Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-01T06:48:37.069Z Has data issue: false hasContentIssue false

6 - The Arctic Mediterranean

Published online by Cambridge University Press:  13 January 2021

Carlos R. Mechoso
Affiliation:
University of California, Los Angeles
Get access

Summary

The Arctic Mediterranean sits on the “top of the world” and connects the Atlantic and Pacific climate realms via the cold Arctic. It is the combined basin of the Nordic Seas (the Norwegian, Iceland, and Greenland seas) and the Arctic Ocean confined by the Arctic land masses – thus making it a Mediterranean ocean (Figure 6.1; e.g., Aagaard et al., 1985). The Arctic Mediterranean is small for a World Ocean but its heat loss and freshwater uptake is disproportionally large (e.g., Ganachaud and Wunsch, 2000; Eldevik and Nilsen, 2013; Haine et al., 2015). With the combined presence of the Gulf Stream’s northern limb, regional freshwater stratification, and a retreating sea-ice cover, it is likely where water mass contrasts, shifting air-ocean-ice interaction, and climate change are most pronounced in the present world oceans (Stocker et al., 2013; Vihma, 2014).

Type
Chapter
Information
Interacting Climates of Ocean Basins
Observations, Mechanisms, Predictability, and Impacts
, pp. 186 - 215
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, K., Swift, J. H., Carmack, E. C. (1985). Thermohaline circulation in the Arctic Mediterranean Seas. Journal of Geophysical Research, 90, 48334846.CrossRefGoogle Scholar
Andersson, A., Bakan, S., Grassl, H. (2010). Satellite derived precipitation and freshwater flux variability and its dependence on the North Atlantic Oscillation. Tellus A: Dynamic Meteorology and Oceanography, 62(4), 453468.Google Scholar
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., Ingvaldsen, R. B. (2012). Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. Journal of Climate, 25, 47364743, doi:10.1175/JCLI-D-11-00466.1.CrossRefGoogle Scholar
Årthun, M., Eldevik, T., Viste, E., Drange, H., Furevik, T., Johnson, H. L., Keenlyside, N. S. (2017). Skillful prediction of northern climate provided by the ocean. Nature Communications, 8, 15875.Google Scholar
Årthun, M., Kolstad, E. W., Eldevik, T., Keenlyside, N. S. (2018). Time scales and sources of European temperature variability. Geophysical Research Letters, 45(8), 35973604.Google Scholar
Årthun, M., Eldevik, T., Smedsrud, L. H. (2019). The role of Atlantic heat transport in future Arctic winter sea ice variability and predictability. Journal of Climate, 32, 33273341.Google Scholar
Barnes, E. A. (2013). Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophysical Research Letters, 40(17), 47344739.Google Scholar
Barnes, E. A., Screen, J. A. (2015). The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIREs Climate Change, 6, 277286.Google Scholar
Barnston, A. G., Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review, 115, 10831126.2.0.CO;2>CrossRefGoogle Scholar
Barron, E. J. (1983). A warm, equable cretaceous: The nature of the problem. Earth Science Reviews, 19, 305338.Google Scholar
Belkin, I. (2004). Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophysical Research Letters, 31, doi:10.1029/2003GL019334.CrossRefGoogle Scholar
Bellucci, et al. (2015). Advancements in decadal climate predictability: The role of nonoceanic drivers. Reviews of Geophysics, 53(2), 165202.Google Scholar
Bintanja, R., Katsman, C. A., Selten, F. M. (2018). Increased Arctic precipitation slows down sea ice melt and surface warming. Oceanography, 31(2), 119125.Google Scholar
Blanchard‐Wrigglesworth, E., Bitz, C. M., Holland, M. M. (2011a). Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophysical Research Letters, 38(18), L18503.CrossRefGoogle Scholar
Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., DeWeaver, E. (2011b). Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations Journal of Climate, 24(1), 231250.Google Scholar
Bringedal, C., Eldevik, T., Skagseth, Ø., Spall, M., Østerhus, S. (2018). Structure and forcing of observed exchanges across the Greenland-Scotland Ridge. Journal of Climate, 31, 98819901.Google Scholar
Brunette, C., Tremblay, B., Newton, R. (2019). Winter coastal divergence as a predictor for the minimum sea ice extent in the Laptev Sea. Journal of Climate, 32(4), 10631080.Google Scholar
Bushuk, M., Giannakis, D., Majda, A. J. (2015). Arctic sea ice reemergence: The role of large-scale oceanic and atmospheric variability. Journal of Climate, 28(14), 54775509.Google Scholar
Bushuk, M., Msadek, R., Winton, M., Vecchi, G. A., Gudgel, R., Rosati, A., Yang, X. (2017). Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophysical Research Letters, 44(10), 49534964.CrossRefGoogle Scholar
Butler, A. H., Thompson, D. W., Heikes, R. (2010). The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. Journal of Climate, 23, 34743496, doi.org/10.1175/2010JCLI3228.1.Google Scholar
Carmack, E., Yamamoto-Kawai, M., Haine, T., Bacon, S. (2016). Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. Journal of Geophysical Research Biogeoscience, 121, 675717, doi:10.1002/2015JG003140.CrossRefGoogle Scholar
