence, Proc. Roy. Soc. A164, 192 (1938).Google Scholar
Kerr, R. M., Vortex stretching as a mechanism for quantum kinetic energy decay, Phys. Rev. Lett. 106, 224501 (2011).Google Scholar
Keulegan, G. H., and Carpenter, L. H., Forces on cylinders and plates in an oscillating fluid, J. Res. Natl. Bur. Stand. 60, 423 (1958).Google Scholar
Khalatnikov, I. M., Introduction to the Theory of Superfluidity, Addison–Wesley (1965).Google Scholar
Khomenko, D., Kondaurova, L., L’vov, V. S., Mishra, P., Pomyalov, A., and Procaccia, I., Dynamics of the density of quantized vortex lines in superfluid turbulence, Phys. Rev. B 91, 180504 (2015).Google Scholar
Khomenko, D., L’vov, V. S., Pomyalov, A., and Procaccia, I., Reply to ‘Comment on dynamics of the density of quantized vortex lines in superfluid turbulence’, Phys. Rev. B 94, 146502 (2016).Google Scholar
Khurshid, S., Donzis, D. A., and Sreenivasan, K. R., Energy spectrum in the dissipation range, Phys. Rev. Fluids 3, 082601 (2018).Google Scholar
Kida, S., A vortex filament moving without change of form, J. Fluid Mech. 112, 397 (1981).Google Scholar
Kim, S. K., and Troesch, A. W., Streaming flows generated by high-frequency small-amplitude oscillations of arbitrarily shaped cylinders, Phys. Fluids A 1, 975 (1989).Google Scholar
Kistler, A. L., and Vrebalovich, T., Grid turbulence at large Reynold numbers, J. Fluid Mech. 26, 37 (1966).Google Scholar
Kivotides, D., Motion of a spherical solid particle in thermal counterflow turbulence, Phys. Rev. B 77, 174508 (2008).Google Scholar
Kivotides, D., Barenghi, C. F., and Samuels, D. C., Triple vortex ring structure in superfluid helium II, Science 290, 777 (2000).Google Scholar
Kivotides, D., Vassilicos, J. C., Samuels, D. C., and Barenghi, C. F., Kelvin waves cascade in superfluid turbulence, Phys. Rev. Lett. 86, 3080 (2001).Google Scholar
Kivotides, D., Barenghi, C. F., and Sergeev, Y. A., Interactions between particles and quantized vortices in superfluid helium, Phys. Rev. B 77, 014527 (2008a).Google Scholar
Kivotides, D., Sergeev, Y. A., and Barenghi, C. F., Dynamics of solid particles in a tangle of superfluid vortices at low temperatures, Phys. Fluids 20, 055105 (2008b).Google Scholar
Kleckner, D., and Irvine, W. T. M., Creation and dynamics of knotted vortices, Nature Phys. 9, 253 (2013).Google Scholar
Kleckner, D., Kauffman, L. H., and Irvine, W. T. M., How superfluid knots untie, Nature Phys. 12, 650 (2016).Google Scholar
Kobayashi, M., and Tsubota, M., Kolmogorov spectrum of superfluid turbulence: Numerical analysis of the Gross–Pitaevskii equation with a small-scale dissipation, Phys. Rev. Lett. 94, 065302 (2005).Google Scholar
Kobayashi, M., and Tsubota, M., Quantum turbulence in a trapped Bose–Einstein condensate, Phys. Rev. A 76, 045603 (2007).Google Scholar
Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Dokl. Akad. Nauk. SSSR 30, 9 (1941a).Google Scholar
Kolmogorov, A. N., Energy dissipation in locally isotropic turbulence, Dokl. Akad. Nauk. SSSR 32, 19 (1941b).Google Scholar
Kondaurova, L., and Nemirovskii, S. K., Full Biot–Savart numerical simulation of vortices in He II, J. Low Temp. Phys. 138, 555 (2005).Google Scholar
Koplik, J., and Levine, H., Vortex reconnection in superfluid helium, Phys. Rev. Lett. 71, 1375 (1993).Google Scholar
Korhonen, J. S., Gongadze, A. D., Janu, Z., Kondo, Y., Krusius, M., Mukharsky, Y. M., and Thuneberg, E. V., Order parameter textures and boundary conditions in rotating vortex-free 3 B , Phys. Rev. Lett. 65, 1211 (1990).Google Scholar
Kotsubo, V., and Swift, G. W., Vortex turbulence generated by second sound in superfluid He, Phys. Rev. Lett. 62, 2604 (1989).Google Scholar
Kotsubo, V., and Swift, G. W., Generation of superfluid vortex turbulence by high-amplitude second sound in 4He, J. Low Temp. Phys. 78, 351 (1990).Google Scholar
Kozik, E., and Svistunov, B. V., Kelvin-wave cascade and decay of superfluid turbulence, Phys. Rev. Lett. 92, 035301 (2004).Google Scholar
Krstulovic, G., Kelvin-wave cascade and dissipation in low-temperature superfluid vortices, Phys. Rev. E 86, 055301 (2012).Google Scholar
Kruglov, V. I., Critical velocities and two mechanisms of transition in superfluid liquid 4He, Phys. Lett. A 375, 4058 (2011).Google Scholar
Kubo, W., and Tsuji, Y., Lagrange trajectory of small particles in superfluid He II, J. Low Temp. Phys. 187, 611 (2017).Google Scholar
Kursa, M., Bajer, K., and Lipniacki, T., Cascade of vortex loops initiated by a single reconnection of quantum vortices, Phys. Rev. B 83, 014515 (2011).Google Scholar
Kwan, W. J., Kim, J. H., Seo, S. W., and Shin, Y., Observation of von Karman vortex street in a Bose–Einstein condensate, Phys. Rev. Lett. 117, 245301 (2016).Google Scholar
Ladner, R., and Tough, J. T., Temperature and velocity dependence of superfluid turbulence, Phys. Rev. B 20, 2690 (1979).Google Scholar
La Mantia, M., Particle trajectories in thermal counterflow of superfluid helium in a wide channel of square cross section, Phys. Fluids 28, 024102 (2016).Google Scholar
La Mantia, M., and Skrbek, L., Quantum, or classical turbulence? Europhys. Lett. 102, 46002 (2014a).Google Scholar
La Mantia, M., and Skrbek, L., Quantum turbulence visualized by particle dynamics, Phys. Rev. B 90, 014519 (2014b).Google Scholar
La Mantia, M., Chagovets, T. V., Rotter, M., and Skrbek, L., Testing the performance of a cryogenic visualization system on thermal counterflow by using hydrogen and deuterium solid tracers, Rev. Sci. Instrum. 83, 055109 (2012).Google Scholar
La Mantia, M., Duda, D., Rotter, M., and Skrbek, L., Lagrangian accelerations of particles in superfluid turbulence, J. Fluid Mech. 770, R9 (2013).Google Scholar
La Mantia, M., Svancara, P., Duda, D., and Skrbek, L., Small-scale universality of particle dynamics in quantum turbulence, Phys. Rev. B 94, 184512 (2016).Google Scholar
Landau, L. D., The theory of superfluidity of helium II, J. Phys. USSR 5, 356 (1941).Google Scholar
