Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-03T00:24:02.770Z Has data issue: false hasContentIssue false

Section 6 - Airway Emergencies and Special Situations

Published online by Cambridge University Press:  03 March 2017

D. John Doyle
Affiliation:
Cleveland Clinic, Abu Dhabi
Basem Abdelmalak
Affiliation:
Cleveland Clinic, Ohio
Get access
Type
Chapter
Information
Clinical Airway Management
An Illustrated Case-Based Approach
, pp. 199 - 298
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Kellman, RM, Losquadro, WD. Comprehensive airway management of patients with maxillofacial trauma. Craniomaxillofac Trauma Reconstr. 2008 Nov;1(1):3947.CrossRefGoogle ScholarPubMed
Thoren, H, Snall, J, Salo, J, Suominen-Taipale, L, Kormi, E, Lindqvist, C, et al. Occurrence and types of associated injuries in patients with fractures of the facial bones. J Oral Maxillofac Surg. 2010 Apr;68(4):805–10.CrossRefGoogle ScholarPubMed
Quinn, AC, Sinert, R. What is the utility of the Focused Assessment with Sonography in Trauma (FAST) exam in penetrating torso trauma? Injury. [Review]. 2011 May;42(5):482–7.CrossRefGoogle ScholarPubMed
Dhara, SS. Retrograde tracheal intubation. Anaesthesia. [Research Support, Non-U.S. Gov't Review]. 2009 Oct;64(10):1094–104.CrossRefGoogle ScholarPubMed
Audenaert, SM, Montgomery, CL, Stone, B, Akins, RE, Lock, RL. Retrograde-assisted fiberoptic tracheal intubation in children with difficult airways. Anesth Analg. [Case Reports]. 1991 Nov;73(5):660–4.Google Scholar
Bissinger, U, Guggenberger, H, Lenz, G. Retrograde-guided fiberoptic intubation in patients with laryngeal carcinoma. Anesth Analg. 1995 Aug;81(2):408–10.Google ScholarPubMed

References

Apfelbaum, J.L., et al. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology. 2013 Feb;118(2):251–70.Google Scholar
Mason, R.A. and Fielder, C.P.. The obstructed airway in head and neck surgery. Anaesthesia. 1999 Jul;54(7):625–8.CrossRefGoogle ScholarPubMed
Udeshi, A., Cantie, S.M., Pierre, E.. Postobstructive pulmonary edema. J Crit Care. 2010 Sep;25(3):508.e15.Google Scholar
Goldenberg, D., et al. Tracheotomy complications: a retrospective study of 1130 cases. Otolaryngol Head Neck Surg. 2000 Oct;123(4):495500.Google Scholar

References

Bratton, SL, Chestnut, RM, Ghajar, J, McConnell, Hammond FF, Harris, OA, Hartl, R, Manley, GT, Nemecek, A, Newell, DW, Rosenthal, G, Schouten, J, Shutter, L, Timmons, SD, Ullman, JS, Videtta, W, Wilberger, JE, Wright, DW. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24 (Suppl 1):S713.CrossRefGoogle ScholarPubMed
Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS, J Neurotrauma. 2007;24 (Suppl 1):S7–13. No abstract available. Erratum in: J Neurotrauma. 2008 Mar;25(3):276–8.Google Scholar
Mayglothling, J, Duane, TM, Gibbs, M, McCunn, M, Legome, E, Eastman, AL, Whelan, J, Shah, KH; Eastern Association for the Surgery of Trauma. Emergency tracheal intubation immediately following traumatic injury: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg. 2012 Nov;73(5 Suppl 4):S333–40.CrossRefGoogle ScholarPubMed
Chesnut, RM, Marshall, LF, Klauber, MR, Blunt, BA, Baldwin, N, Eisenberg, HM, Jane, JA, Marmarou, A, Foulkes, MA. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993 Feb;34(2):216–22.CrossRefGoogle ScholarPubMed
Davis, DP, Idris, AH, Sise, MJ, Kennedy, F, Eastman, AB, Velky, T, Vilke, GM, Hoyt, DB. Early ventilation and outcome in patients with moderate to severe traumatic brain injury. Crit Care Med. 2006 Apr;34(4):1202–8.CrossRefGoogle ScholarPubMed
Jabre, P, Combes, X, Lapostolle, F, Dhaouadi, M, Ricard-Hibon, A, Vivien, B, Bertrand, L, Beltramini, A, Gamand, P, Albizzati, S, Perdrizet, D, Lebail, G, Chollet-Xemard, C, Maxime, V, Brun-Buisson, C, Lefrant, JY, Bollaert, PE, Megarbane, B, Ricard, JD, Anguel, N, Vicaut, E, Adnet, F; KETASED Collaborative Study Group. Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: a multicentre randomised controlled trial. Lancet. 2009 Jul 25;374(9686):293300.CrossRefGoogle ScholarPubMed
Jabre, P, Avenel, A, Combes, X, Kulstad, E, Mazariegos, I, Bertrand, L, Lapostolle, F, Adnet, F. Morbidity related to emergency endotracheal intubation – a substudy of the KETAmine SEDation trial. Resuscitation. 2011 May;82(5):517–22.CrossRefGoogle ScholarPubMed

References

Hosal, AS, Hosal, IN, Gungen, Y, Onerci, M. Hamartoma of the larynx: a case of unusual bleeding after microlaryngoscopy. Ear Nose Throat J 1998;77:910–3.Google Scholar
Weingarten, TN, Bojanić, K, Scavonetto, F, Sprung, J. Management of delayed hemorrhage after partial vocal cord cordectomy. J Clin Anesth 2013 Dec;25(8):666–8.Google Scholar
Takahata, O, Kubota, M, Mamiya, K, Akama, Y, Nozaka, T, Matsumoto, H, Ogawa, H. The efficacy of the “BURP” maneuver during a difficult laryngoscopy. Anesth Analg 1997;84:419–21.CrossRefGoogle ScholarPubMed

References

Kamath, S, Bhadrinarayan, V, Ranjan, M, Rao, GU. Alternative approach for the anesthetic management of a patient with large pulmonary bulla presenting with an intracranial tumor for surgery. J Anaesthesiol Clin Pharmacol. 2012;28(2):272273.CrossRefGoogle ScholarPubMed
Gunnarsson, SI, Johannesson, KB, Gudjonsdottir, M, Magnusson, B, Jonsson, S, Gudbjartsson, T. Incidence and outcomes of surgical resection for giant pulmonary bullae – a population-based study. Scand J Surg SJS Off Organ Finn Surg Soc Scand Surg Soc. 2012;101(3):166169.Google Scholar
Caseby, NG. Anaesthesia for the patient with a coincidental giant lung bulla: a case report. Can Anaesth Soc J. 1981;28(3):272276.CrossRefGoogle ScholarPubMed
Dutta, B, Prasad, G. Anaesthetic management of a case of giant pulmonary bulla undergoing laparoscopic cholecystectomy. J Anesth Clin Res. 2012;3(5):13.CrossRefGoogle Scholar
Iwakura, H, Kishimoto, T, Takatori, T, Koh, J, Nakamura, Y, Kosaka, Y. Anesthetic management of a patient with abdominal aortic aneurysm (AAA) with giant bulla. Masui. 1994;43(1):116118.Google Scholar
Bansal, S, Surve, RM, Venkatapura, RJ. Anesthetic management of a paraparetic patient with multiple lung bullae. J Neurosurg Anesthesiol. 2014;26(1):8586.CrossRefGoogle ScholarPubMed
Miller, RD, Eriksson, LI, Fleisher, L, Wiener-Kronish, JP, Young, WL. Miller's Anesthesia, 7th Edition. Philadelphia, PA: Churchill Livingstone; 2010.Google Scholar
Nozaki, K, Endou, A, Sakurai, K, Takahata, O, Iwasaki, H. Anesthetic management of a patient with a giant bulla and liver cirrhosis using a laryngeal mask airway and epidural analgesia. Masui. 2001;50(6):639641.Google Scholar
Michaels, IK. Case 40 – Laparoscopy. In: Reed, AP, Yudkowitz, FS, eds. Clinical Cases in Anesthesia, 3rd Edition. Philadelphia: Churchill Livingstone; 2005: pp. 217223.Google Scholar
Hillier, JE, Toma, TP, Gillbe, CE. Bronchoscopic lung volume reduction in patients with severe emphysema: anesthetic management. Anesth Analg. 2004;99(6):16101614, table of contents.Google Scholar
Isenhower, N, Cucchiara, RF. Anesthesia for vanishing lung syndrome: report of a case. Anesth Analg. 1976;55(5):750752.CrossRefGoogle ScholarPubMed
Wiser, SH, Hartigan, PM. Anesthetic management for pulmonary resection. In: Vacanti C, et al., eds. Essential Clinical Anesthesia. Cambridge University Press; 2011: pp. 546–556.Google Scholar
Eger, E, Saidman, L. Hazards of nitrous oxide anesthesia in bowel obstruction and pneumothorax. Anesthesiology. 1965;26:6166.CrossRefGoogle ScholarPubMed