Catto, J. L., Jakob, C., Berry, G., Nicholls, N. (2012). Relating global precipitation to atmospheric fronts. Geophysical Research Letters, 39(10).Google Scholar
Chapman, W. L., and Walsh, J. E. (1993). Recent variations of sea ice and air temperature in high latitudes. Bulletin of the American Meteorological Society, 74, 3348.2.0.CO;2>CrossRefGoogle Scholar
Coachman, L. K. (1993). On the flow field in the Chirikov Basin. Continental Shelf Research, 13, 481508.Google Scholar
Cohen, J. et al. (2014). Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627637.Google Scholar
Comiso, J. C. (2012). Large decadal decline of the arctic multiyear ice cover. Journal of Climate, 25 (4), 11761193, doi:10.1175/JCLI-D-11-00113.1.CrossRefGoogle Scholar
Coumou, D., Di Capua, G., Vavrus, S., Wang, L., Wang, S. (2018). The influence of Arctic amplification on mid-latitude summer circulation. Nature Communications, 9, 2959, doi: 10.1038/s41467-018-05256-8.Google Scholar
Curry, R., Mauritzen, C. (2005). Dilution of the northern North Atlantic Ocean in recent decades. Science, 308, 17721774.Google Scholar
Curry, B., Lee, C. M., Petrie, B. (2011). Volume, freshwater, and heat fluxes through Davis Strait, 2004-05. Journal of Physical Oceanography, 41(3), 429436, doi:10.1175/2010JPO4536.1.CrossRefGoogle Scholar
Czaja, A., Marshall, J. (2006). The partitioning of poleward heat transport between the atmosphere and ocean. Journal of the Atmospheric Sciences, 63(5), 14981511.CrossRefGoogle Scholar
Day, J. J., Tietsche, S., Hawkins, E. (2014). Pan‐arctic and regional sea ice predictability: Initialization month dependence. Journal of Climate, 27(12), 43714390.Google Scholar
Deser, C., Walsh, J. E., Timlin, M. S. (2000). Arctic sea ice variability in the context of recent atmospheric circulation trends. Journal of Climate, 13, 617633.Google Scholar
Deser, C., Tomas, R. A., Peng, S. (2007). The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. Journal of Climate, 20(18), 47514767.CrossRefGoogle Scholar
de Steur, L., Hansen, E., Gerdes, R., Karcher, M., Fahrbach, E., Holfort, J. (2009). Freshwater fluxes in East Greenland Current: A decade of observations. Geophysical Research Letters, 36(23), doi: 10.1029/2009GL041278.CrossRefGoogle Scholar
de Steur, L., Peralta‐Ferriz, C., Pavlova, O. (2019). Freshwater export in the East Greenland Current freshens the North Atlantic. Geophysical Research Letters, 45, 1335913366, doi:10.1029/2018GL080207.Google Scholar
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553597.Google Scholar
Dickson, R. R., Meincke, J., Malmberg, S. A., Lee, A. J. (1988). The “great salinity anomaly” in the northern North Atlantic 1968–1982. Progress in Oceanography, 20, 103151.Google Scholar
Dickson, R. R., Brown, J. (1994). The production of North Atlantic deep water: Sources, rates and pathways. Journal of Geophysical Research, 99, 1231912342.CrossRefGoogle Scholar
Dickson, R., Rudels, B., Dye, S., Karcher, M., Meincke, J., Yashayaev, I. (2007). Current estimates of freshwater flux through Arctic and subarctic seas. Progress in Oceanography, 73, 210230.Google Scholar
Ding, Q., Schweiger, A., L’Heureux, M., Steig, E. J., Battisti, D. S., Johnson, N. C., Blanchard - Wrigglesworth, E., Po-Chedley, S., Zhang, Q., Harnos, K., Bushuk, M., Markle, B., Baxter, I. (2019). Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nature Geoscience, 12(1), 2833.CrossRefGoogle Scholar
Drobot, S. D., Maslanik, J. A., Fowler, C. (2006). A long‐range forecast of Arctic summer sea‐ice minimum extent. Geophysical Research Letters, 33(10), L10501.Google Scholar
Eichelberger, S. J., Hartmann, D. L. (2007). Zonal jet structure and the leading mode of variability. Journal of Climate, 20, 51495163.Google Scholar
Eicken, H. (2013). Ocean science: Arctic sea ice needs better forecasts. Nature, 497, 431433.Google Scholar
Eldevik, T., Nilsen, J. E. Ø., Iovino, D., Olsson, K. A., Sandø, A. B., Drange, H. (2009). Observed sources and variability of Nordic seas overflow. Nature Geoscience, 2, 406410.Google Scholar
Eldevik, T., Nilsen, J. E. Ø. (2013). The Arctic–Atlantic thermohaline circulation. Journal of Climate, 26, 86988705.Google Scholar
Emmerson, C., Lahn, G. (2012). Arctic Opening: Opportunity and Risk in the High North. London: Lloyd’s and Chatham House.Google Scholar
Feldstein, S. B. (2003). The dynamics of NAO teleconnection pattern growth and decay. Quarterly Journal of the Royal Meteorological Society, 129, 901924CrossRefGoogle Scholar
Feldl, N., Roe, G. H. (2013). The Nonlinear and Nonlocal Nature of Climate Feedbacks. Journal of Climate, 26, 82898304, doi.org/10.1175/JCLI-D-12-00631.1.CrossRefGoogle Scholar
Fletcher, C. G., Kushner, P. J. (2011). The role of linear interference in the annular mode response to tropical SST forcing. Journal of Climate, 24(3), 778794.CrossRefGoogle Scholar
Francis, J. A., Vavrus, S. J. (2015). Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters, 10, 014005.Google Scholar
Furevik, T., Nilsen, J. E. O. (2005). Large-scale atmospheric circulation variability and its impacts on the Nordic Seas ocean climate-a review. Geophysical Monograph-American Geophysical Union, 158, 105.Google Scholar