Landau, L. D., On the theory of superfluidity of helium II, J. Phys. USSR 11, 91 (1947).Google Scholar
Landau, L. D., and Lifshitz, E. M., Fluid Mechanics, 2nd ed., Pergamon Press (1987).Google Scholar
Leadbeater, M., Winiecki, T., Samuels, D. C., Barenghi, C. F., and Adams, C.S, Sound emission due to superfluid vortex reconnections, Phys. Rev. Lett. 86, 1410 (2001).Google Scholar
Leadbeater, M., Samuels, D. C., Barenghi, C. F., and Adams, C. S., Decay of superfluid vortices due to Kelvin wave radiation, Phys. Rev. A 67, 015601 (2002).Google Scholar
Leith, C. E., Diffusion approximation to internal energy transfer in isotropic turbulence, Phys. Fluids 10, 1409 (1967).Google Scholar
Leonard, A., Computing three-dimensional incompressible flows with vortex elements, Ann. Rev. Fluid. Mech. 17, 523 (1985).Google Scholar
da Vinci, Leonardo, Studies of Water, 1507. Web Gallery of Art, wga.hu/frames-e.html?/html/l/leonardo/12engine/2water2.html.Google Scholar
L赥que, E., and Naso, A., Introduction of longitudinal and transverse Lagrangian velocity increments in homogeneous and isotropic turbulence, Europhys. Lett. 108, 54004 (2014).Google Scholar
Lipniacki, T., Dynamics of superfluid 4He: Two-scale approach, Eur. J. Mech. B/Fluids 25, 435 (2006).Google Scholar
London, F., The λ-phenomenon of liquid helium and the Bose–Einstein degeneracy, Nature 141, 643 (1938).Google Scholar
Lu, S. T., and Kojima, H., Observation of second sound in superfluid He 3-B, Phys. Rev. Lett. 55, 1677 (1985).Google Scholar
Luzuriaga, J., Measurements in the laminar and turbulent regime of superfluid 4He by means of an oscillating sphere, J. Low Temp. Phys. 108, 267 (1997).Google Scholar
L’vov, V. S., and Nazarenko, S., Spectrum of Kelvin-wave turbulence in superfluids, JETP Lett. 91, 428 (2010).Google Scholar
L’vov, V. S., and Pomyalov, A., Statistics of quantum turbulence in superfluid He, J. Low Temp. Phys. 187, 497 (2017).Google Scholar
L’vov, V. S., Podivilov, E., Pomyalov, A., Procaccia, I., and Vandembroucq, D., Improved shell model of turbulence, Phys. Rev. E 1811, (1998).Google Scholar
L’vov, V. S., Nazarenko, S. V., and Volovik, G. E., Energy spectra of developed superfluid turbulence, JETP Lett. 80, 479 (2004).Google Scholar
L’vov, V. S., Nazarenko, S. V., and Rudenko, O., Bottleneck crossover between classical and quantum superfluid turbulence, Phys. Rev. B 76, 024520 (2007).Google Scholar
L’vov, V. S., Skrbek, L., and Sreenivasan, K. R., Viscosity of liquid 4He and quantum of circulation: Are they related? Phys. Fluids 26, 041703 (2014).Google Scholar
Mäkinen, J. T., Autti, S., Heikkinen, P. J., Hosio, J. J., Hänninen, R., L’vov, V. S., Walmsley, P. M., Zavjalov, V. V., and Eltsov, V. B., Rotating quantum wave turbulence, Nat. Phys. (2023). 10.1038/s41567-023-01966-z Google Scholar
Marakov, A., Gao, J., Guo, W., Van Sciver, S. W., Ihas, G. G., McKinsey, D. N., and Vinen, W. F., Visualization of the normal-fluid turbulence in counterflowing superfluid 4He, Phys. Rev. B 91, 094503 (2015).Google Scholar
Martin, K. P., and Tough, J. T., Evolution of superfluid turbulence in thermal counterflow, Phys. Rev. B 27, 2788 (1983).Google Scholar
Mastracci, B., and Guo, W., Exploration of thermal counterflow in He II using particle tracking velocimetry, Phys. Rev. Fluids 3, 063304 (2018).Google Scholar
Mastracci, B., Bao, S., Guo, W., and Vinen, W. F., Particle tracking velocimetry applied to thermal counterflow in superfluid 4He: Motion of the normal fluid at small heat fluxes, Phys. Rev. Fluids 4, 083305 (2019).Google Scholar
Mathieu, P., Placais, B., and Simon, Y., Spatial-distribution of vortices and anisotropy of mutual friction in rotating He II, Phys. Rev. B 29, 2489 (1984).Google Scholar
Maurer, J., and Tabeling, P., Local investigation of superfluid turbulence, Europhys. Lett. 43, 29 (1998).Google Scholar
Maxey, M. R., and Riley, J. J., Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26, 883 (1983).Google Scholar
McCarty, R. D., Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 Atmospheres, Technical Note 631, National Bureau of Standards (1972).Google Scholar
McKinsey, D. N., Lippincott, W. H., Nikkel, J. A., and Rellegert, W. G., Trace detection of metastable helium molecules in superfluid helium by laser-induced fluorescence, Phys. Rev. Lett. 95, 111101 (2005).Google Scholar
Meichle, D. P., and Lathrop, D. P., Nanoparticle dispersion in superfluid helium, Rev. Sci. Instrum. 85, 073705 (2014).Google Scholar
Melotte, D. J., and Barenghi, C. F., Transition to normal fluid turbulence in helium II, Phys. Rev. Lett. 80, 4181 (1998).Google Scholar
Mendelssohn, K., and Steele, W. A., Quantized growth of turbulence in He II, Proc. Phys. Soc. 73, 144 (1959).Google Scholar
Meneveau, C., and Sreenivasan, K. R., Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett. 59, 1424 (1987).Google Scholar
Mesgarnezhad, M., Cooper, R. G., Baggaley, A. W., and Barenghi, C. F., Helicity and topology of a small region of quantum vorticity, Fluid Dyn. Res 50, 011403 (2018).Google Scholar
Midlik, Š., Generation and Detection of Quantum Turbulence in He II by Second Sound. Diploma thesis, Charles University (2019).Google Scholar
Midlik, Š., Schmoranzer, D., and Skrbek, L., Transition to quantum turbulence in oscillatory thermal counterflow of 4He, Phys. Rev. B 103, 134516 (2021).Google Scholar
Milliken, F. P., Shwarz, K. W., and Smith, C. W., Free decay of superfluid turbulence, Phys. Rev. Lett. 48, 1204 (1982).Google Scholar
Mocz, P., Vogelsberger, M., Robles, V. H., Zavala, J., Boylan-Kolchin, M., Fialkov, A., and Hernquist, L., Galaxy formation with BECDM I. Turbulence and relaxation of idealized haloes, Mon. Notices Royal Astron. Soc. 471, 4559 (2017).Google Scholar
Moffatt, H. K., Degree of knottedness of tangled vortex line, J. Fluid Mech. 35, 117 (1969).Google Scholar
Moffatt, H. K., and Ricca, R. L., Helicity and the Călugăreanu invariant, Proc. Roy. Soc. A 439, 411 (1992).Google Scholar
