Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-07T23:29:56.012Z Has data issue: false hasContentIssue false

17 - Personality in Nonhuman Animals

from Part IV - Biological Perspectives: Evolution, Genetics and Neuroscience of Personality

Published online by Cambridge University Press:  18 September 2020

Philip J. Corr
Affiliation:
City, University London
Gerald Matthews
Affiliation:
University of Central Florida
Get access

Summary

Organisms have been observing the behavior of other organisms for as long as there have been organisms. As humans, we are especially good at paying attention to cues from other humans and are acutely aware that people differ from each other. Astute observers of animal behavior have long noticed that individuals behave differently from one another, and a quick scan of popular YouTube channels devoted to individual pet cats strongly suggests that interest in the uniqueness of individual animals remains strong. What might be more surprising is that individual variation in nonhuman animals is no longer considered a mere curiosity in scientific circles: Over the past fifteen and more years individual variation in nonhuman animals (so called “animal personality”) has attracted the attention of animal behaviorists, who are now pursuing it as a serious research topic.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araya-Ajoy, Y. G., Mathot, K. J., & Dingemanse, N. J. (2015). An approach to estimate short-term, long-term and reaction norm repeatability. Methods in Ecology and Evolution, 6, 14621473.CrossRefGoogle Scholar
Arnett, J. J. (2000). Emerging adulthood. A theory of development from the late teens through the twenties. American Psychologist, 55, 469480.Google Scholar
Aubin-Horth, N., Landry, C. R., Letcher, B. H., & Hofmann, H. A. (2005). Alternative life histories shape brain gene expression profiles in males of the same population. Proceedings of the Royal Society B: Biological Sciences, 272, 16551662.CrossRefGoogle ScholarPubMed
Barton, N. H., & Keightley, P. D. (2002). Understanding quantitative genetic variation. Nature Reviews Genetics, 3, 11.CrossRefGoogle ScholarPubMed
Beekman, M., & Jordan, L. A. (2017). Does the field of animal personality provide any new insights for behavioral ecology? Behavioral Ecology, 28, 617623.CrossRefGoogle Scholar
Bell, A. M. (2005). Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus). Journal of Evolutionary Biology, 18, 464473.CrossRefGoogle ScholarPubMed
Bell, A. M. (2007). Future directions in behavioural syndromes research. Proceedings of the Royal Society B: Biological Sciences, 274, 755761.Google Scholar
Bell, A. M., & Aubin-Horth, N. (2010). What whole genome expression data can tell us about the ecology and evolution of personality in animals. Philosophical Transactions of the Royal Society, 365, 40014012.CrossRefGoogle Scholar
Bell, A. M., Bukhari, S. A., & Sanogo, Y. O. (2016). Natural variation in brain gene expression profiles of aggressive and nonaggressive individual sticklebacks. Behaviour, 153, 17231743.CrossRefGoogle ScholarPubMed
Bell, A. M., & Dochtermann, N. A. (2015). Integrating molecular mechanisms into quantitative genetics to understand consistent individual differences in behavior. Current Opinion in Behavioral Sciences, 6, 111114.Google Scholar
Bell, A. M., Hankison, S. J., & Laskowski, K. L. (2009). The repeatability of behaviour: A meta-analysis. Animal Behaviour, 77, 771783.CrossRefGoogle ScholarPubMed
Bengston, S., Dahan, R., Donaldson, Z., Phelps, S., van Oers, K., Sih, A., & Bell, A. M. (2018). Genomic tools for behavioral ecologists: Advancing the understanding of repeatable individual differences in behavior. Nature Ecology and Evolution, 2, 944955.Google Scholar