Ganachaud, A., Wunsch, C. (2000). Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457.Google Scholar
García-Serrano, J., Frankignoul, C., Gastineau, G., De La Cámara, A. (2015). On the predictability of the winter euro-atlantic climate: Lagged influence of autumn arctic sea ice. Journal of Climate, 28(13), 51955216.Google Scholar
Germe, A., Chevallier, M., Salas y Mélia, D., Sanchez-Gomez, E., Cassou, C. (2014). Interannual predictability of Arctic sea ice in a global climate model: Regional contrasts and temporal evolution. Climate Dynamics, 43(9–10), 25192538.Google Scholar
Glessmer, M. S., Eldevik, T., Våge, K., Nilsen, J. E. Ø., Behrens, E. (2014). Atlantic origin of observed and modelled freshwater anomalies in the Nordic Seas. Nature Geoscience, 7, 801805.Google Scholar
Gloersen, P. (1995). Modulation of hemispheric sea-ice cover by ENSO events. Nature, 373, 503506.Google Scholar
Graversen, R. G., Wang, M. (2009). Polar amplification in a coupled climate model with locked albedo. Climate Dynamics, 33(5), 629643.CrossRefGoogle Scholar
Graversen, R. G., Mauritsen, T., Drijfhout, S., Tjernström, M., Mårtensson, S. (2011). Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Climate Dynamics, 36(11), 21032112.Google Scholar
Graversen, R. G., Langen, P. L., Mauritsen, T. (2014). Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks, Journal of Climate, 27(12), 44334450.Google Scholar
Guemas, V., Blanchard‐Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M., Doblas‐Reyes, F. S., Fučkar, N. S., Germe, A., Hawkins, E., Keeley, S., Koenigk, T., Salas y Mélia, D., Tietsche, S. (2016). A review on Arctic sea‐ice predictability and prediction on seasonal to decadal time‐scales. Quarterly Journal of the Royal Meteorological Society, 142, 546561.Google Scholar
Haine, W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., de Steur, L., Stewart, K. D., Woodgate, R. (2015). Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change, 125, 1335, doi:10.1016/j.gloplacha.2014.11.013.Google Scholar
Häkkinen, S., Proshutinsky, A. (2004). Freshwater content variability in the Arctic Ocean. Journal of Geophysical Research: Oceans, 109(C3), doi.org/10.1029/2003JC001940.Google Scholar
Hansen, B., Østerhus, S. (2000). North Atlantic–Nordic Seas exchanges. Progress in Oceanography, 45, 109208.Google Scholar
Hansen, B., Østerhus, S., Turrell, W. R., Jónsson, S., Valdimarsson, H., Hátún, H., Olsen, S. M. (2008). The inflow of Atlantic water, heat and salt across the Greenland–Scotland ridge. In Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, Dickson, B., Meincke, J., and Rhines, P., (eds.), The Hague: Springer Verlag, 1544.Google Scholar
Hansen, E., Gerland, S., Granskog, M. A., Pavlova, O., Renner, A. H. H., Haapala, J., Løyning, T.B., Tschudi, M. (2013). Thinning of Arctic sea ice observed in Fram Strait: 1990–2011. Journal of Geophysical Research, 18, 52025221, doi:10.1002/jgrc.20393.Google Scholar
Hartmann, B., Wendler, G. (2005). The significance of the 1976 pacific climate shift in the climatology of Alaska. Journal of Climate, 18 (22), 48244839.Google Scholar
Hassanzadeh, P., Kuang, Z., Farrell, B. F. (2014). Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM. Geophysical Research Letters, 41, 52235232, doi:10.1002/2014GL060764.Google Scholar
Hawcroft, M. K., Shaffrey, L. C., Hodges, K. I., Dacre, H. F. (2012). How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophysical Research Letters, 39(24), doi.org/10.1029/2012GL053866.Google Scholar
Hell, M., Schneider, T., Li, C. (2020). Atmospheric circulation response to short-term Arctic warming in an idealized model, J. Atmos. Sci., 77, 531549, https://doi.org/10.1175/JAS-D-19-0133.1.Google Scholar
Henry, M., Merlis, T. M. (2019). The role of the nonlinearity of the Stefan–Boltzmann law on the structure of radiatively forced temperature change. Journal of Climate, 32, 335348, doi:10.1175/JCLI-D-17-0603.1.Google Scholar
Helland-Hansen, B., Nansen, F. (1909). The Norwegian Sea: Its Physical Oceanography Based upon the Norwegian Researches 1900–1904. Kristiania: Det Mallingske bogtrykkeri.Google Scholar
Holland, M., Bitz, C. (2003). Polar amplification of climate change in coupled models, Climate Dynamics, 21, 221232, doi:10.1007/s00382-003-0332-6.Google Scholar
Holland, M. M., Bailey, D. A., Vavrus, S. (2011). Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version3. Climate Dynamics, 36(7–8), 12391253.Google Scholar
Hu, D., Guan, Z., Tian, W., Ren, R. (2018). Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nature Communications, 9(1), 1697.CrossRefGoogle ScholarPubMed
Hurrell, J. W. (1995). Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation, Science, 269, 676679.Google Scholar
Hurrell, J. W., Kushnir, Y., Ottersen, G. (2003). An overview of the North Atlantic oscillation. In Hurrell, J. W., Kushnir, Y., Ottersen, G., Visbeck, M., and Visbeck, M. H. (eds.) The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophysical Monograph Series, American Geophysical Union, Washington, DC, 135 doi:10.1029/134GM01.Google Scholar
Hurwitz, M. M., Newman, P. A., Garfinkel, C. I. (2012). On the influence of North Pacific sea surface temperature on the Arctic winter climate. Journal of Geophysical Research Atmospheres, 117(D19), doi.org/10.1029/2012JD017819.Google Scholar