Mongiovì, M. S., Jou, D., and Sciacca, M., Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium, Phys. Rep. 726, 1 (2018).Google Scholar
Mordant, N., Crawford, A. M., and Bodenschatz, E., Three-dimensional structure of the Lagrangian acceleration in turbulent flows, Phys. Rev. Lett. 93, 214501 (2004).Google Scholar
Morishita, M., Kuroda, T., Sawada, A., and Satoh, T., Mean free path effects in superfluid 4He, J. Low Temp. Phys. 76, 387 (1989).Google Scholar
Müller, N. P., Polanco, J. I., and Krstulovic, G., Intermittency of velocity circulation in quantum turbulence, Phys. Rev. X 11, 011053 (2021).Google Scholar
Murakami, M., Hanada, M., and Yamazaki, T., Flow visualization study on large-scale vortex ring in He II, Jpn. J. Appl. Phys. 26, Suppl. 26–3, 107 (1987).Google Scholar
Murphy, P. J., Castiglione, J., and Tough, J. T., Superfluid turbulence in a nonuniform circular channel, J. Low Temp. Phys. 92, 307 (1993).Google Scholar
Nago, Y., Ogawa, T., Obara, K., Yano, H., Ishikawa, O., and Hata, T., Time-of-flight experiments of vortex rings propagating from turbulent region of superfluid 4He at high temperature, J. Low Temp. Phys. 162, 322 (2011).Google Scholar
Navon, N., Gaunt, A. L., Smith, R. P., and Hadzibabic, Z., Emergence of a turbulent cascade in a quantum gas, Nature 539, 72 (2016).Google Scholar
Nazarenko, S., and West, R., Analytical solution for nonlinear Schrödinger vortex reconnection, J. Low Temp. Phys. 132, 1 (2003).Google Scholar
Nemirovskii, S. K., Diffusion of inhomogeneous vortex tangle and decay of superfluid turbulence, Phys. Rev. B 81, 064512 (2010).Google Scholar
Nemirovskii, S. K., Quantum turbulence: Theoretical and numerical problems, Phys. Reports 524, 85 (2012).Google Scholar
Nemirovskii, S. K., Comment on dynamics of the density of quantized vortex lines in superfluid turbulence, Phys. Rev. B 94, 146501 (2016).Google Scholar
Nemirovskii, S. K., and Fiszdon, W., Chaotic quantized vortices and hydrodynamic processes in superfluid helium, Rev. Mod. Phys. 67, 37 (1995).Google Scholar
Neely, T. W., Bradley, A. S., Samson, E. C., Rooney, S. J., Wright, E. M., Law, K. J. H., Carretero-Gonzales, R., Kevrekidis, P. G., Davis, M. J., and Anderson, B. P., Characteristics of two-dimensional quantum turbulence in a compressible superfluid, Phys. Rev. Lett. 111, 235301 (2013).Google Scholar
Nichol, H. A., Skrbek, L., Hendry, P. C., and McClintock, P. V. E., Flow of He II due to an oscillating grid in the low-temperature limit, Phys. Rev. Lett. 92, 244501 (2004).Google Scholar
Niemela, J. J., and Sreenivasan, K. R., The use of cryogenic helium for classical turbulence: Promises and hurdles, J. Low Temp. Phys. 143, 163 (2006).Google Scholar
Niemela, J. J., and Sreenivasan, K. R., Russell Donnelly and his leaks, Annu. Rev. Cond. Matt. Phys. 13, 33 (2022).Google Scholar
Niemela, J. J., Sreenivasan, K. R., and Donnelly, R. J., Grid generated turbulence in helium II, J. Low Temp. Phys. 138, 537 (2005).Google Scholar
Niemetz, M., Kercher, H., and Schoepe, W., Intermittent switching between potential flow and turbulence in superfluid helium at mK tempertures, J. Low Temp. Phys. 126, 287 (2002).Google Scholar
Niemetz, M., Kercher, H., and Schoepe, W., Stability of laminar and turbulent flow of superfluid 4He at mK temperatures around an oscillating microsphere, J. Low Temp. Phys. 135, 447 (2004).Google Scholar
Nore, C., Abid, M., and Brachet, M., Kolmogorov turbulence in low-temperature superflows, Phys. Rev. Lett. 78, 3296 (1997).Google Scholar
Onsager, L., in discussion on paper by C. J. Gorter, Nuovo Cimento 6, suppl. 2, 249 (1949); “Introductory talk”, Proc. Int. Conf. Theor. Phys., Kyoto and Tokyo, p. 877 (September 1953); for further details see Chapter II of Donnelly (1991).Google Scholar
Ortiz, G., and Ceperley, D. M., Core structure of a vortex in superfluid 4He, Phys. Rev. Lett. 75, 4642 (1995).Google Scholar
Osborne, D. V., The rotation of liquid helium-II, Proc. Phys. Soc. A 63, 909 (1950).Google Scholar
Osborne, D. R., Vassilicos, J. C., Sung, K., and Haigh, J. D., Fundamentals of pair diffusion in kinematic simulations of turbulence, Phys. Rev. E 74, 036309 (2006).Google Scholar
Ostermeier, R. M., and Glaberson, W. I., Instability of vortex lines in the presence of axial normal fluid flow, J. Low Temp. Phys. 21, 191 (1975).Google Scholar
Outrata, O., Pavelka, M., Hron, J., La Mantia, M., Polanco, J. I., and Krstulovic, G., On the determination of vortex ring vorticity using Lagrangian particles, J. Fluid Mech. 924, A44 (2021).Google Scholar
Paoletti, M. S., Fisher, M. E., Sreenivasan, K. R., and Lathrop, D. P., Velocity statistics distinguish quantum turbulence from classical turbulence, Phys. Rev. Lett. 101, 154501 (2008a).Google Scholar
Paoletti, M. S., Fiorito, R. B., Sreenivasan, K. R., and Lathrop, D. P., Visualization of superfluid helium flow, J. Phys. Soc. Japan 77, 111007 (2008b).Google Scholar
Paoletti, M. S., Fisher, M. E., and Lathrop, D. P., Reconnection dynamics for quantized vortices, Physica D 239, 1367 (2010).Google Scholar
Parker, N. G., Numerical Studies of Vortices and Dark Solitons in Atomic Bose–Einstein Condensates, Ph.D. thesis, University of Durham (2004).Google Scholar
Patrick, S., Geelmuyden, A., Erne, S., Barenghi, C. F., and Weinfurtner, S., Origin and evolution of the multiply-quantised vortex instability, Phys. Rev. Res. 4, 043104 (2022).Google Scholar
Peshkov, V. P., and Tkachenko, V. J., Kinetics of the destruction of superfluidity in helium, Sov. Phys. JETP 14, 1019 (1962).Google Scholar
Poole, D. R., Barenghi, C. F., Sergeev, Y. A., and Vinen, W. F., The motion of tracer particles in He II, Phys. Rev. B 71, 064514 (2005).Google Scholar
Proment, D., Onorato, M., and Barenghi, C. F., Vortex knots in a Bose–Einstein condensate, Phys. Rev. E 85, 036306 (2012).Google Scholar
Proukakis, N. P., and Jackson, B., Finite-temperature models of Bose–Einstein condensation, J. Phys. B. At. Mol. Opt. 41, 203002 (2008).Google Scholar