References

Solomon, RJ. A Reliable accurate CO2 analyzer for medical use. Hewlett-Packard Journal. 1981; 32: 321.Google Scholar
ASA Standards for Basic Anesthetic Monitoring, Standards and Practice Parameters. (Approved by the ASA House of Delegates on October 21, 1986, and last amended on October 20, 2010 with an effective date of July 1, 2011.)Google Scholar
Hess, DR, Kacmarek, RM. Chapter 32. Monitoring respiratory function. In: Newman, MF, Brown, DL, Zapol, WM, eds. Anesthesiology. 2nd edn. New York: McGraw-Hill; 2012.Google Scholar
Jaffe, MB. Mainstream or sidestream capnography? White Paper Respironics. 2002: 1–14.Google Scholar
Block, FE Jr, McDonald, JS. Sidestream versus mainstream carbon dioxide analyzers. J Clin Monit. 1992; 8(2): 139–41.Google Scholar
Zupan, J, Martin, M, Benumof, JL. End-tidal CO2 excretion waveform and error with gas sampling line leak. Anesth Analg. 1988; 67(6): 579–81.Google Scholar
Tripathi, M, Pandey, M. Atypical “tails-up” capnograph due to breach in the sampling tube of side-stream capnometer. J Clin Monit Comput. 2000; 16(1):1720.CrossRefGoogle ScholarPubMed
Gravenstein, N. Capnometry in infants should not be done at lower sampling flow rates. J Clin Monit. 1989; (1): 63–4.CrossRefGoogle Scholar
Bergman, NA, Rackow, H, Frumin, MJ. The collision broadening effect of nitrous oxide upon infrared analysis of carbon dioxide during anesthesia. Anesthesiology. 1958; 19(1): 1926.CrossRefGoogle ScholarPubMed
Falk, JL, Rackow, EC, Weil, MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med. 1988; 318(10) 607–11.CrossRefGoogle ScholarPubMed

References

Ollerton, JE, Parr, MJA, Harrison, K, Hanrahan, B, Sugrue, M. Potential cervical spine injury and difficult airway management for emergency intubation of trauma adults in the emergency department: a systematic review. Emerg Med J. 2006;23(1): 311.CrossRefGoogle ScholarPubMed
Theodore, N, Hadley, M, Aarabi, B, Dhall, S, Gelb, D, Hurlbert, J. Prehospital cervical spine immobilization after trauma. Neurosurgery. 2013;72(3):2234.Google Scholar
White, AA, Panjabi, MM. Clinical Biomechanics of the Spine. 2nd edn. Philadelphia: Lippincott; 1990.Google Scholar
Benzel, EC. Biomechanics of Spine Stabilization, Principles and Clinical Practice. McGraw-Hill; 1995.Google Scholar
Como, JJ, Diaz, JJ, Dunham, CM, et al. Practice management guidelines for identification of cervical spine injuries following trauma: update from the Eastern Association for the Surgery of Trauma Practice Management Guidelines Committee. J Trauma. 2009 ; 67:651659.Google ScholarPubMed
Hoffman, JR, Mower, WR, Wolfson, AB, et al. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. National Emergency X-Radiography Utilization Study Group. N Engl J Med. 2000 ; 343:9499.Google Scholar
Stiell, IG, Wells, GA, Vandemheen, KL, et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA. 2001;286(15):18411848.Google Scholar
McLeod, AD, Calder, I. Spinal cord injury and direct laryngoscopy – the legend lives on. Br J Anaesth. 2000 ; 84:705709.CrossRefGoogle Scholar
Raw, DA, Beattie, JK, Hunter, JM. Anaesthesia for spinal surgery in adults. Brit J Anaesth. 2003;91(6):886904.Google Scholar
Umamaheshwara Rao, GS. Anaesthetic and intensive care management of traumatic cervical spine injury. Indian J Anaesth. 2008;52(1):1322.Google Scholar
Wilson, WC. Trauma: airway management. ASA difficult airway algorithm modified for trauma and five common intubation scenarios. ASA Newsl. 2005 ; 69:9.Google Scholar
Crosby, ET. Airway management in adults after cervical spine trauma. Anesthesiology. 2006 ; 104:12931318.CrossRefGoogle ScholarPubMed
Sahin, A, Salman, MA, Erden, IA, Aypar, U. Upper cervical vertebrae movement during intubating laryngeal mask, fibreoptic and direct laryngoscopy: a video-fluoroscopic study. Eur J Anaesthesiol. 2004;21:819823.Google Scholar
Prasarn, ML, Conrad, B, Rubery, PT, et al. Comparison of 4 airway devices on cervical spine alignment in a cadaver model with global ligamentous instability at C5-C6. Spine. 2012;37(6):476481.Google Scholar
Wendling, AL, Tighe, PJ, Conrad, BP, et al. A comparison of 4 airway devices on cervical spine alignment in cadaver models of global ligamentous instability at C1–2. Anesth Analg. 2013;117(1):126132.CrossRefGoogle ScholarPubMed
Houde, BJ, Williams, SR, Cadrin-Chenevert, A, et al. A comparison of cervical spine motion during orotracheal intubation with the trachlight(r) or the flexible fiberoptic bronchoscope. Anesth Analg. 2009;108(5):16381643.CrossRefGoogle ScholarPubMed
Hastings, RH, Wood, PR. Head extension and laryngeal view during laryngoscopy with cervical spine stabilization maneuvers. Anesthesiology. 1994; 80:825831.CrossRefGoogle ScholarPubMed
Santoni, BG, Hindman, BJ, Puttlitz, CM, et al. Manual in-line stabilization increases pressures applied by the laryngoscope blade during direct laryngoscopy and orotracheal intubation. Anesthesiology. 2009;110:2431.Google Scholar
Lennarson, PJ, Smith, DW, Sawin, PD, et al. Cervical spinal motion during intubation: efficacy of stabilization maneuvers in the setting of complete segmental instability. J Neurosurg. 2001;94:265270.Google Scholar
Turkstra, TP, Craen, RA, Pelz, DM, Gelb, AW. Cervical spine motion: a fluoroscopic comparison during intubation with lighted stylet, GlideScope, and Macintosh laryngoscope. Anesth Analg. 2005;101:910915.Google Scholar
Hirabayashi, Y, Fujita, A, Seo, N, Sugimoto, H. A comparison of cervical spine movement during laryngoscopy using the Airtraq or Macintosh laryngoscopes. Anaesthesia. 2008 ; 63:635640.Google Scholar
Robitaille, A, Williams, SR, Tremblay, MH, Guilbert, F, Thériault, M, Drolet, P. Cervical spine motion during tracheal intubation with manual in-line stabilization: direct laryngoscopy versus GlideScope video laryngoscopy. Anesth Analg. 2008;106:935941.CrossRefGoogle Scholar
Wong, DM, Prabhu, A, Chakraborty, S, Tan, G, Massicotte, EM, Cooper, R. Cervical spine motion during flexible bronchoscopy compared with the Lo-Pro GlideScope. Br J Anaesth. 2009;102:424430.CrossRefGoogle ScholarPubMed
Kihara, S, Watanabe, S, Brimacombe, J, Taguchi, N, Yaguchi, Y, Yamasaki, Y. Segmental cervical spine movement with the intubating laryngeal mask during manual in-line stabilization in patients with cervical pathology undergoing cervical spine surgery. Anesth Analg. 2000;91:195200.CrossRefGoogle ScholarPubMed
Waltl, B, Melischek, M, Schuschnig, C, Kabon, B, Erlacher, W, Nasel, C, et al. Tracheal intubation and cervical spine excursion: direct laryngoscopy vs. intubating laryngeal mask. Anaesthesia. 2001;56:221226.Google Scholar
Langeron, O, Semjen, F, Bourgain, JL, Marsac, A, Cros, AM. Comparison of the intubating laryngeal mask airway with the fiberoptic intubation in anticipated difficult airway management. Anesthesiology. 2001; 94:968972.CrossRefGoogle ScholarPubMed
Watts, AD, Gelb, AW, Bach, DB, Pelz, DM. Comparison of the Bullard and Macintosh laryngoscopes for endotracheal intubation of patients with a potential cervical spine injury. Anesthesiology. 1997;87:13351342.Google Scholar
Hastings, RH, Vigil, AC, Hanna, R, Yang, BY, Sartoris, DJ. Cervical spine movement during laryngoscopy with the Bullard, Macintosh, and Miller laryngoscopes. Anesthesiology. 1995;82:859869.Google Scholar
Hindman, BJ, Palecek, JP, Posner, KL, et al. Cervical spinal cord, root, and bony spine injuries: a closed claims analysis. Anesthesiology. 2011 ; 114:782795.CrossRefGoogle ScholarPubMed
Wahba, SS, Tammam, TF, et al. A comparative study of awake endotracheal intubation with GlideScope videolaryngoscope versus flexible fibreoptic bronchoscope in patients with traumatic cervical spine injury. Egyptian J Anesth. 2012;28(4):257260.Google Scholar
Doyle, DJ. Glidescope-assisted fibreoptic intubation: A new airway teaching method. Anesthesiology. 2004;101(5):1252.Google Scholar