Ikeda, M. (1990). Decadal oscillations of the air-ice-ocean system in the Northern Hemisphere. Atmosphere and Oceans, 28(1), 106139, doi:10.1080/07055900.1990.9649369.CrossRefGoogle Scholar
Ingvaldsen, R., Asplin, L., Loeng, H. (2004). The seasonal cycle in the Atlantic transport to the Barents Sea during the years 1997–2001. Continental Shelf Research, 24, 10151032.Google Scholar
Inoue, J., Hori, M. E., Takaya, K. (2012). The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. Journal of Climate, 25, 25612568.Google Scholar
Isachsen, P. E., Koszalka, I., LaCasce, J. H. (2012). Observed and modeled surface eddy heat fluxes in the eastern Nordic Seas. Journal of Geophysical Research: Oceans, 117(C8), C08020.Google Scholar
Jahnke-Bornemann, A. N., Brümmer, B. (2009). The Iceland–Lofotes pressure difference: Different states of the North Atlantic low-pressure zone. Tellus A, 61(4), 466475.Google Scholar
Jeansson, E., Olsen, A., Eldevik, T., Skjelvan, I., Omar, A. M., Lauvset, S., Nilsen, J. E. Ø., Bellerby, R. G. J., Johannessen, T., Falck, E. (2011). The Nordic Seas carbon budget: Sources, sinks and uncertainties. Global Biogeochem. Cycles, 25, GB4010, DOI 10.1029/2010GB003961.Google Scholar
Johnson, H. L., Cornish, S. B., Kostov, Y., Beer, E., Lique, C. (2018). Arctic Ocean freshwater content and its decadal memory of sea-level pressure. Geophysical Research Letter., 45, 49915001, doi:10.1029/2017GL076870.Google Scholar
Kapsch, M. L., Graversen, R. G., Economou, T., Tjernström, M. (2014). The importance of spring atmospheric conditions for predictions of the Arctic summer sea ice extent. Geophysical Research Letters, 41(14), 52885296.Google Scholar
King, M. P., Hell, M., Keenlyside, N. (2016). Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dynamics, 46, 1185, doi:10.1007/s00382-015-2639-5.Google Scholar
Koenigk, T., Beatty, C. K., Caian, M., Döscher, R., Wyser, K. (2012). Potential decadal predictability and its sensitivity to sea ice albedo parameterization in a global coupled model. Climate Dynamics, 38, 23892408.CrossRefGoogle Scholar
Koenigk, T., Caian, M., Nikulin, G., Schimanke, S. (2016). Regional Arctic sea ice variations as predictor for winter climate conditions. Climate Dynamics, 46, 317337, doi:10.1007/ s00382–015-2586-1.Google Scholar
Kolstad, E. W., Årthun, M. (2018). Seasonal prediction from Arctic Sea surface temperatures: Opportunities and pitfalls. Journal of Climate, 31, 81978210.Google Scholar
Kushnir, Y., Scaife, A. A., Arritt, R., Balsamo, G. (2019). Towards operational predictions of the near-term climate. Nature Climate Change, 9, 94101.Google Scholar
Kutzbach, J. E. (1970). Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure. Monthly Weather Review, 98(9), 708716.Google Scholar
Lambert, E., Eldevik, T., Haugan, P. M. (2016). How northern freshwater input can stabilize thermohaline circulation. Tellus A, 68, 31051, DOI 10.3402/tellusa.v68.31051.CrossRefGoogle Scholar
Langen, P. L., Graversen, R. G., Mauritsen, T. (2012). Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet. Journal of Climate, 25, 30103024, doi:10.1175/JCLI-D-11-00246.1.Google Scholar
Lee, S., Gong, T., Johnson, N., Feldstein, S. B., Pollard, D. (2011). On the possible link between tropical convection and the northern hemisphere Arctic surface air temperature change between 1958 and 2001. Journal of Climate, 24(16), 43504367.Google Scholar
L'Heureux, M. L., Kumar, A., Bell, G. D., Halpert, M. S., Higgins, R. W. (2008). Role of the Pacific‐North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophysical Research Letters, 35(20), doi.org/10.1029/2008GL035205.Google Scholar
Lienert, F., Doblas-Reyes, F. J. (2017). Prediction of interannual North Atlantic sea surface temperature and its remote influence over land. Climate Dynamics, 48, 30993114.Google Scholar
Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A., de Jong, M. F., de Steur, L., Fischer, J., Gary, S. F., Greenan, B. J. W. (2019). A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521.Google Scholar
Manabe, S., Wetherald, R. (1975). The effects of doubling the CO2 concentrations on the climate of a general circulation model. Journal of Atmospheric Sciences, 32, 315.Google Scholar
Mauritzen, C. (1996). Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep Sea Research Part I: Oceanographic Research Papers, 43, 769806.Google Scholar
McCusker, K. E., Fyfe, J. C., Sigmond, M. (2016). Twenty-five winters of unexpected Eurasian cooling unlikely due to arctic sea ice loss. Nature Geoscience, 9, 838842.Google Scholar
Meehl, G. A., Chung, C. T. Y., Arblaster, J. M., Holland, M. M., Bitz, C. M. (2018). Tropical decadal variability and the rate of Arctic sea ice decrease. Geophysical Research Letters, 45, 1132611333.Google Scholar
Minobe, S. (1997). A 50–70 year climatic oscillation over the North Pacific and North America. Geophysical Research Letters, 24(6), 683686.Google Scholar
Mori, M., Watanabe, M., Shiogama, H., Inoue, J., Kimoto, M. (2014). Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7, 869873, doi:10.1038/ngeo2277.Google Scholar