Pumir, A., Xu, H., Bodenschatz, E., and Grauer, R., Single-particle motion and vortex stretching in three-dimensional turbulent flows, Phys. Rev. Lett. 116, 124502 (2016).Google Scholar
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A., and Gagne, Y., Turbulent transport of material particles: An experimental study of finite size effects, Phys. Rev. Lett. 99, 184502 (2007).Google Scholar
Qureshi, N. M., Arrieta, U., Baudet, C., Cartellier, A., Gagne, Y., and Bourgoin, M., Acceleration statistics of inertial particles in turbulent flow, Eur. Phys. J. B 66, 531 (2008).Google Scholar
Raffel, M., Villert, C. E., Werely, S. T., and Kompenhans, J., Particle Image Velocimetry – A Practical Guide, 2nd ed., Springer (2007)Google Scholar
Rast, M. P., and Pinton, J.-F., Point-vortex model for Lagrangian intermittency in turbulence, Phys. Rev. E 79, 046314 (2009).Google Scholar
Rayfield, G. W., and Reif, F., Quantized vortex rings in superfluid helium, Phys. Rev. 136, A1194 (1964).Google Scholar
Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and the law of resistance in parallel channels, Phil. Trans. Roy. Soc. London 174, 935 (1883).Google Scholar
Ricca, R. L., Samuels, D. C., and Barenghi, C. F., Evolution of vortex knots, J. Fluid Mech. 391, 29 (1999).Google Scholar
Rickinson, E., Parker, N. G., Baggaley, A. W., and Barenghi, C. F., Diffusion of quantum vortices, Phys. Rev. A 98, 023608 (2018).Google Scholar
Rickinson, E., Parker, N. G., Baggaley, A. W., and Barenghi, C. F., Inviscid diffusion of vorticity in low temperature superfluid helium, Phys. Rev. B 99, 224501 (2019).Google Scholar
Rickinson, E., Barenghi, C. F., Sergeev, Y. A., Baggaley, A. W., Superfluid turbulence driven by cylindrically symmetric thermal counterflow, Phys. Rev. B 101, 134519 (2020).Google Scholar
Riley, N., Steady streaming, Annu. Rev. Fluid Mech. 33, 43 (2001).Google Scholar
Roche, P.-E., Diribarne, P., Didelot, T., Francais, O., Rousseau, L., and Willaime, H., Vortex density spectrum of quantum turbulence, Europhys. Lett. 77, 66002 (2007).Google Scholar
Roche, P.-E., Barenghi, C. F., and Leveque, E., Quantum turbulence at finite temperature: The two-fluids cascade, Europhys. Lett. 87, 54006 (2009).Google Scholar
Rorai, C., Skipper, J., Kerr, R. M., and Sreenivasan, K. R., Approach and separation of quantum vortices with balanced cores, J. Fluid Mech. 808, 641 (2016).Google Scholar
Rousset, B., Bonnay, P., Diribarne, P., Girard, A., Poncet, J. M., Herbert, E., Salort, J., Baudet, C., Castaing, B., Chevillard, L., Daviaud, F., Dubrulle, B., Gagne, Y., Gibert, M., H衲al, B., Lehner, Th., Roche, P.-E., Saint-Michel, B., and Mardion, M. Bon, Superfluid high Reynolds von Kármán experiment, Rev. Sci. Instrum. 85, 103908 (2014).Google Scholar
Rusaouen, E., Chabaud, B., Salort, J., and Roche, P.-E., Intermittency of quantum turbulence with superfluid fractions from 0% to 96%, Phys. Fluids 29, 105108 (2017a).Google Scholar
Rusaouen, E., Rousset, B., and Roche, P.-E., Detection of vortex coherent structures in superfluid turbulence, Europhys. Lett. 118 14005 (2017b).Google Scholar
Ruutu, V. M. H., Eltsov, V. B., Gill, A. J., Kibble, T. W. B., Krusius, M., Makhlin, Yu. G., Placais, B., Volovik, G. E., and Xu, W., Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation, Nature 382, 334 (1996).Google Scholar
Rysti, J., Manninen, M. S., and Tuoriniemi, J., Quartz tuning fork and acoustic phenomena: Application to superfluid helium, J. Low Temp. Phys. 177, 133 (2014).Google Scholar
Sadd, M., Chester, G. V., and Reatto, L., Structure of a vortex in superfluid 4He, Phys. Rev. Lett. 79, 2490 (1997).Google Scholar
Saffman, P. G., The large-scale structure of homogeneous turbulence, J. Fluid Mech. 27, 581 (1967a).Google Scholar
Saffman, P. G., Note on decay of homogeneous turbulence, Phys. Fluids 10, 1349 (1967b).Google Scholar
Saint-Michel, B., Herbert, E., Salort, J., Baudet, C., Bon Mardion, M., Bonnay, P., Bourgoin, M., Castaing, B., Chevillard, L., Daviaud, F., Diribarne, P., Dubrulle, B., Gagne, Y., Gibert, M., Girard, A., H衲al, B., Lehner, Th., Rousset, B., and SHREK Collaboration, Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments, Phys. Fluids 26, 125109 (2014).Google Scholar
Salman, H., Breathers on quantized superfluid vortices, Phys. Rev. Lett. 111, 165301 (2013).Google Scholar
Salman, H., Helicity conservation and twisted Seifert surfaces for superfluid vortices, Proc. Roy. Soc. A 473, 20160853 (2018).Google Scholar
Salort, J., Baudet, C., Castaing, B., Chabaud, B., Daviaud, F., Didelot, T., Diribarne, P., Dubrulle, B., Gagne, Y., Gauthier, F., Girard, A., Hebral, B., Rousset, B., Thibault, P., and Roche, P. E., Turbulent velocity spectra in superfluid flows, Phys. Fluids 22, 125102 (2010).Google Scholar
Salort, J., Chabaud, B., Leveque, E., and Roche, P-E., Investigation of intermittency in superfluid turbulence, J. Phys. Conf. Ser. 318, 042014 (2011a).Google Scholar
Salort, J., Roche, P.-E., and Leveque, E., Mesoscale equaipartion of kinetic energy in quantum turbulence, Europhys. Lett. 94, 24001 (2011b).Google Scholar
Salort, J., Chabaud, B., Leveque, E., and Roche, P-E., Energy cascade and the four-fifths law in superfluid turbulence, Europhys. Lett. 97, 34006 (2012a).Google Scholar
Salort, J., Monfardini, A., and Roche, P-E., Cantilever anemometer based on a superconducting micro-resonator: Application to superfluid turbulence. Rev. Sci. Instrum. 83, 125002 (2012b).Google Scholar
Salort, J., Rusaouën, E., Robert, L., du Puis, R., Loesch, A., Pirotte, O., Roche, P. E., Castaing, B., and Chillà, F., A local sensor for joint temperature and velocity measurements in turbulent flows, Rev. Sci. Instrum. 89, 015005 (2018).Google Scholar
Salort, J., Chillà, F., Rusaouën, E., Roche, P. E., Gibert, M., Moukharski, I., Braslau, A., Daviaud, F., Gallet, B., Saw, E.-W., Dubrulle, B., Diribarne, P., Rousset, B., Bon Mardion, M., Moro, J.-P., Girard, A., Baudet, C., L’vov, V., Golov, A., and Nazarenko, S., Experimental signature of quantum turbulence in velocity spectra? New J. Phys. 23, 063005 (2021).Google Scholar