References

Davies, P, Chapman, S, Leask, J. Antivaccination activists on the world wide web. Arch Dis Child. 2002 Jul;87(1):22–5.Google Scholar
Harris, C, Sharkey, L, Koshy, G, Simler, N, Karas, JA. A rare case of acute epiglottitis due to Staphylococcus aureus in an adult. Infect Dis Rep. 2012 Jan 2;4(1):e3.Google Scholar
Kagedan, DJ, Haasz, M, Kumar Chadha, N, Vinod Mehta, S. Epiglottitis as a presentation of leukemia in an adolescent. Pediatr Emerg Care. 2014 Oct;30(10):733–5.CrossRefGoogle Scholar
Grover, C. Images in clinical medicine. “Thumb sign” of epiglottitis. N Engl J Med. 2011 Aug 4;365(5):447.Google Scholar
Hung, TY, Li, S, Chen, PS, Wu, LT, Yang, YJ, Tseng, LM, Chen, KC, Wang, TL, Hung, TY. Bedside ultrasonography as a safe and effective tool to diagnose acute epiglottitis. Am J Emerg Med. 2011 Mar;29(3):359.Google Scholar
Scheidemandel, HH. Did George Washington die of quinsy? Arch Otolaryngol. 1976 Sep;102(9):519–21.Google Scholar
Agnoletti, V, Tenti, G, Piraccini, E, Corso, RM, Leprotti, E, Vicini, C, Gambale, G. Successful combined use of videolaryngoscopy and pediatric stylet in an adult case of acute epiglottitis. J Emerg Med. 2013 Mar;44(3):674–5.Google Scholar
Kenth, J, Mumtaz, T. A novel case of adult, acute epiglottitis successfully treated with noninvasive ventilation. A A Case Rep. 2014 Mar 1;2(5):55–6.Google ScholarPubMed
Youngs, PJ. Sevoflurane induction and acute epiglottitis. Anaesthesia. 1999 Mar;54(3):301.Google Scholar
Wick, F, Ballmer, PE, Haller, A. Acute epiglottis in adults. Swiss Med Wkly. 2002 Oct 12;132(37–38):541–7.Google ScholarPubMed

References

Holsti, M, et al. Prehospital intranasal midazolam for the treatment of pediatric seizures. Pediatr Emerg Care 2007;23(3):148–53.Google Scholar
Dale, O, Hjortkjaer, R, Kharasch, ED. Nasal administration of opioids for pain management in adults. Acta Anaesthesiol Scand 2002; 46(7):759–70.CrossRefGoogle ScholarPubMed
Hall, D, et al. Intranasal ketamine for procedural sedation. Emerg Med J 2014; 31:789–90.CrossRefGoogle Scholar
Weiser, G, Hoffmann, Y, Galbraith, R, Shavit, I. Current advances in intraosseous infusion – a systematic review. Resuscitation 2012 Jan;83(1):20–6.CrossRefGoogle ScholarPubMed
Sunde, G, Heradstveit, B, Vikenes, B, Heltne, J. Emergency intraosseous access in a helicopter emergency medical service: a retrospective study. Scand J Trauma Resusc Emerg Med 2010;8:52.Google Scholar
Albanèse, J, Arnaud, S, Rey, M, Thomachot, L, Alliez, B, Martin, C. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology 1997 Dec;87(6):1328–34.Google Scholar
Filanovsky, Y, Miller, P, Kao, J. Myth: ketamine should not be used as an induction agent for intubation in patients with head injury. CJEM 2010;12(2): 154–57.CrossRefGoogle Scholar
Hughes, S. Towards evidence-based emergency medicine: best BETs from the Manchester Royal Infirmary. BET 3: is ketamine a viable induction agent for the trauma patient with potential brain injury? Emerg Med J 2011 Dec;28(12):1076–7.Google Scholar
Sehdev, RS, Symmons, DA, Kindl, K. Ketamine for rapid sequence induction in patients with head injury in the emergency department. Emerg Med Australas 2006 Feb;18(1):3744.Google Scholar
Morris, C, Perris, A, Klein, J, Mahoney, P. Anaesthesia in haemodynamically compromised emergency patients: does ketamine represent the best choice of induction agent? Anaesthesia 2009 May;64(5):532–9.Google Scholar
Taha, SK, El-Khatib, MF, Baraka, AS, Haidar, YA, Abdallah, FW, Zbeidy, RA, Siddik-Sayyid, SM. Effect of suxamethonium vs rocuronium on onset of oxygen desaturation during apnoea following rapid sequence induction. Anaesthesia 2010 Apr;65(4): 358–61.CrossRefGoogle ScholarPubMed
Tang, L, Li, S, Huang, S, Ma, H, Wang, Z. Desaturation following rapid sequence induction using succinylcholine vs. rocuronium in overweight patients. Acta Anaesthesiol Scand 2011 Feb;55(2):203–8.Google Scholar
Magorian, T, Flannery, KB, Miller, RD. Comparison of rocuronium, succinylcholine, and vecuronium for rapid-sequence induction of anesthesia in adult patients. Anesthesiology 1993 Nov;79(5): 913–18.CrossRefGoogle ScholarPubMed
Ostermayer, DG, Gausche-Hill, M. Supraglottic airways: the history and current state of prehospital airway adjuncts. Prehosp Emerg Care 2014 Jan–Mar;18(1):106–15.Google Scholar
Keane, MF, Brinsfield, KH, Dyer, KS, Roy, S, White, D. A laboratory comparison of emergency percutaneous and surgical cricothyrotomy by prehospital personnel. Prehosp Emerg Care 2004 Oct–Dec;8(4):424–6.Google Scholar
Hubble, MW, Wilfong, DA, Brown, LH, Hertelendy, A, Benner, RW. A meta-analysis of prehospital airway control techniques part II: alternative airway devices and cricothyrotomy success rates. Prehosp Emerg Care 2010 Oct–Dec;14(4):515–30.Google Scholar
Crewdson, K, Lockey, D. Needle, knife, or device – which choice in an airway crisis? Scand J Trauma Resusc Emerg Med 2013;21:49.CrossRefGoogle ScholarPubMed
Cook, TM, Woodall, N, Frerk, C. Major complications of airway management in the UK: results of the fourth national audit project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 1: Anaesthesia. Br J Anaesth 2011;21:61731.Google Scholar
Walsh, BK, Crotwell, DN, Restrepo, RD. Capnography/capnometry during mechanical ventilation: 2011. Respir Care 2011 Apr;56(4):503–9.Google Scholar
Barr, J, Fraser, GL, Puntillo, K, Ely, EW, Gélinas, C, Dasta, JF, Davidson, JE, Devlin, JW, Kress, JP, Joffe, AM, Coursin, DB, Herr, DL, Tung, A, Robinson, BRH, Fontaine, DK, Ramsay, MA, Riker, RR, Sessler, CN, Pun, B, Skrobik, Y, Jaeschke, R. American College of Critical Care Medicine. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med 2013 Jan;41(1):263306.Google Scholar
Weisberg, S, Fitch, J, Towner, D, Darling, CE. Transporting without infusions: effect on door-to-needle time for acute coronary syndrome patients. Prehosp Emerg Care 2010 Apr 6; 14:159.Google Scholar