Morison, J., Kwok, R., Peralta-Ferritz, C. P., Alkire, M., Rigor, I., Andersen, R., Steele, M. (2012). Changing Arctic Ocean freshwater pathways. Nature, 481, doi: 10.1038/nature10705.Google Scholar
Muilwijk, M., Smedsrud, L. H., Ilicak, M., Drange, H. (2018). Atlantic Water heat transport variability in the 20th century Arctic Ocean from a global ocean model and observations, Journal of Geophysical Research Oceans, 123, doi:10.1029/2018JC014327.Google Scholar
Nakanowatari, T., Sato, K., Inoue, J. (2014). Predictability of the Barents Sea ice in early winter: Remote effects of oceanic and atmospheric thermal conditions from the North Atlantic. Journal of Climate, 27(23), 88848901.Google Scholar
Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Lorenzo, E. D., Mantua, N. J., Miller, A. J., Minobe, S., Nakamura, H., Schneider, N., Vimont, D. J., Phillips, A. S., Scott, J. D., Smith, C. A. (2016). The Pacific Decadal Oscillation, Revisited. Journal of Climate, 29(12), 43994427.Google Scholar
Nøst, O. A., Isachsen, P. E. (2003). The large-scale time-mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics. Journal of Marine Research, 61, 175210.Google Scholar
Notz, D., Stroeve, J. (2016). Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747750.Google Scholar
Nummelin, A., Ilicak, M., Li, C., Smedsrud, L. H. (2016). Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. Journal of Geophysical Research Oceans, 121, 617637.Google Scholar
Nummelin, A., Li, C., Hezel, P. (2017). Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean. Geophysical Research Letters, 44, 18991908, doi:10.1002/2016GL071333.Google Scholar
Ogawa, F., Keenlyside, N., Gao, Y., Koenigk, T., Yang, S., Suo, L., Wang, T., Gastineau, G., Nakamura, T., Cheung, H. N., Omrani, N.-O., Ukita, J., Semenov, V. (2018). Evaluating impacts of recent Arctic sea ice loss on the northern hemisphere winter climate change. Geophysical Research Letters, 45, 32553263, doi:10.1002/2017GL076502.CrossRefGoogle Scholar
Olsen, S. M., Hansen, B., Quadfasel, D., Østerhus, S. (2008). Observed and modelled stability of overflow across the Greenland–Scotland ridge. Nature, 455, 519523.Google Scholar
Olsen, A., Anderson, L. G., Heinze, C. (2015). Arctic carbon cycle: Patterns, impacts, and possible changes. Evengård, B., Larsen, J. N., and Paasche, Ø., (eds.), The New Arctic. Heidelberg: Springer, 95115, doi: 10.1007/978-3-319-17602-4_8.Google Scholar
Onarheim, I. H., Eldevik, T., Årthun, M., Ingvaldsen, R. B., Smedsrud, L. H. (2015). Skillful prediction of Barents Sea ice cover. Geophysical Research Letters, 42(13), 53645371.Google Scholar
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., Stroeve, J. C. (2018). Seasonal and regional manifestation of Arctic sea ice loss. Journal of Climate, 31, 49174932.Google Scholar
Orsolini, Y. J., Senan, R., Benestad, R. E., Melsom, A. (2012). Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Climate Dynamics, 38, 11–12, 24372448, doi:10.1007/s00382-011-1169-z.Google Scholar
Østerhus, S., Woodgate, R., Valdimarsson, H., Turrell, B., de Steur, L., Quadfasel, D., Olsen, S. M., Moritz, M., Lee, C. M., Larsen, K. M. H., Jónsson, S., Johnson, C., Jochumsen, K., Hansen, B., Curry, B., Cunningham, S., Berx, B. (2019). Arctic Mediterranean exchanges: A consistent volume budget and trends in transports from two decades of observations. Ocean Science, 15, 379399.Google Scholar
Overland, J. E., Wang, M. (2005). The third Arctic climate pattern: 1930s and early 2000s. Geophysical Research Letters, 32(23), doi.org/10.1029/2005GL024239.CrossRefGoogle Scholar
Overland, J., Francis, J. A., Hall, R., Hanna, E., Kim, S., Vihma, T. (2015). The melting Arctic and midlatitude weather patterns: Are they connected? Journal of Climate, 28, 79177932, doi:10.1175/JCLI-D-14-00822.1.Google Scholar
Papritz, L., Pfahl, S., Rudeva, I., Simmonds, I., Sodemann, H., Wernli, H. (2014). The role of extratropical cyclones and fronts for Southern Ocean freshwater fluxes. Journal of Climate, 27(16), 62056224.Google Scholar
Papritz, L., Grams, C. M. (2018). Linking low‐frequency large‐scale circulation patterns to cold air outbreak formation in the northeastern north Atlantic. Geophysical Research Letters, 45(5), 25422553.CrossRefGoogle Scholar
Park, K., Kang, S. M., Kim, D., Stuecker, M. F., Jin, F.-F. (2018). Contrasting local and remote impacts of surface heating on polar warming and amplification. Journal of Climate, 31, 31553166.Google Scholar
Peings, Y., Magnusdottir, G. (2014). Response of the wintertime Northern Hemisphere atmosphere circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. Journal of Climate, 27, 244264, doi:10.1175/JCLI-D-13-00272.1.Google Scholar
Perovich, D. K., Light, B., Eicken, H., Jones, K. F., Runciman, K., Nghiem, S. V. (2007). Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophysical Research Letters, 34, L19505, doi:10.1029/2007GL031480.Google Scholar
Peterson, K. A., Arribas, A., Hewitt, H. T., Keen, A. B., Lea, D. J., McLaren, A. J. (2015). Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system. Climate Dynamics, 44, 147162.CrossRefGoogle Scholar