Bengston, S. E., & Jandt, J. M. (2014). The development of collective personality: The ontogenetic drivers of behavioral variation across groups. Frontiers in Ecology and Evolution, 2.Google Scholar
Biro, P. A., & Adriaenssens, B. (2013). Predictability as a personality trait: Consistent differences in intraindividual behavioral variation. American Naturalist, 182, 621629.Google Scholar
Biro, P. A., & Dingemanse, N. J. (2009). Sampling bias resulting from animal personality. Trends in Ecology & Evolution, 24, 6667.CrossRefGoogle ScholarPubMed
Biro, P. A., & Stamps, J. A. (2008). Are animal personality traits linked to life-history productivity? Trends in Ecology & Evolution, 23, 361368.Google Scholar
Biro, P. A., & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology & Evolution, 25, 653659.CrossRefGoogle ScholarPubMed
Bolhuis, J. E., Schouten, W. G., de Leeuw, J. A., Schrama, J. W., & Wiegant, V. M. (2004). Individual coping characteristics, rearing conditions and behavioural flexibility in pigs. Behavioral Brain Research, 152, 351360.Google Scholar
Brown, C., & Braithwaite, V. A. (2004). Size matters: A test of boldness in eight populations of the poeciliid Brachyraphis episcopi. Animal Behaviour, 68, 13251329.Google Scholar
Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 11031109.Google Scholar
Careau, V., Reale, D., Humphries, M. M., & Thomas, D. W. (2010). The pace of life under artificial selection: Personality, energy expenditure, and longevity are correlated in domestic dogs. American Naturalist, 175, 753758.CrossRefGoogle ScholarPubMed
Careau, V., Thomas, D., Humphries, M. M., & Reale, D. (2008). Energy metabolism and animal personality. Oikos, 117, 641653.Google Scholar
Carere, C., Welink, D., Drent, P. J., Koolhaas, J. M., & Groothuis, T. G. G. (2001). Effect of social defeat in a territorial bird (Parus major) selected for different coping styles. Physiology & Behavior, 73, 427433.Google Scholar
Caspi, A., Roberts, B. W., & Shiner, R. L. (2005). Personality development: Stability and change. Annual Review of Psychology, 56, 453484.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.Google Scholar
Church, A. T. (2001). Personality measurement in cross-cultural perspective. Journal of Personality, 69, 9791006.Google Scholar
Clark, A. B., & Ehlinger, T. J. (1987). Pattern and adaptation in individual behavioral differences. In Bateson, P. P. G. & Klopfer, P. H. (Eds.), Perspectives in ethology (pp. 147). New York: Plenum Press.Google Scholar
Crews, D. (2013). Animal personalities: Behavior, physiology, and evolution. Integrative and Comparative Biology, 53, 873875.CrossRefGoogle Scholar
Dall, S. R. X., Houston, A. I., & McNamara, J. M. (2004). The behavioural ecology of personality: Consistent individual differences from an adaptive perspective. Ecology Letters, 7, 734739.CrossRefGoogle Scholar
Dall, S. R. X., McNamara, J. M., & Leimar, O. (2015). Genes as cues: Phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends in Ecology & Evolution, 30, 327333.Google Scholar
David, M., Cézilly, F., & Giraldeau, L.-A. (2011). Personality affects zebra finch feeding success in a producer–scrounger game. Animal Behaviour, 82, 6167.Google Scholar
DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13, 7781.Google Scholar
Dingemanse, N. J., Both, C., van Noordwijk, A. J., Rutten, A. L., & Drent, P. J. (2003). Natal dispersal and personalities in great tits (Parus major). Proceedings of the Royal Society of London– Series B: Biological Sciences, 270, 741747.CrossRefGoogle ScholarPubMed
Dingemanse, N. J., & Dochtermann, N. A. (2013). Quantifying individual variation in behaviour: Mixed-effect modelling approaches. Journal of Animal Ecology, 82, 3954.Google Scholar