References

Lerman, J, Davis, PJ, Welborn, LG, Orr, RJ, Rabb, M, Carpenter, R, Motoyama, E, Hannallah, R, Haberkern, CM. Induction, recovery, and safety characteristics of sevoflurane in children undergoing ambulatory surgery. A comparison with halothane. Anesthesiology. 1996 Jun;84(6):1332–40. PubMed PMID: 8669674.CrossRefGoogle ScholarPubMed
Hajijafari, M, Ziloochi, MH, Fazel, MR. Inhalation anesthesia in a patient with xeroderma pigmentosum: a case report. Anesth Pain Med. 2014 Jun 18;4(3):e17880. doi: 10.5812/aapm.17880. eCollection 2014 Aug. PubMed PMID: 25289371; PubMed Central PMCID: PMC4183081.CrossRefGoogle Scholar
Kuczkowski, KM. Inhalation induction of anesthesia with sevoflurane for emergency Cesarean section in an amphetamine-intoxicated parturient without an intravenous access. Acta Anaesthesiol Scand. 2003 Oct;47(9):1181–2. PubMed PMID: 14518499.Google Scholar
Que, JC, Lusaya, VO. Sevoflurane induction for emergency cesarean section in a parturient in status asthmaticus. Anesthesiology. 1999 May;90(5):1475–6. PubMed PMID: 10319797.Google Scholar
Larson, CP Jr. Laryngospasm – the best treatment. Anesthesiology. 1998 Nov;89(5):1293–4. PubMed PMID: 9822036.Google Scholar
Soares, RR, Heyden, EG. Treatment of laryngeal spasm in pediatric anesthesia by retroauricular digital pressure. Case report. Rev Bras Anestesiol. 2008 Nov- Dec;58(6):631–6. English, Portuguese. PubMed PMID: 19082410.Google Scholar
Nakazawa, K, Ikeda, D, Ishikawa, S, Makita, K. A case of difficult airway due to lingual tonsillar hypertrophy in a patient with Down's syndrome. Anesth Analg. 2003 Sep;97(3):704–5. PubMed PMID: 12933389.Google Scholar
Al-alami, AA, Zestos, MM, Baraka, AS. Pediatric laryngospasm: prevention and treatment. Curr Opin Anaesthesiol. 2009 Jun;22(3):388–95. Review. PubMed PMID: 19434787.CrossRefGoogle ScholarPubMed
McDonald, IH, Bryce-Smith, R. Intramuscular suxamethonium. Br J Anaesth. 1955 Jul;27(7):338–45. PubMed PMID: 13239938.CrossRefGoogle ScholarPubMed
Warner, DO. Intramuscular succinylcholine and laryngospasm. Anesthesiology. 2001 Oct;95(4):1039–40. PubMed PMID: 11605908.Google Scholar
Hampson-Evans, D, Morgan, P, Farrar, M. Pediatric laryngospasm. Paediatr Anaesth. 2008 Apr;18(4):303–7. doi: 10.1111/j.1460–9592.2008.02446.x. Review. PubMed PMID: 18315635.Google Scholar
Voigt, J, Waltzman, M, Lottenberg, L. Intraosseous vascular access for in-hospital emergency use: a systematic clinical review of the literature and analysis. Pediatr Emerg Care. 2012 Feb;28(2):185–99. doi: 10.1097/PEC.0b013e3182449edc. Review. PubMed PMID: 22307192.Google Scholar
Rogers, TL, Ostrow, CL. The use of EMLA cream to decrease venipuncture pain in children. J Pediatr Nurs. 2004 Feb;19(1):33–9. Review. PubMed PMID: 14963868.Google Scholar
Brooks, P, Ree, R, Rosen, D, Ansermino, M. Canadian pediatric anesthesiologists prefer inhalational anesthesia to manage difficult airways. Can J Anaesth. 2005 Mar;52(3):285–90. PubMed PMID: 15753501.CrossRefGoogle ScholarPubMed

References

Warner, M, Benenfeld, S, Warner, M, et al. Perianesthetic dental injuries: frequency, outcomes, and risk factors. Anesthesiology 1999;90:1302–5.CrossRefGoogle ScholarPubMed
Newland, MC, Ellis, SJ, Peters, KR, et al. Dental injury associated with anesthesia: a report of 161,687 anesthetics given over 14 years. J Clin Anesth 2007;19:339–45.Google Scholar
Folwaczny, M, Hickel, R. Abstract: Oro-dental injuries during intubation anesthesia. Anaesthesist 1998 Sep; 47:707–31.Google ScholarPubMed
Owen, H, Waddell-Smith, I. Dental trauma associated with anaesthesia. Anaesth Intensive Care 2000;28:133–45.Google Scholar
Mourão, J, Neto, J, Luís, C, et al.. Dental injury after conventional direct laryngoscopy: a prospective observational study. Anaesthesia 2013;68:1059–65.Google Scholar
Chen, JJ, Susetio, L, Chao, CC. Oral complications associated with endotracheal general anesthesia. Ma Zui Xue Za Zhi 1990;28:163–9.Google ScholarPubMed
Fung, BK, Chan, MY. Incidence of oral tissue trauma after the administration of general anesthesia. Acta Anaesthesiol Sin 2001;39:163–7.Google Scholar
Mourão, J, Neto, J, Viana, JS, Carvalho, J, Azevedo, L, Tavares, J. A prospective non-randomised study to compare oral trauma from laryngoscope versus laryngeal mask insertion. Dental Traumatology 2011; 27:127–30.Google Scholar
Lockhart, PB, Feldbau, EV, Gabel, RA, Connolly, SF, Silversin, JB. Dental complications during and after tracheal intubation. J Am Dent Assoc 1986;112:480.Google Scholar
Yasny, JS. Perioperative dental considerations for the anesthesiologist. Anesth Analg 2009;108:1564–73.Google Scholar
Adolphs, N, et al. Dentoalveolar injury related to general anesthesia: a 14-year review and a statement from the surgical point of view based on a retrospective analysis of the documentation of a university hospital. Dental Traumatology 2011;27: 1014.Google Scholar
Gaudio, RM, Barbieri, S, Feltracco, P, et al. Traumatic dental injuries during anaesthesia. Part II: medico-legal evaluation and liability. Dental Traumatology 2011;27:40–5.Google Scholar