Petty, A. A., Schröder, , Stroeve, D., Markus, J. C., Miller, T., Kurtz, J., Feltham, N. T., Flocco, D. L., D. (2017). Skillful spring forecasts of September Arctic sea ice extent using passive microwave sea ice observations. Earth's Future, 5, 254263.CrossRefGoogle Scholar
Pithan, F., Mauritsen, T. (2014). Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7, 181184.Google Scholar
Polyakov, I. V., Alekseev, G. V., Timokhov, L. A., Bhatt, U. S., Colony, R. L., Simmons, H. L., Walsh, D., Walsh, J. E., Zakharov, V. F. (2004). Variability of the Intermediate Atlantic Water of the Arctic Ocean over the Last 100 Years. Journal of Climate, 17, 44854497, doi:10.1175/JCLI-3224.1.Google Scholar
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T., Krishfield, R. (2017). Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356, 285291.Google Scholar
Quadfasel, D., Käse, R. H. (2007). Present-day manifestation of the Nordic Seas overflows. In Schmittner, A., Chiang, J. C. H., Hemming, S. R., (eds.), Mechanisms and Impacts: Past and Future Changes of Meridional Overturning, Geophysical Monograph Series, Washington, DC: American Geophysical Union, 173, 7589.Google Scholar
Reverdin, G. (2010). North Atlantic subpolar gyre surface variability (1895–2009). Journal of Climate, 23, 45714584.Google Scholar
Rigor, I. G., Wallace, J. M., Colony, R. L. (2002). Response of sea ice to the Arctic oscillation. Journal of Climate, 15(18), 26482663.Google Scholar
Rogers, J. C. (1997). North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. Journal of Climate, 10, 16351647.Google Scholar
Rudels, B. (2010). Constraints on exchanges in the Arctic Mediterranean: Do they exist and can they be of use? Tellus A: Dynamic Meteorology and Oceanography, 2(62), 109122, doi:10.1111/j.1600-0870.2009.00425.x.Google Scholar
Ruggieri, P., Buizza, R., Visconti, G. (2016). On the link between Barents‐Kara sea ice variability and European blocking. Journal of Geophysical Research: Atmospheres, 121(10), 56645679.Google Scholar
Screen, J. A. (2017). The missing northern European winter cooling response to Arctic sea ice loss. Nature Communications, 8, 14603.Google Scholar
Screen, J. A., Simmonds, I. (2010). Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophysical Research Letters, 37(16), L16707, doi:10.1029/2010GL044136.Google Scholar
Screen, J. A., Francis, J. A. (2016). Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nature Climate Change, 6, 856860.Google Scholar
Screen, J. A., Deser, C., Smith, D. M., Zhang, X., Blackport, R., Kushner, P. J., Oudar, T., McCusker, K. E., Sun, L. (2018). Consistency and discrepancy in the atmospheric response to Arctic sea‐ice loss across climate models. Nature Geoscience, 11(3), 155163, doi:10.1038/s41561‐018‐0059‐y.Google Scholar
Screen, J. A., Deser, C. (2019). Pacific Ocean variability influences the time of emergence of a seasonally ice-free Arctic Ocean. Geophysical Research Letters, 46, 22222231.Google Scholar
Seierstad, I. A., Bader, J. (2009). Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO. Climate Dynamics, 33, 937, doi:10.1007/s00382-008-0463-x.Google Scholar
Sein, D. V., Koldunov, N. V., Pinto, J. G., Cabos, W. (2014). Sensitivity of simulated regional Arctic climate to the choice of coupled model domain. Tellus-A, 66(1), 118, doi.org/10.3402/tellusa.v66.23966.Google Scholar
Sellevold, R., Sobolowski, S., Li, C. (2016). Investigating possible Arctic-midlatitude teleconnections in a linear framework. Journal of Climate, 29, 73297343.Google Scholar
Serra, N., Käse, R. H., Köhl, A., Stammer, D., Quadfasel, D. (2010). On the low-frequency phase relation between the Denmark Strait and the Faroe-Bank Channel overflows. Tellus, 62A, 530550.Google Scholar
Serreze, M. C., Barrett, A. P., Slater, A. G., Woodgate, R. A., Aagaard, K., Lammers, R. B., Steele, M., Moritz, R., Meredith, M., Lee, C. M. (2006). The large-scale freshwater cycle of the Arctic. Journal of Geophysical Research, 111, C11010, doi:10.1029/2005JC003424.Google Scholar
Serreze, M. C., Holland, M. M., Stroeve, J. (2007). Perspectives on the Arctic's Shrinking Sea-Ice Cover. Science, 315, 15331536.Google Scholar
Serreze, M. C., Barry, R. G. (2011). Processes and impacts of Arctic amplification: A research synthesis, Global and Planetary Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.Google Scholar
Shaw, T. A., Baldwin, M., Barnes, E. A., Caballero, R., Garfinkel, C. I., Hwang, Y.-T., Li, C., O’Gorman, P. A., Rivière, G., Simpson, I. R., Voigt, A. (2016). Storm track processes and the opposing influences of climate change. Nature Geoscience, 9, 656664.Google Scholar
Shepherd, T. G. (2014). Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience, 7, 703708.Google Scholar
Shin, Y., Kang, S. M., Watanabe, M. (2017). Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitude surface warming. Climate Dynamics, 49, 3753, doi:10.1007/s00382-017-3543-y.Google Scholar
Sigmond, M., Reader, M. C., Flato, G. M., Merryfield, W. J., Tivy, A. (2016). Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system. Geophysical Research Letters, 43(24).Google Scholar
Singh, H. A., Rasch, P. J., Rose, B. E. J. (2017). Increased ocean heat convergence into the high latitudes with CO2 doubling enhances polar-amplified warming. Geophysical Research Letters, 44, 1058310591, doi:10.1002/2017GL074561.CrossRefGoogle Scholar