Dingemanse, N. J., Kazem, A. J. N., Reale, D., & Wright, J. (2009). Behavioural reaction norms: animal personality meets individual plasticity. Trends in Ecology & Evolution, 25, 8189.Google Scholar
Dingemanse, N. J., & Reale, D. (2005). Natural selection and animal personality. Behaviour, 142, 11591184.Google Scholar
Dingemanse, N. J., & Wolf, M. (2010). Recent models for adaptive personality differences: A review. Philosophical Transactions of the Royal Society B- Biological Sciences, 365, 39473958.CrossRefGoogle ScholarPubMed
Dochtermann, N. A., & Roff, D. A. (2010). Applying a quantitative genetics framework to behavioural syndrome research. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 40134020.Google Scholar
Drent, P. J., van Oers, K., & van Noordwijk, A. J. (2003). Realized heritability of personalities in the great tit (Parus major). Proceedings of the Royal Society B: Biological Sciences, 270, 4551.Google Scholar
Duckworth, R. A. (2010). Evolution of personality: Developmental constraints on behavioral flexibility. Auk, 127, 752758.CrossRefGoogle Scholar
Evans, L. J., & Raine, N. E. (2014). Changes in learning and foraging behaviour within developing bumble bee (Bombus terrestris) colonies. PLOS ONE, 9, e90556.CrossRefGoogle ScholarPubMed
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Essex, UK: Longman.Google Scholar
Frommen, J. G., Mehlis, M., & Bakker, T. C. M. (2009). Predator-inspection behaviour in female three-spined sticklebacks Gasterosteus aculeatus is associated with status of gravidity. Journal of Fish Biology, 75, 21432153.Google Scholar
Funder, D. C., & Colvin, C. R. (1991). Explorations in behavioral consistency: Properties of persons, situations, and behaviors. Journal of Personality and Social Psychology, 60, 773794.CrossRefGoogle ScholarPubMed
Gosling, S. D. (2001). From mice to men: What can we learn about personality from animal research? Psychological Bulletin, 127, 4586.Google Scholar
Griffin, A. S., Guillette, L. M., & Healy, S. D. (2015). Cognition and personality: An analysis of an emerging field. Trends in Ecology and Evolution, 30, 207214.Google Scholar
Guillette, L. M., Reddon, A. R., Hoeschele, M., & Sturdy, C. B. (2011). Sometimes slower is better: Slow-exploring birds are more sensitive to changes in a vocal discrimination task. Proceedings of the Royal Society B: Biological Sciences, 278, 767773.CrossRefGoogle Scholar
Hedrick, P. W. (2006). Genetic polymorphism in heterogeneous environments: The age of genomics. Annual Review of Ecology Evolution and Systematics, 37, 6793.Google Scholar
Herborn, K. A., Heidinger, B. J., Alexander, L., & Arnold, K. E. (2014). Personality predicts behavioral flexibility in a fluctuating, natural environment. Behavioral Ecology, 25, 13741379.Google Scholar
Herborn, K. A., Macleod, R., Miles, W. T. S., Schofield, A. N. B., Alexander, L., & Arnold, K. E. (2010). Personality in captivity reflects personality in the wild. Animal Behaviour, 79, 835843.Google Scholar
Hinde, R. A. (1956). Ethological models and the concept of “drive.” British Journal for the Philosophy of Science, 6, 321331.Google Scholar
Houston, A. I., & McNamara, J. M. (1999). Models of adaptive behaviour. Cambridge, UK. Cambridge University Press.Google Scholar
Hui, A., & Pinter-Wollman, N. (2014). Individual variation in exploratory behaviour improves speed and accuracy of collective nest selection by Argentine ants. Animal Behaviour, 93, 261266.Google Scholar
Johnson, J., & Sih, A. (2005). Pre-copulatory sexual cannibalism in fishing spiders (Dolomedes triton): A role for behavioral syndromes. Behavioral Ecology Sociobiology, 58, 390396.CrossRefGoogle Scholar