References

Karkos, P. D., Leong, S. C., Beer, H., Apostolidou, M. T., Panarese, A.. Challenging airways in deep neck space infections. American Journal of Otolaryngology 2007; 28:415418.Google Scholar
Ovassapian, A., Tuncbilek, M., Weitzel, E. K., Joshi, C. W.. Airway management in adult patients with deep neck infections: A case series and review of the literature. Anesthesia & Analgesia 2005; 100:585589.Google Scholar
Osbourne, I. P., Kleinberger, A. J., Gurudutt, V. V.. Airway management, emergencies, and the difficult airway. In: Adam, I. L., ed. Anesthesiology and Otolaryngology, New York: Springer, 2013; 115132.CrossRefGoogle Scholar
Chow, A. W., Roser, S. M., Brady, F. A.. Orofacial odontogenic infections. Annals of Internal Medicine 1979; 88:392402.CrossRefGoogle Scholar
Wolfe, M. M., Davis, J. W., Parks, S. N.. Is surgical airway necessary for airway management in deep neck infections and Ludwig angina? Journal of Critical Care 2011; 26:1114.Google Scholar
Glick, B., David, B., Cooper, R. M., Ovassapian, A.. The Difficult Airway: An Atlas of Tools and Techniques for Clinical Management. New York, NY: Springer, 2013.Google Scholar
Abdelmalak, B., Makary, L., Hoban, J., Doyle, D. J.. Dexmedetomidine as sole sedative for awake intubation in management of the critical airway. Journal of Clinical Anesthesia 2007;19:370–3.CrossRefGoogle ScholarPubMed

References

North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991;325:445453.CrossRefGoogle Scholar
Burkle, CM, Walsh, MT, Pryor, SG, Kasperbauer, JL. Severe postextubation laryngeal obstruction: The role of prior neck dissection and radiation. Anesth Analg 2006; 102:322325.Google Scholar
Murphy, GS, Szokol, JW, Marymont, JH, et al. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg 2008; 107:130137.Google Scholar
Argalious, M. PACU Emergencies ASA Refresher Courses. Anesthesiology 2009;37:112.Google Scholar
Apfelbaum, JL, et al. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology 2013;118(2):251270.Google ScholarPubMed

References

Mussi, A, Ambrogi, MC: Acute major airway injuries: clinical features and management. Eur J Cardiothorac Surg 2001;20:4651.CrossRefGoogle ScholarPubMed
Goodie, D, Paton, P: Anaesthetic management of blunt airway trauma: three cases. Anaesth Intensive Care 1991;19:271274.Google Scholar
Palmer, MT, Turney, SZ: Tracheal rupture and atlanto-occipital dislocation: case report. J Trauma 1994;37:314317.CrossRefGoogle ScholarPubMed
Togashi, K, Sugawara, M, Sato, Y, Miyamura, H: Successful surgical management of complete tracheal disruption due to penetrating injury. Jpn J Thorac Cardiovasc Surg 2002;50:213215.Google Scholar
Smith, AC, Hopkinson, RB: Tracheal rupture during anaesthesia. Anaesthesia 1984;39:894898.CrossRefGoogle ScholarPubMed
Evagelopoulos, N, Tossios, P: Tracheobronchial rupture after emergency intubation. Thorac Cardiovasc Surg 1999;47:395397.Google Scholar
Ayorinde, BT, Hanning, CD: Tracheal rupture with a double lumen tube. Anaesthesia 2000;55:820. (Letter.)Google Scholar
Van Klarenbosch, J, Meyer, J: Tracheal rupture after tracheal intubation. Br J Anaesth 1994;73:550551.Google Scholar
Madden, B, Datta, S: Tracheal stenting for rupture of the posterior wall of the trachea following percutaneous tracheostomy. Monaldi Archives for Chest Disease 2001;56:320321.Google Scholar
Lin, JC, Maley, RH Jr: Extensive posterior-lateral tracheal laceration complicating percutaneous dilatational tracheotomy. Ann Thorac Surg 2000;70:11941196.Google Scholar
Celebioglu, B, Tanyel, FC: Tracheal rupture: a rare complication related to foreign body aspiration. Turk J Pediatr 1999;41:273276.Google Scholar
Takanami, I: Tracheal laceration: a rare complication of median sternotomy. J Thorac Cardiovasc Surg 2001;122:184. (Letter.)Google Scholar
Pandey, CK, Singh, N: Tracheal injury during endoscopic hemithyroidectomy. J Laparoendosc Adv Surg Tech A 2001;11:4346.CrossRefGoogle ScholarPubMed
Luna, CM, Legarreta, G: Effect of tracheal dilatation and rupture on mechanical ventilation using a low-pressure cuff tube. Chest 1993;104:639640.Google Scholar
Putnam, TD, Wu, Y: Tracheal rupture following cervical manipulation: late complication posttracheostomy. Arch Phys Med Rehabil 1986;67:4850.Google Scholar
Harris, R, Joseph, A: Acute tracheal rupture related to endotracheal intubation: case report. J Emerg Med 2000;18:3539.Google Scholar
Tcherveniakov, A, Tchalakov, P: Traumatic and iatrogenic lesions of the trachea and bronchi. Eur J Cardio-Thorac Surg 2001;19:1924.Google Scholar
Massard, G, Rouge, C: Tracheobronchial lacerations after intubation and tracheotomy. Ann Thorac Surg 1996;61:14831487.Google Scholar
Olsen, RO, Johnson, JT: Diagnosis and management of intrathoracic tracheal rupture. J Trauma 1971;11:789792.Google Scholar
Zettl, R, Waydhas, C: Non surgical treatment of a severe tracheal rupture after endotracheal intubation. Crit Care Med 1999;27:661664.Google Scholar
Marquette, CH, Bocquillon, N: Conservative treatment of tracheal rupture. J Thorac Cardiovasc Surg 1999;117:399401.CrossRefGoogle ScholarPubMed
Irefin, SA, Farid, IS: Urgent colectomy in a patient with membranous tracheal disruption after severe vomiting. Anesth Analg 2000;91:13001302.Google Scholar
Lobato, EB, Risley, WP 3rd: Intraoperative management of distal tracheal rupture with selective bronchial intubation. J Clin Anesth 1997;9:155158.Google Scholar
Ratzenhofer-Komenda, B, Offner, A: Differential lung ventilation and emergency hyperbaric oxygenation for repair of a tracheal tear. Can J Anesth 2000;47:169175.Google Scholar
Yamazaki, M, Sasaki, R: Anesthetic management of complete tracheal disruption using percutaneous cardiopulmonary support system. Anesth Analg 1998;86:9981000.Google Scholar
Hirsh, J, Gollin, G: Mediastinal “tamponade” of a tracheal rupture in which partial cardiopulmonary bypass was required for surgical repair. J Cardiothorac Vasc Anesth 1994;8:682684.Google Scholar
Daniel Knott, P, Lorenz, RR, Eliachar, I, Murthy, SC: Reconstruction of a tracheobronchial tree disruption with bovine pericardium. Interact Cardiovasc Thorac Surg 2004;3(4):554556.CrossRefGoogle ScholarPubMed