Skeie, P. (2000). Meridional flow variability over the Nordic seas in the Arctic Oscillation framework. Geophysical Research Letters, 27 (16), 25692572.Google Scholar
Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li, C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., Risebrobakken, B., Sandø, A. B., Semenov, V. A., Sorokina, S. A. (2013). The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics, 51, 415449, doi:10.1002/rog.20017.Google Scholar
Smedsrud, L. H., Halvorsen, M. H., Stroeve, J. C., Zhang, R., Kloster, K. (2017). Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. The Cryosphere, 11, 6579, doi: 10.5194/tc-11-65-2017.Google Scholar
Smith, L. C., Stephenson, S. R. (2013). New trans‐Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences, 110(13), E1191E1195.Google Scholar
Smith, D. M., Scaife, A. A., Eade, R., Knight, J. R. (2016). Seasonal to decadal prediction of the winter North Atlantic Oscillation: Emerging capability and future prospects. Quarterly Journal of the Royal Meteorological Society, 142, 611617.Google Scholar
Sorokina, S. A., Li, C., Wettstein, J. J., Kvamstø, N. G. (2016). Observed atmospheric coupling between Barents Sea ice and the warm-Arctic cold-Siberian anomaly pattern. Journal of Climate, 29(2), 495511.Google Scholar
Sorteberg, A., Kvamsto, N. G., Byrkjedal, O. (2005). Wintertime Nordic seas cyclone variability and its impact on oceanic volume transports into the Nordic seas. Geophysical Mononograph Series, 158, 137156.Google Scholar
Sorteberg, A., Kvingedal, B. (2006). Atmospheric forcing on the Barents Sea winter ice extent. Journal of Climate, 19, 47724784.Google Scholar
Spall, M. A., Pickart, R. S. (2001). Where does dense water sink? A subpolar gyre example. Journal of Physical Oceanography, 31, 810826.Google Scholar
Spielhagen, R. F., Werner, K., Sørensen, S. A., Zamelczyk, K., Kandiano, E., Budeus, G., Husum, K., Marchitto, T. M., Hald, M. (2011). Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science, 331, 450453.Google Scholar
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (eds.) (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M., Xie, S.-P., Kim, D., McGregor, S., Zhang, W., Zhao, S., Cai, W., Dong, Y., Jin, F.-F. (2018). Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 8(12), doi:10.1038/s41558-018-0339-y.Google Scholar
Strey, S. T., Chapman, W. L., Walsh, J. E. (2010). The 2007 sea ice minimum: Impacts on the Northern Hemisphere atmosphere in late autumn and early winter. Journal of Geophysical Research, 115, D23103, doi:10.1029/2009JD013294.Google Scholar
Strong, C., Magnusdottir, G., Stern, H. (2009). Observed feedback between Winter Sea Ice and the North Atlantic Oscillation. Journal of Climate, 22, 60216032, doi:10.1175/2009JCLI3100.1.Google Scholar
Stroeve, J., Hamilton, L. C., Bitz, C. M., Blanchard‐Wrigglesworth, E. (2014). Predicting September sea ice: Ensemble skill of the SEARCH sea ice outlook 2008–2013. Geophysical Research Letters, 41 (7), 24112418.Google Scholar
Sundby, S., Drinkwater, K. (2007). On the mechanisms behind salinity anomaly signals of the northern North Atlantic. Progress in Oceanography, 73, 190202.Google Scholar
Sutton, R. T., Dong, B. (2012). Atlantic Ocean influence on a shift in European climate in the 1990s. Nature Geoscience, 5(11), 788.Google Scholar
Svendsen, L., Keenlyside, N., Bethke, I., Gao, Y., Omrani, N.-E. (2018). Pacific contribution to the early twentieth-century warming in the Arctic. Nature Climate Change, 8, 793797.Google Scholar
Sverdrup, H. U., Johnson, M. W., Fleming, R. H. (1942). The Oceans: Their Physics, Chemistry, and General Biology (Vol. 7). New York: Prentice-Hall.Google Scholar
Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., Jahn, A. (2015). Influence of internal variability on Arctic sea-ice trends. Nature Climate Change, 5(2), 8689.Google Scholar
Taylor, P. C., Cai, M., Hu, A., Meehl, G. A., Washington, W., Zhang, G. J. (2013). A decomposition of feedback contributions to polar warming amplification. Journal of Climate, 26, 70237043.Google Scholar
Thompson, D. W. J., Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25,12971300.Google Scholar
Tietsche, S., Notz, D., Jungclaus, J. H., Marotzke, J. (2011). Recovery mechanisms of Arctic summer sea ice. Geophysical Research Letters, 38, L02707, doi:10.1029/2010GL045698.Google Scholar
Tietsche, S., Notz, D., Jungclaus, J. H., Marotzke, J. (2013). Predictability of large interannual Arctic sea-ice anomalies. Climate Dynamics, 41(9–10), 25112526.Google Scholar
Tietsche, S., Day, J. J., Guemas, V., Hurlin, W. J., Keeley, S. P. E., Matei, D., Msadek, R., Collins, M., Hawkins, E. (2014). Seasonal to interannual Arctic sea ice predictability in current global climate models. Geophysical Research Letters, 41(3), 10351043.Google Scholar
Tokinaga, H., Xie, S.-P., Mukougawa, H. (2017). Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proceedings of the National Academy of Sciences, 114(24), 62276232.Google Scholar
Trenberth, K. E., Caron, J. M. (2001). Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14, 34333443.Google Scholar