Johnson, J. C. (2001). Sexual cannibalism in fishing spiders (Dolomedes triton): An evaluation of two explanations for female aggression towards potential mates. Animal Behaviour, 61, 905914.Google Scholar
Ketterson, E. D., & Nolan, V. (1999). Adaptation, exaptation, and constraint: A hormonal perspective. American Naturalist, 154, S4S25.CrossRefGoogle ScholarPubMed
Koolhaas, J. M., de Boer, S. F., Coppens, C. M., & Buwalda, B. (2010). Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Frontiers in Neuroendocrinology, 31, 307321.CrossRefGoogle ScholarPubMed
Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., … Blokhuis, H. J. (1999). Coping styles in animals: Current status in behavior and stress-physiology. Neuroscience & Biobehavioral Reviews, 23, 925935.Google Scholar
Korsten, P., Mueller, J. C., Hermannstädter, C., Bouwman, K. M., Dingemanse, N. J., Drent, P. J., … Kempenaers, B. (2010). Association between DRD4 gene polymorphism and personality variation in great tits: a test across four wild populations. Molecular Ecology, 19, 832843.Google Scholar
Kosten, T. A., Kim, J. J., & Lee, H. J. (2012). Early life manipulations alter learning and memory in rats. Neuroscience & Biobehavioral Reviews, 36, 19852006.Google Scholar
Kralj-Fišer, S., Schneider, J. M., & Kuntner, M. (2013). Challenging the aggressive spillover hypothesis: Is pre-copulatory sexual cannibalism a part of a behavioural syndrome? Ethology, 119, 615623.Google Scholar
Laskowski, K. L., & Bell, A. M. (2013). Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecology Letters, 16, 746753.Google Scholar
Laskowski, K. L., & Bell, A. M. (2014). Strong personalities, not social niches, drive individual differences in social behaviours in sticklebacks. Animal Behaviour, 90, 287295.Google Scholar
Laskowski, K. L., Pearish, S., Bensky, M., & Bell, A. M. (2015). Predictors of individual variation in movement in a natural population of threespine stickleback (Gasterosteus aculeatus). Advances in Ecological Research, 52, 6590.Google Scholar
Laskowski, K. L., & Pruitt, J. N. (2014). Evidence of social niche construction: persistent and repeated social interactions generate stronger personalities in a social spider. Proceedings of the Royal Society B: Biological Sciences, 281, 20133166.Google Scholar
Luttbeg, B., & Sih, A. (2010). Risk, resources and state- dependent adaptive behavioural syndromes. Royal Society Philosophical Transactions Biological Sciences, 365, 39773990.Google Scholar
Manuck, S. B., Flory, J. D., Ferrell, R. E., Mann, J. J., & Muldoon, M. F. (2000). A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Research, 95, 923.Google Scholar
Martin, J. G. A., Nussey, D. H., Wilson, A. J., & Reale, D. (2011). Measuring individual differences in reaction norms in field and experimental studies: A power analysis of random regression models. Methods in Ecology and Evolution, 2, 362374.Google Scholar
McCrae, R. R., & John, O. P. (1992). An introduction to the Five-Factor Model and its applications. Journal of Personality, 60, 175215.Google Scholar
Mischel, W. (1979). Interface of cognition and personality: Beyond the person-situation debate. American Psychologist, 34, 740754.Google Scholar
Morand-Ferron, J., & Quinn, J. L. (2011). Larger groups of passerines are more efficient problem solvers in the wild. Proceedings of the National Academy of Sciences of the United States of America, 108, 1589815903.Google Scholar
Munafo, M. R., Durrant, C., Lewis, G., & Flint, J. (2009). Gene X environment interactions at the serotonin transporter locus. Biolological Psychiatry, 65, 211219.Google Scholar
Neff, B. D., & Sherman, P. W. (2004). Behavioral syndromes versus Darwinian algorithms. Trends in Ecology & Evolution, 19, 621622.Google Scholar