References

Campos, JH. Which device should be considered the best for lung isolation: double-lumen endotracheal tube versus bronchial blockers. Curr Opin Anaesthesiol. 2007;20(1):2731.CrossRefGoogle ScholarPubMed
Campos, J. How to achieve successful lung separation. South Afr J Anaesth Analg. 2008;14(1):2226.Google Scholar
Benumof, JL, Partridge, BL, Salvatierra, C, Keating, J. Margin of safety in positioning modern double-lumen endotracheal tubes. Anesthesiology. 1987;67(5):729738.Google Scholar
McKenna, MJ, Wilson, RS, Botelho, RJ. Right upper lobe obstruction with right-sided double-lumen endobronchial tubes: a comparison of two tube types. J Cardiothorac Anesth. 1988;2(6):734740.Google Scholar
Brodsky, JB, Macario, A, Mark, JB. Tracheal diameter predicts double-lumen tube size: a method for selecting left double-lumen tubes. Anesth Analg. 1996;82(4):861864.Google Scholar
Eberle, B, Weiler, N, Vogel, N, Kauczor, HU, Heinrichs, W. Computed tomography-based tracheobronchial image reconstruction allows selection of the individually appropriate double-lumen tube size. J Cardiothorac Vasc Anesth. 1999;13(5):532537.CrossRefGoogle ScholarPubMed
Pedoto, A. How to choose the double-lumen tube size and side: the eternal debate. Anesthesiol Clin. 2012;30(4):671681.Google Scholar
Russell, WJ, Strong, TS. Dimensions of double-lumen tracheobronchial tubes. Anaesth Intensive Care. 2003;31(1):5053.Google Scholar
Amar, D, Desiderio, DP, Heerdt, PM, Kolker, AC, Zhang, H, Thaler, HT. Practice patterns in choice of left double-lumen tube size for thoracic surgery. Anesth Analg. 2008;106(2):379383, table of contents.Google Scholar
Boucek, CD, Landreneau, R, Freeman, JA, Strollo, D, Bircher, NG. A comparison of techniques for placement of double-lumen endobronchial tubes. J Clin Anesth. 1998;10(7):557560.Google Scholar
Campos, JH. Current techniques for perioperative lung isolation in adults. Anesthesiology. 2002;97(5):12951301.Google Scholar
Brodsky, JB, Lemmens, HJ. Left double-lumen tubes: clinical experience with 1,170 patients. J Cardiothorac Vasc Anesth. 2003;17(3):289298.Google Scholar
Klein, U, Karzai, W, Bloos, F, et al. Role of fiberoptic bronchoscopy in conjunction with the use of double-lumen tubes for thoracic anesthesia: a prospective study. Anesthesiology. 1998;88(2):346350.Google Scholar
Barbeito, A, Shaw, A, Grichnik, K. Lung separation techniques. Thoracic Anesthesia. 1st edn: McGraw-Hill Professional; 2012:p.83.Google Scholar
Fitzmaurice, BG, Brodsky, JB. Airway rupture from double-lumen tubes. J Cardiothorac Vasc Anesth. 1999;13(3):322329.Google Scholar
Hannallah, M, Gomes, M. Bronchial rupture associated with the use of a double-lumen tube in a small adult. Anesthesiology. 1989;71(3):457459.Google Scholar
Roscoe, A, Kanellakos, GW, McRae, K, Slinger, P. Pressures exerted by endobronchial devices. Anesth Analg. 2007;104(3):655658.Google Scholar

References

Banner, NR, Polak, JM, Yacoub, M. Lung Transplantation. Cambridge: Cambridge University Press; 2003.Google Scholar
Braun, AT, Merlo, CA. Cystic fibrosis lung transplantation. Curr Opin Pulm Med. 2011 Nov;17(6):467–72.Google Scholar
Kreider, M, Hadjiliadis, D, Kotloff, RM. Candidate selection, timing of listing, and choice of procedure for lung transplantation. Clin Chest Med. 2011 Jun;32(2):199211.Google Scholar
Liou, TG, Adler, FR, Cahill, BC, FitzSimmons, SC, Huang, D, Hibbs, JR, et al. Survival effect of lung transplantation among patients with cystic fibrosis. JAMA. 2001 Dec 5;286(21):2683–9.Google Scholar
Orens, JB, Estenne, M, Arcasoy, S, Conte, JV, Corris, P, Egan, JJ, et al. International guidelines for the selection of lung transplant candidates: 2006 update – a consensus report from the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2006 Jul;25(7):745–55.Google Scholar
Schneiderman-Walker, J, Pollock, SL, Corey, M, Wilkes, DD, Canny, GJ, Pedder, L, et al. A randomized controlled trial of a 3-year home exercise program in cystic fibrosis. J Pediatr. 2000 Mar;136(3):304–10.Google Scholar
Jolly, EC, Di Boscio, V, Aguirre, L, Luna, CM, Berensztein, S, Gene, RJ. Effects of supplemental oxygen during activity in patients with advanced COPD without severe resting hypoxemia. Chest. 2001 Aug;120(2):437–43.Google Scholar
Garrod, R, Paul, EA, Wedzicha, JA. Supplemental oxygen during pulmonary rehabilitation in patients with COPD with exercise hypoxaemia. Thorax. 2000 Jul;55(7):539–43.Google Scholar
Madden, BP, Kariyawasam, H, Siddiqi, AJ, Machin, A, Pryor, JA, Hodson, ME. Noninvasive ventilation in cystic fibrosis patients with acute or chronic respiratory failure. Eur Respir J. 2002 Feb;19(2):310–13.Google Scholar
Snell, GI, Bennetts, K, Bartolo, J, Levvey, B, Griffiths, A, Williams, T, et al. Body mass index as a predictor of survival in adults with cystic fibrosis referred for lung transplantation. J Heart Lung Transplant. 1998 Nov;17(11):1097–103.Google Scholar
Yung, GL, Kriett, JM, Jamieson, SW, Johnson, FW, Newhart, J, Kinninger, K, et al. Outpatient inhaled nitric oxide in a patient with idiopathic pulmonary fibrosis: a bridge to lung transplantation. J Heart Lung Transplant. 2001 Nov;20(11):1224–7.Google Scholar
Cohen, L, Littlefield, C, Kelly, P, Maurer, J, Abbey, S. Predictors of quality of life and adjustment after lung transplantation. Chest. 1998 Mar;113(3):633–44.CrossRefGoogle ScholarPubMed
Squier, HC, Ries, AL, Kaplan, RM, Prewitt, LM, Smith, CM, Kriett, JM, et al. Quality of well-being predicts survival in lung transplantation candidates. Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):2032–6.CrossRefGoogle ScholarPubMed
McIlroy, DR, Pilcher, DV, Snell, GI. Does anaesthetic management affect early outcomes after lung transplant? An exploratory analysis. Br J Anaesth. 2009 Apr;102(4):506–14.Google Scholar
Dalibon, N, Geffroy, A, Moutafis, M, Vinatier, I, Bonnette, P, Stern, M, et al. Use of cardiopulmonary bypass for lung transplantation: a 10-year experience. J Cardiothorac Vasc Anesth. 2006 Oct;20(5):668–72.Google Scholar
Gammie, JS, Cheul Lee, J, Pham, SM, Keenan, RJ, Weyant, RJ, Hattler, BG, et al. Cardiopulmonary bypass is associated with early allograft dysfunction but not death after double-lung transplantation. J Thorac Cardiovasc Surg. 1998 May;115(5):990–7.Google Scholar
Gal, J, Kovesi, T, Royston, D, Marczin, N. Dynamics of nitroglycerin-induced exhaled nitric oxide after lung transplantation: evidence of pulmonary microvascular injury? J Heart Lung Transplant. 2007 Dec;26(12):1300–5.Google Scholar
Yerebakan, C, Ugurlucan, M, Bayraktar, S, Bethea, BT, Conte, JV. Effects of inhaled nitric oxide following lung transplantation. J Card Surg. 2009 May–Jun;24(3):269–74.Google Scholar
Date, H, Triantafillou, AN, Trulock, EP, Pohl, MS, Cooper, JD, Patterson, GA. Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg. 1996 May;111(5):913–19.CrossRefGoogle ScholarPubMed
Trulock, EP. Management of lung transplant rejection. Chest. 1993 May;103(5):1566–76.Google Scholar
Cooper, JD, Billingham, M, Egan, T, Hertz, MI, Higenbottam, T, Lynch, J, et al. A working formulation for the standardization of nomenclature and for clinical staging of chronic dysfunction in lung allografts. International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 1993 Sep–Oct;12(5):713–16.Google Scholar
Tilney, NL, Whitley, WD, Diamond, JR, Kupiec-Weglinski, JW, Adams, DH. Chronic rejection – an undefined conundrum. Transplantation. 1991 Sep;52(3):389–98.Google Scholar
Bando, K, Paradis, IL, Similo, S, Konishi, H, Komatsu, K, Zullo, TG, et al. Obliterative bronchiolitis after lung and heart-lung transplantation. An analysis of risk factors and management. J Thorac Cardiovasc Surg. 1995 Jul;110(1):413; discussion:4.Google Scholar
Colt, HG, Janssen, JP, Dumon, JF, Noirclerc, MJ. Endoscopic management of bronchial stenosis after double lung transplantation. Chest. 1992 Jul;102(1):1016.Google Scholar
Christie, JD, Carby, M, Bag, R, Corris, P, Hertz, M, Weill, D. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part II: Definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2005 Oct;24(10):1454–9.Google Scholar
Kramer, MR, Marshall, SE, Starnes, VA, Gamberg, P, Amitai, Z, Theodore, J. Infectious complications in heart-lung transplantation. Analysis of 200 episodes. Arch Intern Med. 1993 Sep 13;153(17):2010–16.Google Scholar
Lee, JC, Christie, JD. Primary graft dysfunction. Clin Chest Med. 2011 Jun;32(2):279–93.Google Scholar
Arcasoy, SM, Fisher, A, Hachem, RR, Scavuzzo, M, Ware, LB. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part V: Predictors and outcomes. J Heart Lung Transplant. 2005 Oct;24(10):1483–8.Google Scholar
Whitson, BA, Nath, DS, Johnson, AC, Walker, AR, Prekker, ME, Radosevich, DM, et al. Risk factors for primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg. 2006 Jan;131(1):7380.Google Scholar
Barr, ML, Kawut, SM, Whelan, TP, Girgis, R, Bottcher, H, Sonett, J, et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part IV: Recipient-related risk factors and markers. J Heart Lung Transplant. 2005 Oct;24(10):1468–82.Google Scholar
Shargall, Y, Guenther, G, Ahya, VN, Ardehali, A, Singhal, A, Keshavjee, S. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part VI: Treatment. J Heart Lung Transplant. 2005 Oct;24(10):1489–500.Google Scholar