Samuels, D. C., Response of superfluid vortex filaments to concentrated normal-fluid vorticity, Phys. Rev. B 47, 1107 (1993).Google Scholar
Samuels, D.C. and Barenghi, C.F., Vortex heating in superfluid helium at low temperatures, Phys. Rev. Lett. 81, 4381 (1998).Google Scholar
Sasa, N., Kano, T., Machida, M., L’vov, V. S., Rudenko, O., and Tsubota, M.. Energy spectra of quantum turbulence: Large-scale simulation and modeling, Phys. Rev. B 84, 054525 (2011).Google Scholar
Sasaki, K., Suzuki, N., and Saito, H., Benard–von Karman vortex street in a Bose–Einstein condensate, Phys. Rev. Lett. 104, 150404 (2010).Google Scholar
Sato, A., Maeda, M., and Kamioka, Y., Normalized representation for steady state heat transport in a channel containing He II covering pressure range up to 1.5 MPa. In Proc. of 20th Int. Cryogenic Conf. (ICEC20) 97, Chapter 20, 849852 (2005).Google Scholar
Schmoranzer, D., Rotter, M., Sebek, J., and Skrbek, L., Experimental setup for probing a von Karman type flow of normal and superfluid helium. In Experimental Fluid Mechanics 2009, Proc. Int. Conf. (Technical University of Liberec, Liberec, Czech Republic), 304, 309 (2009).Google Scholar
Schmoranzer, D., La Mantia, M., Sheshin, G., Gritsenko, I., Zadorozhko, A., Rotter, M., and Skrbek, L., Acoustic emission by quartz tuning forks and other oscillating structures in cryogenic 4He fluids, J. Low Temp. Phys. 163, 317 (2011).Google Scholar
Schmoranzer, D., Jackson, M. J., Tsepelin, V., Poole, M., Woods, A. J., Clovecko, M., and Skrbek, L., Multiple critical velocities in oscillatory flow of superfluid 4He due to quartz tuning forks, Phys. Rev. B 94, 214503 (2016).Google Scholar
Schmoranzer, D., Jackson, M. J., Midlik, S., Skyba, M., Bahyl, J., Skokankova, T., Tsepelin, V., and Skrbek, L., Dynamical similarity and instabilities in high-Stokes-number oscillatory flows of superfluid helium, Phys. Rev. B 99, 054511 (2019).Google Scholar
Schumacher, J., Scheel, J. D., Krasnov, D., Donzis, D. A., Yakhot, V., and Sreenivasan, K. R., Small-scale universality in fluid turbulence, Proc. Natl. Acad. Sci. USA 111, 10961 (2014).Google Scholar
Schwarz, K. W., Generation of superfluid turbulence deduced from simple dynamical rules, Phys. Rev. Lett. 49, 283 (1982).Google Scholar
Schwarz, K. W., Three-dimensional vortex dynamics in superfluid 4He: Line–line and line–boundary interactions, Phys. Rev. B 31, 5782 (1985).Google Scholar
Schwarz, K. W., Three-dimensional vortex dynamics in superfluid 4He. Homogeneous superfluid turbulence, Phys. Rev. B 38, 2398 (1988).Google Scholar
Schwarz, K. W., Phase slip and turbulence in superfluid 4He: A vortex mill that works, Phys. Rev. Lett. 64, 1130 (1990).Google Scholar
Schwarz, K. W., and Rozen, J. R., Transient behavior of superfluid turbulence in a large channel, Phys. Rev. B 44, 7563 (1991).Google Scholar
Schwarz, K. W., and Smith, C. W., Pulsed-ion study of ultrasonically generated turbulence in superfluid 4He, Phys. Lett. A 82 251 (1981).Google Scholar
Sciacca, M., Jou, D., and Mongiovì, M. S., Effective heat conductivity of helium II: From Landau to Gorter–Mellink regimes, Z. Angew. Math. Phys. 66, 1835 (2014).Google Scholar
Serafini, S., Barbiero, M., Debortoli, M., Donadello, S., Larcher, F., Dalfovo, F., Lamporesi, G., and Ferrari, G., Dynamics and interaction of vortex lines in an elongated Bose–Einstein condensate, Phys. Rev. Lett. 115, 170402 (2015).Google Scholar
Serafini, S., Galantucci, L., Iseni, E., Bienaimé, T., Bisset, R. N., Barenghi, C. F., Dalfovo, F., Lamporesi, G., and Ferrari, G., Vortex reconnections and rebounds in trapped atomic Bose–Einstein condensates, Phys. Rev. X 7, 021031 (2017).Google Scholar
Sergeev, Y. A., and Barenghi, C. F., Normal fluid eddies in the thermal counterflow past a cylinder, J. Low Temp. Phys. 156, 268 (2009a).Google Scholar
Sergeev, Y. A., and Barenghi, C. F., Particle–vortex interactions and flow visualization in 4He, J. Low Temp. Phys. 157, 429 (2009b).Google Scholar
Sergeev, Y. A., and Barenghi, C. F., Turbulent radial thermal counterflow in the framework of the HVBK model, Europhys. Lett. 128, 26001 (2019).Google Scholar
Sergeev, Y. A., Barenghi, C. F., and Kivotides, D., Motion of micron-size particles in turbulent helium II, Phys. Rev. B 74, 184506 (2006).Google Scholar
She, Z.-S., and Leveque, E., Universal scaling laws in fully developed turbulence, Phys. Rev. Lett. 72, 336 (1994).Google Scholar
Sherwin-Robson, L. K., Baggaley, A. W., and Barenghi, C. F., Local and nonlocal dynamics in superfluid turbulence, Phys. Rev. B 91, 104517 (2015).Google Scholar
Shukla, V., Pandit, R., and Brachet, M., Particles and fields in superfluids: Insight from the two-dimensional Gross–Pitaevskii equation, Phys. Rev. A 97, 013627 (2018).Google Scholar
Sikora, G., Krzysztof, B., and Agnieszka, W., Mean-squared displacement statistical test for fractional Brownian motion, Phys. Rev. E 95, 032110 (2017).Google Scholar
Silaev, M. A., Universal mechanism of dissipation in Fermi superfluids at ultralow temperatures, Phys. Rev. Lett. 108, 045303 (2012).Google Scholar
De Silva, I. P. D., and Fernando, H. J. S., Oscillating grids as a source of nearly isotropic turbulence, Phys. Fluids 6, 2455 (1994).Google Scholar
Sinhuber, M., Bodenschatz, E., and Bewley, G. P., Decay of turbulence at high Reynolds numbers, Phys. Rev. Lett. 114, 034501 (2015).Google Scholar
Skrbek, L., and Sreenivasan, K. R., Developed quantum turbulence and its decay, Phys. Fluids 24, 011301 (2012).Google Scholar
Skrbek, L., and Sreenivasan, K. R., How similar is quantum turbulence to classical turbulence? In Ten Chapters in Turbulence, Davidson, P. A., Kaneda, Y., and Sreenivasan, K. R. (eds.). Cambridge University Press (2013).Google Scholar
Skrbek, L., and Stalp, S. R., On the decay of homogeneous isotropic turbulence, Phys. Fluids 12, 1997 (2000).Google Scholar