Tsukernik, M., Deser, C., Alexander, M., Tomas, R. (2010). Atmospheric forcing of Fram Strait sea ice export: a closer look. Climate Dynamics, 35, 13491360.Google Scholar
Vihma, T. (2014). Effects of Arctic sea ice decline on weather and climate: A review. Surveys in Geophysics, 35 (5), 11751214.Google Scholar
Vonder Haar, T. H., Oort, A. H. (1973). New estimate of annual poleward energy transport by northern hemisphere oceans. Journal of Physical Oceanography, 3(2), 169172.Google Scholar
Wallace, J. M. (2000). North Atlantic Oscillation/annular mode: Two paradigms—One phenomenon. Quarterly Journal of the Royal Meteorological Society, 126, 791805.Google Scholar
Wallace, J. M., Held, I. M., Thompson, D. W. J., Trenberth, K. E., Walsh, J. E. (2014). Global warming and winter weather. Science, 343, 729730.Google Scholar
Walsh, J. E., Fetterer, F., Stewart, J. S., Chapman, W. L. (2017). A database for depicting Arctic sea ice variations back to 1850. Geographical REVIEW, 107, 89107, doi:10.1111/j.1931-0846.2016.12195.x.Google Scholar
Wang, J., Zhang, J., Watanabe, E., Ikeda, M., Mizobata, K., Walsh, J. E., Bai, X., Wu, B. (2009). Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophysical Research Letters, 36, L05706, doi:10.1029/2008GL036706.Google Scholar
Wang, L., Yuan, X., Ting, M., Li, C. (2016). Predicting summer Arctic sea ice concentration intraseasonal variability using a vector autoregressive model. Journal of Climate, 29(4), 15291543.Google Scholar
Wang, L., Ting, M., Kushner, P. J. (2017). A robust empirical seasonal prediction of winter NAO and surface climate. Scientific Reports, 7(1), 279.Google Scholar
Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C., Stephenson, D. B., Xoplaki, E. (2001). North Atlantic Oscillation–concepts and studies. Surveys in Geophysics, 22, 321381.Google Scholar
Wernli, H., Schwierz, C. (2006). Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. Journal of the Atmospheric Sciences, 63(10), 24862507.Google Scholar
Williams, J., Tremblay, B., Newton, R., Allard, R. (2016). Dynamic preconditioning of the minimum September sea-ice extent. Journal of Climate, 29(16), 58795891.Google Scholar
Wills, R. C., Schneider, T., Wallace, J. M., Battisti, D. S., Hartmann, D. L. (2018). Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures. Geophysical Research Letters, 45(5), 24872496.Google Scholar
Winton, M. (2006). Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophysical Research Letters, 33, L03701.Google Scholar
Woodgate, R. A., Aagaard, K., Weingartner, T. J. (2006). Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004. Geophysical Research Letters, 33, L15609, doi.org/10.1029/2006GL026931.Google Scholar
Woodgate, R. A., Weingartner, T., Lindsay, R. (2010). The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea‐ice retreat. Geophysical Research Letters, 37(1), L01602, doi:10.1029/2009GL041621.Google Scholar
Woods, C., Caballero, R. (2016). The role of moist intrusions in winter Arctic warming and sea ice decline. Journal of Climate, 29, 44734485.Google Scholar
Woollings, T., Franzke, C., Hodson, D. L. R., Dong, B., Barnes, E. A., Raible, C. C., Pinto, J. G. (2015). Contrasting interannual and multidecadal NAO variability. Climate Dynamics, 45(1–2), 539556.Google Scholar
Wu, B., Wang, J., Walsh, J. E. (2006). Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. Journal of Climate, 19, 210225.Google Scholar
Wu, Y., Smith, K. L. (2016). Response of Northern Hemisphere midlatitude circulation to Arctic amplification in a simple atmospheric general circulation model. Journal of Climate, 29, 20412058.Google Scholar
Wu, Q., Zhang, X. (2010). Observed forcing‐feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. Journal of Geophysical Research, 115, D14119, doi:10.1029/2009JD013574.Google Scholar
Yang, J., Pratt, L. J. (2013). On the effective capacity of the dense-water reservoir for the Nordic Seas overflow: Some effects of topography and wind stress. Journal of Physical Oceanography, 43, 418431.Google Scholar
Yeager, S. G., Karspeck, A. R., Danabasoglu, G. (2015). Predicted slowdown in the rate of Atlantic sea ice loss. Geophysical Research Letters, 42(24), 10704.Google Scholar
Yeager, S. G., Robson, J. I. (2017). Recent progress in understanding and predicting Atlantic decadal climate variability. Current Climate Change Reports, 3(2), 112127.Google Scholar
Yeager, S. G., Danabasoglu, G., Rosenbloom, N. A., Strand, W., Bates, S. C., Meehl, G. A., Karspeck, A. R., Lindsay, K., Long, M. C., Teng, H., Lovenduski, N. S. (2018). Predicting near-term changes in the Earth System: A large ensemble of initialized decadal prediction simulations using the Community Earth System Model. Bulletin of the American Meteorological Society, 99(9), 18671886.Google Scholar
Zhang, X., Sorteberg, A., Zhang, J., Gerdes, R., Comiso, J. C. (2008). Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophysical Research Letters, 35, L22701.Google Scholar
Zwally, J. H., Gloersen, P. (2008). Arctic sea ice surviving the summer melt: Interannual variability and decreasing trend. Journal of Glaciology, 54(185), 279296.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×