References

Sandham, JD, Hull, RD, Brant, RF, Knox, L, Pineo, GF, Doig, CJ, Laporta, DP, Viner, S, Passerini, L, Devitt, H, Kirby, A, Jacka, M. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. The New England Journal of Medicine 2003;348:514.Google Scholar
Boyd, KD, Thomas, SJ, Gold, J, Boyd, AD. A prospective study of complications of pulmonary artery catheterizations in 500 consecutive patients. Chest 1983;84:245–9.Google Scholar
Carlson, TA, Goldenberg, IF, Murray, PD, Tadavarthy, SM, Walker, M, Gobel, FL. Catheter-induced delayed recurrent pulmonary artery hemorrhage. Intervention with therapeutic embolism of the pulmonary artery. JAMA: The Journal of the American Medical Association 1989;261:1943–5.Google Scholar
Poplausky, MR, Rozenblit, G, Rundback, JH, Crea, G, Maddineni, S, Leonardo, R. Swan-Ganz catheter-induced pulmonary artery pseudoaneurysm formation: three case reports and a review of the literature. Chest 2001;120:2105–11.Google Scholar
Bussières, JS. Iatrogenic pulmonary artery rupture. Current Opinion in Anaesthesiology 2007;20:4852.CrossRefGoogle ScholarPubMed
Riazi, S, Karkouti, K, Heggie, J. Case report: management of life-threatening oropharyngeal bleeding with recombinant factor VIIa. Canadian Journal of Anaesthesia 2006;53:881–4.Google Scholar
Conlan, AA, Hurwitz, SS. Management of massive haemoptysis with the rigid bronchoscope and cold saline lavage. Thorax 1980;35:901–4.Google Scholar
Sirivella, S, Gielchinsky, I, Parsonnet, V. Management of catheter-induced pulmonary artery perforation: a rare complication in cardiovascular operations. Annals of Thoracic Surgery 2001;72:2056–9.Google Scholar
Schramm, R, Abugameh, A, Tscholl, D, Schafers, HJ. Managing pulmonary artery catheter-induced pulmonary hemorrhage by bronchial occlusion. Annals of Thoracic Surgery 2009;88:284–7.Google Scholar
Cicenia, J, Shapira, N, Jones, M. Massive hemoptysis after coronary artery bypass grafting. Chest 1996;109:267–70.Google Scholar
Stratmann, G, Benumof, JL. Endobronchial hemorrhage due to pulmonary circulation tear: separating the lungs and the air from the blood. Anesthesia & Analgesia 2004;99:1276–9.Google Scholar
Dopfmer, UR, Braun, JP, Grosse, J, Hotz, H, Duveneck, K, Schneider, MB. Treatment of severe pulmonary hemorrhage after cardiopulmonary bypass by selective, temporary balloon occlusion. Anesthesia & Analgesia 2004;99:1280–2; table of contents.Google Scholar
Gottwalles, Y, Wunschel-Joseph, ME, Hanssen, M. Coil embolization treatment in pulmonary artery branch rupture during Swan-Ganz catheterization. Cardiovascular and Interventional Radiology 2000;23:477–9.Google Scholar
Utsumi, T, Kido, T, Ohata, T, Yasukawa, M, Takano, H, Sakakibara, T. Swan-Ganz catheter-induced pseudoaneurysm of the pulmonary artery. The Japanese Journal of Thoracic and Cardiovascular Surgery: Official Publication Of The Japanese Association for Thoracic Surgery [Nihon Kyobu Geka Gakkai zasshi] 2002;50:347–9.Google Scholar
Sprung, J, Schoenwald, PK, Hayden, J, Kukreja, N. Contained pulmonary artery perforation by pulmonary artery catheter. Journal of Clinical Monitoring and Computing 1998;14:195–8.Google Scholar