Skrbek, L., and Vinen, W. F., The use of vibrating structures in the study of quantum turbulence, In Progress in Low Temp. Phys., vol. XVI, Tsubota, M. and Halperin, W. P. (eds), Elsevier (2009).Google Scholar
Skrbek, L., Niemela, J. J., and Donnelly, R. J., Turbulent flows at cryogenic temperatures: A new frontier, J. Phys. Condens. Matter 11, 7761 (1999).Google Scholar
Skrbek, L., Niemela, J. J., and Donnelly, R. J., Four regimes of decaying grid turbulence in a finite channel, Phys. Rev. Lett. 85, 2973 (2000).Google Scholar
Skrbek, L., Niemela, J. J., and Sreenivasan, K. R., Energy spectrum of grid-generated He II turbulence, Phys. Rev. E 64, 067301 (2001).Google Scholar
Skrbek, L., Gordeev, A. V., and Soukup, F., Decay of counterflow He II turbulence in a finite channel: Possibility of missing links between classical and quantum turbulence, Phys. Rev. E 67, 047302 (2003).Google Scholar
Skrbek, L., Schmoranzer, D., Midlik, Š., and Sreenivasan, K. R., Phenomenology of quantum turbulence in superfluid helium, Proc. Nat. Acad. Sci. USA 118, e2018406118 (2021).Google Scholar
Smith, M. R., Donnelly, R. J., Goldenfeld, N., and Vinen, W. F., Decay of vorticity in homogeneous turbulence, Phys. Rev. Lett. 71, 2583 (1993).Google Scholar
Smith, M. R., Hilton, D. K., and Van Sciver, S. W., Observed drag crisis on a sphere in flowing He I and He II, Phys. Fluids 11, 1 (1999).Google Scholar
Snyder, H. A., and Putney, Z., Angular dependence of mutual friction in rotating helium 2, Phys. Rev. 150, 110 (1966).Google Scholar
Sonin, E. B., Vortex oscillations and hydrodynamics of rotating superfluids, Rev. Mod. Phys. 59, 87 (1987).Google Scholar
Sreenivasan, K. R., On the scaling of the turbulence energy dissipation rate, Phys. Fluids 27, 1048 (1984).Google Scholar
Sreenivasan, K. R., On the universality of the Kolmogorov constant, Phys. Fluids 7, 27788 (1995).Google Scholar
Sreenivasan, K. R., An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids 10, 528 (1998).Google Scholar
Sreenivasan, K. R., Turbulent mixing: A perspective, Proc. Nat. Acad. Sci. 116, 18175 (2018).Google Scholar
Sreenivasan, K. R., and Antonia, R. A., Skewness of temperature derivatives in turbulent shear flows, Phys. Fluids 20, 1986 (1977).Google Scholar
Sreenivasan, K. R., and Antonia, R. A., The phenomenology of small-scale turbulence, Annu. Rev. Fluid Mech. 29, 435 (1997).Google Scholar
Sreenivasan, K. R., and Narasimha, R., Rapid distortion of axisymmetric turbulence, J. Fluid Mech. 84, 497 (1978).Google Scholar
Sreenivasan, K. R., and Yakhot, V., Dynamics of three-dimensional turbulence from Navier–Stokes equations, Phys. Rev. Fluids 6, 104604 (2021).Google Scholar
Sreenivasan, K. R., Tavoularis, S., Henry, R., and Corrsin, S., Temperature fluctuations and scales in grid-generated turbulence, J. Fluid Mech. 100, 597 (1980).Google Scholar
Sreenivasan, K. R., Juneja, A., and Suri, A. K., Scaling properties of circulation in moderate-Reynolds-number turbulent wakes, Phys. Rev. Lett. 75, 433 (1995).Google Scholar
Stagg, G. W., Parker, N. P., and Barenghi, C. F., Ultraquantum turbulence in a quenched homogeneous gas, Phys. Rev. A 94, 053632 (2016).Google Scholar
Stalp, S. R., Decay of Grid Turbulence in Superfluid Helium, Ph.D. Thesis, University of Oregon (1998).Google Scholar
Stalp, S. R., Skrbek, L., and Donnelly, R. J., Decay of grid turbulence in a finite channel, Phys. Rev. Lett. 82, 4831 (1999).Google Scholar
Stalp, S. R., Niemela, J. J., Vinen, W. F., and Donnelly, R. J., Dissipation of grid turbulence in helium II, Phys. Fluids 14, 1377 (2002).Google Scholar
Švančara, P., and Mantia, M. La, Flows of He-4 due to oscillating grids, J. Fluid Mech. 832, 578 (2017).Google Scholar
Švančara, P., and Mantia, M. La, Flight-crash events in superfluid turbulence, J. Fluid Mech. 876, R2 (2019).Google Scholar
Švančara, P., Hrubcová, P., Rotter, M., and La Mantia, M., Visualization study of thermal counterflow of superfluid helium in the proximity of the heat source by using solid deuterium hydride particles, Phys. Rev. Fluids 3, 114701 (2018).Google Scholar
Švančara, P., Pavelka, M., and La Mantia, M., An experimental study of turbulent vortex rings in superfluid 4He, J. Fluid Mech. 889, A24 (2020).Google Scholar
Švančara, P., Duda, D., Hrubcova, P., Rotter, M., Skrbek, L., La Mantia, M., Durozoy, E., Diribarne, P., Rousset, B., Bourgoin, M., and Gibert, M., Ubiquity of particle–vortex interactions in turbulent counterflow of superfluid helium, J. Fluid Mech. 911, A8 (2021).Google Scholar
Svistunov, B. V., Superfluid turbulence in the low-temperature limit, Phys. Rev. B 52, 3647 (1995).Google Scholar
Swanson, C. J., Johnson, K., and Donnelly, R. J., An accurate differential pressure gauge for use in liquid and gaseous helium, Cryogenics 38, 673 (1998).Google Scholar
Swanson, C. J., Julian, B., Ihas, G. G., and Donnelly, R. J., Pipe flow measurements over a wide range of Reynolds numbers using liquid helium and various gases, J. Fluid Mech. 461, 51 (2002).Google Scholar
Taylor, G. I., Statistical theory of turbulence, Parts I, II, III, and IV, Proc. Roy. Soc. 151, 421, 444, 455, 465 (1935).Google Scholar
Tebbs, R., Youd, A. J., and Barenghi, C. F., The approach to vortex reconnection, J. Low Temp. Phys. 162, 314 (2011).Google Scholar
Thomson (Lord Kelvin), W., On vortex atoms, Phil. Mag. 34, 15 (1867).Google Scholar
Thomson (Lord Kelvin), W., Vibrations of a columnar vortex, Proc. Roy. Soc. Edinb. 10, 443 (1880).Google Scholar
Tilley, D. R., and Tilley, J., Superfluidity and Superconductivity, Adam Hilger (1986).Google Scholar
Tizsa, L., Transport phenomena in helium II, Nature 141, 913 (1938).Google Scholar
Toschi, F., and Bodenschatz, E., Lagrangian properties of particles in turbulence, Annual Rev. Fluid Mech. 41, 375 (2009).Google Scholar
Tough, J. T., Superfluid turbulence, In Progress in Low Temperature Physics Vol. VIII. North Holland (1982).Google Scholar
Tough, J. T., Kafkalidis, J. F., Klinich, G., Murphy, P. J., and Castiglione, J., Stationary superfluid turbulent fronts, Physica B 194–196, 719 (1994).Google Scholar