Nussey, D. H., Wilson, A. J., & Brommer, J. E. (2007). The evolutionary ecology of individual phenotypic plasticity in wild populations. Journal of Evolutionary Biology, 20, 831844.Google Scholar
Overli, O., Winberg, S., & Pottinger, T. G. (2005). Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout: A review. Integrative and Comparative Biology, 45, 463474.Google Scholar
Peterson, R. E., Cai, N., Bigdeli, T. B., Li, Y., Reimers, M., Nikulova, A., … Kendler, K. S. (2017). The genetic architecture of major depressive disorder in Han Chinese women. JAMA Psychiatry, 74, 162168.Google Scholar
Pottinger, T. G., & Carrick, T. R. (1999). Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. General and Comparative Endocrinology, 116, 122132.Google Scholar
Reale, D., Dingemanse, N. J., Kazem, A. J. N., & Wright, J. (2010). Evolutionary and ecological approaches to the study of personality. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 39373946.Google Scholar
Reale, D., & Festa-Bianchet, M. (2003). Predator-induced natural selection on temperament in bighorn ewes. Animal Behaviour, 65, 463470.Google Scholar
Reale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & Montiglio, P. O. (2010). Personality and the emergence of the pace-of-life syndrome concept at the population level. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 40514063.Google Scholar
Reale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews, 82, 291318.Google Scholar
Roberts, B. W., Walton, K. E., & Viechtbauer, W. (2006). Patterns of mean-level change in personality traits across the life course: a meta-analysis of longitudinal studies. Psychological Bulletin, 132, 125.Google Scholar
Ruiz-Gomez Mde, L., Huntingford, F. A., Overli, O., Thornqvist, P. O., & Hoglund, E. (2011). Response to environmental change in rainbow trout selected for divergent stress coping styles. Physiology & Behavior, 102, 317322.CrossRefGoogle ScholarPubMed
Sih, A., Bell, A., & Johnson, J. C. (2004). Behavioral syndromes: An ecological and evolutionary overview. Trends in Ecology & Evolution, 19, 372378.Google Scholar
Sih, A., & Bell, A. M. (2008). Insights for behavioral ecology from behavioral syndromes. In Advances in the Study of Behavior, 38, 227281.Google Scholar
Sih, A., Bell, A. M., Johnson, J. C., & Ziemba, R. (2004). Behavioral syndromes: An integrative overview. Quarterly Review of Biology, 79, 241277.Google Scholar
Sih, A., & Del Giudice, M. (2012). Linking behavioural syndromes and cognition: a behavioural ecology perspective. Philosophical Transactions of the Royal Society B-Biological Sciences, 367, 27622772.Google Scholar
Sih, A., Kats, L. B., & Maurer, E. F. (2003). Behavioral correlations across situations and the evolution of antipredator behaviour in a sunfish-salamander system. Animal Behavior, 65, 2944.Google Scholar
Sih, A., Mathot, K. J., Moirón, M., Montiglio, P.-O., Wolf, M., & Dingemanse, N. J. (2015). Animal personality and state–behaviour feedbacks: A review and guide for empiricists. Trends in Ecology & Evolution, 30, 5060.Google Scholar
Sih, A., & Watters, J. V. (2005). The mix matters: Behavioural types and group dynamics in water striders. Behaviour, 142, 14171431.Google Scholar
Sinn, D. L., & Moltschaniwskyj, N. A. (2005). Personality traits in dumpling squid (Euprymna tasmanica): Context-specific traits and their correlation with biological characteristics. Journal of Comparative Psychology, 119, 99110.Google Scholar
Smith, B. R., & Blumstein, D. T. (2008). Fitness consequences of personality: A meta-analysis. Behavioral Ecology, 19, 448455.Google Scholar
Snell-Rood, E. C. (2013). An overview of the evolutionary causes and consequences of behavioural plasticity. Animal Behaviour, 85, 10041011.Google Scholar
Stamps, J., & Groothuis, T. G. G. (2010). The development of animal personality: Relevance, concepts and perspectives. Biological Reviews, 85, 301325.Google Scholar