References

Mulroy, M. A history of regional anesthesia. In: Eger II E I, Saidman L, Westhorpe, RN, eds. The Wondrous Story of Anesthesia. New York: Springer, 2014, pp. 859870.Google Scholar
Jr Dos A, R. Intravenous regional anesthesia first century (1908–2008): beginning, development, and current status. Revista Brasileira de Anestesiologia. 2008;58(3):299322.Google Scholar
Chelly, JE, Mukalel, J. Regional anesthesia and the difficult airway. In: Hagberg, CA, ed. Benumof and Hagberg's Airway Management. Third Edition. Philadelphia: W.B. Saunders; 2013: pp.910915.e1.Google Scholar
Coker, LL. Continuous spinal anesthesia for Cesarean section for a morbidly obese parturient patient: a case report. AANA Journal. 2002;70(3):189192.Google Scholar
Saxena, N. Airway management plan in patients with difficult airways having regional anesthesia. Journal of Anaesthesiology Clinical Pharmacology. 2013;29(4):558560.Google Scholar
Apfelbaum, JL, Hagberg, CA, Caplan, RA, Blitt, CD, Connis, RT, Nickinovich, DG, Hagberg, CA, Caplan, RA, Benumof, JL, Berry, FA, Blitt, CD, Bode, RH, Cheney, FW, Connis, RT, Guidry, OF, et al. Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology. 2013;118(2):251270.Google Scholar
Shah, P, Sundaram, V. Incidence and predictors of difficult mask ventilation and intubation. Journal of Anaesthesiology Clinical Pharmacology. 2012;28(4):451.Google Scholar
Kheterpal, S, Martin, L, Shanks, AM, Tremper, KK. Prediction and outcomes of impossible mask ventilation: a review of 50,000 anesthetics. Anesthesiology. 2009;110(4):891897.Google Scholar
Seo, S-H, Lee, J-G, Yu, S-B, Kim, D-S, Ryu, S-J, Kim, K-H. Predictors of difficult intubation defined by the intubation difficulty scale (IDS): predictive value of 7 airway assessment factors. Korean Journal of Anesthesiology. 2012;63(6):491497.Google Scholar
Langeron, O, Masso, E, Huraux, C, Guggiari, M, Bianchi, A, Coriat, P, Riou, B. Prediction of difficult mask ventilation. Anesthesiology. 2000;92(5):12291236.Google Scholar
Fleisher, LA. Evidence-Based Practice Of Anesthesiology. Third Edition. New York: Saunders; 2013.Google Scholar
Kettner, SC, Willschke, H, Marhofer, P. Does regional anaesthesia really improve outcome? British Journal of Anaesthesia. 2011;107(Suppl 1):i90i95.Google Scholar
Gulur, P, Nishimori, M, Ballantyne, JC. Regional anaesthesia versus general anaesthesia, morbidity and mortality. Best Practice and Research. Clinical Anaesthesiology. 2006;20(2):249263.Google Scholar
Liu, SS, Strodtbeck, WM, Richman, JM, Wu, CL. A comparison of regional versus general anesthesia for ambulatory anesthesia: a meta-analysis of randomized controlled trials. Anesthesia and Analgesia. 2005;101(6):16341642.Google Scholar
Miller, RD, et al. Miller's Anesthesia. Seventh Edition. Philadelphia, PA: Churchill Livingstone; 2010.Google Scholar
Butterworth, JF, Mackey, DC, Wasnick, JD. Morgan & Mikhail's Clinical Anesthesiology. New York: McGraw-Hill; 2013.Google Scholar

References

Sprung, J, Weingarten, T, Dilger, J. The use of WuScope fiberoptic laryngoscopy for tracheal intubation in complex clinical situations. Anesthesiology 2003;98:263–5.Google Scholar
Nates, J, Berner, D. Mishaps with endotracheal tube exchangers in ICU: two case reports and review of the literature. Int J Emerg Inten Care Med 2013;4:15.Google Scholar
Wu, TL, Chou, HC. A new laryngoscope: the combination intubating device. Anesthesiology 1994;81:1085–7.Google Scholar
Kearl, RA, Hooper, RG. Massive airway leaks: an analysis of the role of endotracheal tubes. Crit Care Med 1993;21:518–21.Google Scholar
Hoffman, RJ, Parwani, V, Hahn, IH. Experienced emergency medicine physicians cannot safely inflate or estimate endotracheal tube cuff pressure using standard techniques. Am J Emerg Med 2006;24:139–43.Google Scholar
Desai, SP, Fencl, V. A safe technique for changing endotracheal tubes. Anesthesiology 1980;53:267.Google Scholar
Lambotte, P, Menu, H, Guermouche, T, Boufflers, E, Ferri, J, Krivosic-Horber, R. Intraoperative exchange of the endotracheal tube using the Cook C-CAE airway exchange catheter. Ann Fr Anesth Reanim 1998;17:1235–8.Google Scholar
Mort, TC. Tracheal tube exchange: feasibility of continuous glottic viewing with advanced laryngoscopy assistance. Anesth Analg 2009;108:1228–31.Google Scholar

References

Rosen, SH, Castleman, B, Liebow, AA. Pulmonary alveolar proteinosis. N Engl J Med. 1958;258(23):1123–42.Google Scholar
Trapnell, BC, Whitsett, JA, Nakata, K. Pulmonary alveolar proteinosis. N Engl J Med. 2003;349(26):2527–39.Google Scholar
Thomassen, MJ, Yi, T, Raychaudhuri, B, Malur, A, Kavuru, MS. Pulmonary alveolar proteinosis is a disease of decreased availability of GM-CSF rather than an intrinsic cellular defect. Clin Immunol. 2000;95(2):8592.Google Scholar
Seymour, JF, Presneill, JJ, Schoch, OD, Downie, GH, Moore, PE, Doyle, IR, et al. Therapeutic efficacy of granulocyte-macrophage colony-stimulating factor in patients with idiopathic acquired alveolar proteinosis. Am J Respir Crit Care Med. 2001;163(2):524–31.Google Scholar
Cheng, SL, Chang, HT, Lau, HP, Lee, LN, Yang, PC. Pulmonary alveolar proteinosis: treatment by bronchofiberscopic lobar lavage. Chest. 2002;122(4):1480–5.Google Scholar
Benumof, JL. Anesthesia for special elective therapeutic procedures. In: Benumof, JL, editor. Anesthesia for Thoracic Surgery. 2nd edn. Philadelphia: WB Saunders; 1994. pp. 548–54.Google Scholar
Abdelmalak, B, Khanna, A, Culver, D, Popovich, M. Whole lung lavage for pulmonary alveolar proteinosis: a procedural update. J Bronchology Interv Pulmonol. 2015;22(3):251–8.Google Scholar
Shah, PL, Hansell, D, Lawson, PR, Reid, KB, Morgan, C. Pulmonary alveolar proteinosis: clinical aspects and current concepts on pathogenesis. Thorax. 2000;55(1):6777.Google Scholar
Julien, T, Caudine, M, Barlet, H, Wintrebert, P, Aubas, P, du Cailar, J. Effect of positive end expiratory pressure on arterial oxygenation during bronchoalveolar lavage for proteinosis. Ann Fr Anesth Reanim. 1986;5(2):173–6.Google Scholar
Moutafis, M, Dalibon, N, Colchen, A, Fischler, M. Improving oxygenation during bronchopulmonary lavage using nitric oxide inhalation and almitrine infusion. Anesth Analg. 1999;89(2):302–4.Google Scholar
Ahmed, R, Iqbal, M, Kashef, SH, Almomatten, MI. Whole lung lavage with intermittent double lung ventilation. A modified technique for managing pulmonary alveolar proteinosis. Saudi Med J. 2005;26(1):139–41.Google Scholar
Whole lung lavage under hyperbaric conditions. In: Erdmann, W, editor. Oxygen Transport to Tissue. Oxygen Transport to Tissue. New York: Plenum Press; 1992. pp. 115–20.Google Scholar
Sivitanidis, E, Tosson, R, Wiebalck, A, Laczkovics, A. Combination of extracorporeal membrane oxygenation (ECMO) and pulmonary lavage in a patient with pulmonary alveolar proteinosis. Eur J Cardiothorac Surg. 1999;15(3):370–2.Google Scholar
Nadeau, MJ, Cote, D, Bussieres, JS. The combination of inhaled nitric oxide and pulmonary artery balloon inflation improves oxygenation during whole-lung lavage. Anesth Analg. 2004;99(3):676–9.Google Scholar
Hasan, N, Bagga, S, Monteagudo, J, Hirose, H, Cavarocchi, NC, Hehn, BT, et al. Extracorporeal membrane oxygenation to support whole-lung lavage in pulmonary alveolar proteinosis: salvage of the drowned lungs. J Bronchology Interv Pulmonol. 2013;20(1):41–4.Google Scholar
Bussieres, JS. Whole lung lavage. Anesthesiol Clin North America. 2001;19(3):543–58.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×