Touil, H., Bertoglio, J. P., and Shao, L., The decay of turbulence in a bounded domain, J. Turb. 3, 049 (2002).Google Scholar
Tsatsos, M. C., Tavares, P. E. S., Cidrim, A., Fritsch, A. R., Caracanhas, M. A., dos Santos, F. E. A., Barenghi, C. F., and Bagnato, V. S., Quantum turbulence in trapped atomic Bose–Einstein condensates, Phys. Reports 622, 1 (2016).Google Scholar
Tsepelin, V., Baggaley, A. W., Sergeev, Y. A., Barenghi, C. F., Fisher, S. N., Pickett, G. R., Jackson, M. J., and Suramlishvili, N., Visualization of quantum turbulence in superfluid 3He-B: Combined numerical and experimental study of Andreev reflection. Phys. Rev. B 96, 054510 (2017).Google Scholar
Tsubota, M., and Adachi, H., Simulation of counterflow turbulence by vortex filaments, J. Low Temp. Phys. 162, 367 (2011).Google Scholar
Tsubota, M., Araki, T., and Nemirovskii, S. K., Dynamics of vortex tangle without mutual friction in superfluid 4He, Phys. Rev. B 62, 11751 (2000).Google Scholar
Tsubota, M., Araki, T., and Barenghi, C. F., Rotating superfluid turbulence, Phys. Rev. Lett. 90, 205301 (2003a).Google Scholar
Tsubota, M., Araki, T., and Vinen, W. F., Diffusion of an inhomogeneous vortex tangle, Physica B 329, 224 (2003b).Google Scholar
Tsubota, M., Barenghi, C. F., and Araki, T., Instability of vortex array and transition to turbulence in rotating He II, Phys. Rev. B 69, 134515 (2004).Google Scholar
Tsubota, M., Fujimoto, K., and Yui, S., Numerical studies of quantum turbulence, J. Low Temp. Phys. 188, 119 (2017).Google Scholar
Van Dyke, M., An Album of Fluid Motion, Parabolic Press, Palo Alto (1982).Google Scholar
Van Sciver, S. W., Helium Cryogenics (International Cryogenics Monograph Series), Plenum Press (1986).Google Scholar
Varga, E., Peculiarities of spherically symmetric counterflow, J. Low Temp. Phys. 196, 28 (2019).Google Scholar
Varga, E., and Davis, J. P., Electromechanical feedback control of nanoscale superflow, New J. Phys. 23, 113041 (2021).Google Scholar
Varga, E., and Skrbek, L., Dynamics of the density of quantized vortex lines in counterflow turbulence: Experimental investigation, Phys. Rev. B 97, 064507 (2018).Google Scholar
Varga, E., and Skrbek, L., Thermal counterflow of superfluid 4He: Temperature gradient in the bulk and in the vicinity of heater, Phys. Rev. B 100, 054518 (2019).Google Scholar
Varga, E., Babuin, S., and Skrbek, L., Second-sound studies of coflow and counterflow of superfluid 4He in channels, Phys. Fluids 27, 065101 (2015).Google Scholar
Varga, E., Babuin, S., L’vov, V. S., Pomyalov, A., and Skrbek, L., Transition to quantum turbulence and streamwise inhomogeneity of vortex tangle in thermal counterflow, J. Low Temp. Phys. 187, 531 (2017).Google Scholar
Varga, E., Guo, W., Gao, J., and Skrbek, L., Intermittency enhancement in quantum turbulence in superfluid 4He, Phys. Rev. Fluids 3, 094601 (2018).Google Scholar
Varga, E., Jackson, M. J., Schmoranzer, D., and Skrbek, L., The use of second sound in investigations of quantum turbulence in He II, J. Low Temp. Phys. 197, 130 (2019).Google Scholar
Varga, E., Vadakkumbatt, V., Shook, A. J., Kim, P. H., and Davis, J. P., Observation of bistable turbulence in quasi-two-dimensional superflow, Phys. Rev. Lett. 125, 025301 (2020).Google Scholar
Vermeer, W., Van Alphen, W. M., Olijhoek, J. F., Taconis, K. W., and De Bruyn Ouboter, R., Dissipative normal fluid production by gravitational superfluid flow, Phys. Lett. 18, 265 (1965).Google Scholar
Villois, A., Proment, D., and Krstulovic, G., Evolution of a superfluid vortex filament tangle driven by the Gross–Pitaevskii equation, Phys. Rev. E 93, 061103(R) (2016).Google Scholar
Vinen, W. F., Mutual friction in a heat current in liquid helium II, Proc. Roy. Soc. A 240, 114127; 240, 128–143; 242, 493–515; 243, 400–413 (1957).Google Scholar
Vinen, W. F., Detection of single quanta of circulation in liquid helium II, Proc. Roy. Soc. A 260, 218 (1961).Google Scholar
Vinen, W. F., Classical character of turbulence in a quantum liquid, Phys. Rev. B 61, 1410 (2000).Google Scholar
Vinen, W. F., Decay of superfluid turbulence at a very low temperature: The radiation of sound from a Kelvin wave on a quantized vortex, Phys. Rev. B 64, 134520 (2001).Google Scholar
Vinen, W. F., Theory of quantum grid turbulence in superfluid 3He-B, Phys. Rev. B 71, 024513 (2005).Google Scholar
Vinen, W. F., and Niemela, J. J., Quantum turbulence, J. Low Temp. Phys. 128, 167 (2002).Google Scholar
Vinen, W. F., and Skrbek, L., Quantum turbulence generated by oscillating structures, Proc. Natl. Acad. Sci. USA 111, 4699 (2014).Google Scholar
Vinen, W. F., Tsubota, M., and Mitani, A., Kelvin-wave cascade on a vortex in superfluid 4He at a very low temperature, Phys. Rev. Lett. 91, 135301 (2003).Google Scholar
Vitiello, S. A., Reatto, L., Chester, G. V., and Kalos, M. H., Vortex line in superfluid He4: A variational Monte Carlo calculation, Phys. Rev. B 54, 1205 (1996).Google Scholar
Vollhardt, D., and Wolfle, P., The Superfluid Phases of Helium 3, Dover (2013).Google Scholar
Volovik, G. E., Classical and quantum regimes of superfluid turbulence. JETP Lett. 78, 533 (2003).Google Scholar
Volovik, G. E., On developed superfluid turbulence, J. Low Temp. Phys. 136, 309 (2004).Google Scholar
Volovik, G. E., The Universe in a Helium Droplet, Oxford University Press (2007).Google Scholar
Volovik, G. E., Quantum turbulence and Planckian dissipation, JETP Lett. 115, 461 (2022).Google Scholar
Wacks, D. H., and Barenghi, C. F., Shell model of superfluid turbulence, Phys. Rev. B 84, 184505 (2011).Google Scholar
Walmsley, P. M., and Golov, A. I., Quantum and quasiclassical types of superfluid turbulence, Phys. Rev. Lett. 100, 245301 (2008).Google Scholar
Walmsley, P. M., and Golov, A. I., Coexistence of quantum and classical flows in quantum turbulence in the T = 0 limit, Phys. Rev. Lett. 118, 134501 (2017).Google Scholar