Stamps, J. A. (2007). Growth-mortality tradeoffs and “personality traits” in animals. Ecology Letters, 10, 355363.CrossRefGoogle ScholarPubMed
Stamps, J. A. (2016). Individual differences in behavioural plasticities. Biological Reviews, 91, 534567.Google Scholar
Stamps, J. A., Briffa, M., & Biro, P. A. (2012). Unpredictable animals: Individual differences in intraindividual variability (IIV). Animal Behaviour, 83, 13251334.Google Scholar
Stamps, J. A., & Krishnan, V. V. (2014). Combining information from ancestors and personal experiences to predict individual differences in developmental trajectories. American Naturalist, 184, 647657.Google Scholar
Stein, L. R., & Bell, A. M. (2015). Consistent individual differences in paternal behavior: A field study of three-spined stickleback. Behavioral Ecology and Sociobiology, 69, 227236.Google Scholar
Stirling, D. G., Reale, D., & Roff, D. A. (2002). Selection, structure and the heritability of behaviour. Journal of Evolutionary Biology, 15, 277289.Google Scholar
Thornton, A., & Lukas, D. (2012). Individual variation in cognitive performance: developmental and evolutionary perspectives. Philosophical Transactiosn of the Royal Society of London B Biological Sciences, 367, 27732783.Google Scholar
Trut, L. N. (1999). Early canid domestication: The farm-fox experiment. American Scientist, 87, 160169.Google Scholar
Uher, J. (2008). Comparative personality research: Methodological approaches. European Journal of Personality, 22, 427455.Google Scholar
van den Berg, S. M., de Moor, M. H., Verweij, K. J., Krueger, R. F., Luciano, M., Arias Vasquez, A., … Boomsma, D. I. (2016). Meta-analysis of genome-wide association studies for extraversion: Findings from the genetics of personality consortium. Behavior Genetics, 46, 170182.Google Scholar
van Oers, K., de Jong, G., van Noordwijk, A. J., Kempenaers, B., & Drent, P. J. (2005). Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour, 142, 11851206.Google Scholar
Veenema, A. H., Meijer, O. C., de Kloet, E. R., Koolhaas, J. M., & Bohus, B. G. (2003). Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. Hormones and Behavior, 43, 197204.Google Scholar
Verbeek, M. E. M., Drent, P. J., & Wiepkema, P. R. (1994). Consistent individual differences in early exploratory behaviour of male great tits. Animal Behavior, 48, 11131121.Google Scholar
von Merten, S., Zwolak, R., & Rychlik, L. (2017). Social personality: A more social shrew species exhibits stronger differences in personality types. Animal Behaviour, 127, 125134.Google Scholar
Webster, M. M., & Ward, A. J. W. (2011). Personality and social context. Biological Reviews, 86, 759773.Google Scholar
Westneat, D. F., Wright, J., & Dingemanse, N. J. (2015). The biology hidden inside residual within-individual phenotypic variation. Biological Reviews, 90, 729743.Google Scholar
Wolf, M., van Doorn, G. S., Leimar, O., & Weissing, F. J. (2007). Life history tradeoffs favour the evolution of personality. Nature, 447, 581585.CrossRefGoogle Scholar
Wolf, M., van Doorn, G. S., & Weissing, F. J. (2008). Evolutionary emergence of responsive and unresponsive personalities. Proceedings of the National Academy of Sciences of the United States of America, 105, 1582515830.Google Scholar
Wolf, M., Van Doorn, G. S., & Weissing, F. J. (2011). On the coevolution of social responsiveness and behavioural consistency. Proceedings of the Royal Society B: Biological Sciences, 278, 440448.Google Scholar
Wolf, M., & Weissing, F. J. (2010). An explanatory framework for adaptive personality differences. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 39593968.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×