Walmsley, P. M., Golov, A. I., Hall, H. E., Levchenko, A. A., and Vinen, W. F., Dissipation of quantum turbulence in the zero temperature limit, Phys. Rev. Lett. 99, 265302 (2007).Google Scholar
Walmsley, P. M., Golov, A. I., Hall, H. E., Vinen, W. F., and Levchenko, A. A., Decay of turbulence generated by spin-down to rest in superfluid 4He, J. Low Temp. Phys. 153, 127 (2008).Google Scholar
Walmsley, P. M., Zmeev, D., Pakpour, F., and Golov, A. I., Dynamics of quantum turbulence of different spectra, Proc. Nat. Acad. Sci. USA 111 Suppl. 1, 4691 (2014).Google Scholar
Wen, X., Bao, S. R., McDonald, L., Pierce, J., Greene, G. L., Crow, Lowell, Tong, Xin, Mezzacappa, A., Glasby, R., Guo, W., and Fitzsimmons, M. R., Imaging fluorescence of He excimers created by neutron capture in liquid Helium II, Phys. Rev. Lett. 124, 134502 (2020).Google Scholar
White, A. C., Barenghi, C. F., Proukakis, N. P., Youd, A. J., and Wacks, D. H., Nonclassical velocity statistics in a turbulent atomic Bose–Einstein condensate, Phys. Rev. Lett. 104, 075301 (2010).Google Scholar
White, C. M., Karpetis, A. N., and Sreenivasan, K. R., High-Reynolds-number turbulence in small apparatus, J. Fluid. Mech. 452, 189 (2002).Google Scholar
Wilkin, S. L., Barenghi, C. F., and Shukurov, A., Magnetic structures produced by the small-scale dynamo, Phys. Rev. Lett. 99, 134501 (2007).Google Scholar
Williamson, C. H. K., Vortex dynamics in the cylinder wake, Ann. Rev. Fluid Mech. 28, 477 (1996).Google Scholar
Winiecki, T., and Adams, C. S., Motion of an object through a quantum fluid, Europhys. Lett. 52, 257 (2000).Google Scholar
Wyatt, A. F. G., Quantum evaporation and the study of exitations in liquid 4He, Physica B 169, 130 (1991).Google Scholar
Xie, Z., Huang, Y., Novotny, F., Midlik, S., Schmoranzer, D., and Skrbek, L., Spherical thermal counterflow of He II, J. Low Temp. Phys. 208, 426 (2022).Google Scholar
Xu, H., Pumir, A., Falkovich, G., Bodenschatz, E., Shats, M., Xia, H., Francois, N., and Bofetta, G., Flight-crash events in turbulence, Proc. Natl. Acad. Sci. USA 111, 7558 (2014).Google Scholar
Xu, T., and Van Sciver, S. W., Particle image velocimetry measurements of the velocity profile in He II forced flow, Phys. Fluids 19, 071703 (2007).Google Scholar
Yakhot, V., Decay of three-dimensional turbulence at high Reynolds numbers, J. Fluid Mech. 505, 87 (2004).CrossRefGoogle Scholar
Yakhot, V., and Sreenivasan, K. R., Towards a dynamical theory of multifractals in turbulence, Phys. A 343, 147 (2004).Google Scholar
Yamada, M., and Ohkitani, K., Lyapunov spectrum of a chaotic model of 3-dimensional turbulence, J. Phys. Soc. Japan. 56, 4210 (1987).Google Scholar
Yang, J., and Ihas, G. G., Decay of grid turbulence in superfluid helium-4: Mesh dependence, J. Phys. Conf. Series 969, 012004 (2018).CrossRefGoogle Scholar
Yano, H., Handa, A., Nakagawa, H., Obara, K., Ishikawa, O., Hata, T., and Nakagawa, M., Observation of laminar and turbulent flow in superfluid 4He using a vibrating wire, J. Low Temp. Phys. 138, 561 (2005).Google Scholar
Yano, H., Handa, A., Nakagawa, H., Obara, K., Ishikawa, O., and Hata, T., Study on the turbulent flow of superfluid 4He generated by a vibrating wire, AIP Conf. Proc. 850, 195 (2006).CrossRefGoogle Scholar
Yano, H., Hashimoto, N., Handa, A., Nakagawa, M., Obara, K., Ishikawa, O., and Hata, T., Motions of quantized vortices attached to a boundary in alternating currents of superfluid 4He, Phys. Rev. B 75, 012502 (2007).Google Scholar
Yao, J., and Hussain, F., Separation scaling for viscous vortex reconnections, J. Fluid Mech. 900, R4 (2020).Google Scholar
Yarmchuk, E. G., and Glaberson, W. I., Counterflow in rotating superfluid helium, J. Low Temp. Phys. 36, 381 (1979).Google Scholar
Yarmchuk, E. J., Gordon, M. J. V., and Packard, R. E., Observation of stationary vortex array in rotating superfluid helium, Phys. Rev. Lett. 43, 214 (1979).Google Scholar
Yui, S., and Tsubota, M., Counterflow quantum turbulence of He-II in a square channel: Numerical analysis with nonuniform flows of the normal fluid, Phys. Rev. B 91, 184504 (2015).Google Scholar
Yurkina, O., and Nemirovskii, S. K., On the energy spectrum of the 3D velocity field, generated by an ensemble of vortex loops, Low Temp. Phys. 47, 652 (2021).Google Scholar
Zhang, T., and Van Sciver, S. W., The motion of micron-sized particles in He II counterflow as observed by the PIV technique, J. Low Temp. Phys. 138, 865 (2005a).Google Scholar
Zhang, T., and Van Sciver, S. W., Large scale turbulent flow around a cylinder in counterflow superfluid 4He (He II), Nature Phys. 1, 36 (2005b).Google Scholar
Zhang, T., Celik, D., and Van Sciver, S. W., Tracer particles for application to PIV studies of liquid helium, J. Low Temp. Phys. 134, 985 (2004).Google Scholar
Zhang, T., Celik, D., and Van Sciver, S. W., The motion of micron-sized particles in He II counterflow as observed by the PIV technique, J. Low Temp. Phys. 134, 865 (2005).Google Scholar
Zmeev, D. E., A method for driving an oscillator at a quasi-uniform velocity, J. Low Temp. Phys. 175, 480 (2014).Google Scholar
Zmeev, D. E., Pakpour, F., Walmsley, P. M., Golov, A. I., Guo, W., McKinsey, D. N., Ihas, G. G., McClintock, P. V. E., Fisher, S. N., and Vinen, W. F., Excimers He-2* as tracers of quantum turbulence in 4He in the T = 0 limit, Phys. Rev. Lett. 110, 175303 (2013).Google Scholar
Zmeev, D. E., Walmsley, P. M., Golov, A. I., McClintock, P. V. E., Fisher, S. N., and Vinen, W. F., Dissipation of quasiclassical turbulence in superfluid 4He, Phys. Rev. Lett. 115, 155303 (2015).Google Scholar
Zuccher, S., and Ricca, R. L., Twist effects in quantum vortices and phase defects, Fluid Dyn. Res. 50, 011414 (2018).Google Scholar
Zuccher, S., Caliari, M., Baggaley, A. W., and Barenghi, C. F., Quantum vortex reconnections, Phys. Fluids 24, 125108 (2012).CrossRefGoogle Scholar
Zurek, W. H., Cosmological experiments in superfluid-helium, Nature 317, 505 (1985).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×