Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-01T06:30:11.030Z Has data issue: false hasContentIssue false

Chapter 6 - Crystallization Process Analysis by Population Balance Modeling

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

In the area of industrial crystallization, population balances are used to model how the number and properties of the crystals in a crystallizer are generated and eventually appear as the solid product. A population balance is a mathematical description of conservation of number of particles, and accounts for how the number of particles having a particular set of properties (e.g., size, shape, density) may change during the process. The population balance has the same format as a mass balance or an energy balance. However, while mass and energy are conserved, particles having specific properties are not, and the population balance aims to account for how various mechanisms lead to changes. Traditionally, a population balance is a number balance, accounting for the number of particles of each particular size. Even though linear size is by far the most common particle characteristic on which the balance is based, other independent variables of the particle phase space can be of interest and modeled. By particle phase space is meant the multidimensional space of various particle properties. The population balance can also be formulated with more than one independent variable describing different particle properties. For example, if two linear dimensions of the particle are used in its characterization and are included in the modeling, we obtain a balance that also contains a description of shape changes, not only size changes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aamir, E., Nagy, Z. K., Rielly, C. D., Kleinert, T., and Judat, B. Ind. Eng. Chem. Res. 2009; 48:8575–84.CrossRefGoogle Scholar
Aamir, E., Nagy, Z. K., and Rielly, C. D. Crystal Growth Des 2010a; 10:4728–40.CrossRefGoogle Scholar
Aamir, E., Nagy, Z. K., and Rielly, C. D. Che.m Eng. Sci. 2010b; 65:3602–14.Google Scholar
Akiti, O., and Armenante, P. M. AIChE J. 2004; 50:566–77.Google Scholar
Allen, T. >Particle Size Measurement, vol. 1: Powder Sampling and Particle Size Measurement. Chapman & Hall, London, 1997, 2003.Google Scholar
Åslund, B., and Rasmuson, Å. C. AIChE J. 1992; 38:328–42.Google Scholar
Baldyga, J., and Bourne, J. R. Turbulent Mixing and Chemical Reactions. Wiley, Chichester, 1999.Google Scholar
Baldyga, J., and Orciuch, W. Chem. Eng. Sci. 2001; 56:2435–44.Google Scholar
Baldyga, J., Makowski, L., and Orciuch, W. Ind. Eng. Chem. Res. 2005; 44:5342–52.CrossRefGoogle Scholar
Berglund, K. A. In Handbook of Industrial Crystallization, ed. Myerson, A. S. Butterworth-Heinemann, Amsterdam, 2002.Google Scholar
Besenhard, M. O., Chaudhury, A., Vetter, T., Ramachandran, R., and Khinast, J. G. Chem. Eng. Res. Des. 2015; 94:275–89.CrossRefGoogle Scholar
Besenhard, M. O., Hohl, R., Hodzic, A., Eder, R. J. P., and Khinast, J. G. Crystal Res. Technol. 2014; 49:92108.Google Scholar
Bohlin, M., and Rasmuson, Å. C. Can. J. Chem. Eng. 1992a; 70(1):120–26.CrossRefGoogle Scholar
Bohlin, M., and Rasmuson, Å. C. AIChE J. 1992b; 38(12):1853–63.CrossRefGoogle Scholar
Bohlin, M., and Rasmuson, Å. C. AIChE J. 1996; 42(3):691–99.Google Scholar
Borrisova, A., Y Jammoal, K.H. Javed, X. Lai, T. Mahmud, R. Penchev, K.J. Roberts, , and Wood, W.; Modeling the precipitation of L-glutamic acid via acidification of monosodium glutamate; CG&D 5(3), 845854 (2005).Google Scholar
Borsos, A., and Lakatos, B. G. Chem. Eng. Res. Des. 2014; 92:1133–41.CrossRefGoogle Scholar
Briesen, H. Chem. Eng. Sci. 2009; 64:661–72.Google Scholar
Cesur, S., and Yaylaci, C. J. Crystal. Process Technol. 2012; 2:8195.Google Scholar
Chen, J., Zheng, C., and Chen, G. Chem. Eng. Sci. 1996; 51:1957–66.Google Scholar
Cheng, J., Yang, C, Mao, Z.-S., and Zhao, C. Ind. Eng. Chem. Res. 2009; 48:69927003.CrossRefGoogle Scholar
Cheng, J., Yang, C., and Mao, Z.-S. Chem. Eng. Sci. 2012; 68:469–80.CrossRefGoogle Scholar
Cogoni, G., Widenski, D., Grosso, M., Barrati, R., and Romagnoli, J. A. Comput. Chem. Eng. 2014; 63:8290.CrossRefGoogle Scholar
Cornel, J., Lindenberg, C., and Mazzotti, M. Crystal Growth Des. 2009; 9(1):243–52.Google Scholar
Costa, C. B. B., Maciel, M. R. W., and Filho, R. M. Comput. Chem. Eng. 2007; 31:206–18.CrossRefGoogle Scholar
Fevotte, G., Alexandre, C., and Nida, S. O. AIChE J. 2007; 53(10):2578–89.CrossRefGoogle Scholar
Flood, A. E., and Wantha, L. J. Crystal Growth 2013; 373:712.CrossRefGoogle Scholar
Gherras, N., and Fevotte, G. AIChE J. 2012; 58(9):2650–64.CrossRefGoogle Scholar
Granberg, R. A., and Rasmuson, Å. C. AIChE J. 2005; 51(9):2441–56.CrossRefGoogle Scholar
Gunaman, R., Fusman, I. and Braatz, R. D.; High resolution algorithms for multidimensional population balance equations; AIChE J 50(11), 2738 (2004).CrossRefGoogle Scholar
Henk, G. M. Particle Size Measurements: Fundamentals, Practice, Quality. Springer, New York, NY, 2009.Google Scholar
Hermanto, M. W., Kee, N. C., Tan, R. B. H., Chiu, M.-S., and Braatz, R. D. AIChE J. 2008; 54(12):3248–59.Google Scholar
Hu, Q., Rohani, S., Wang, D. X., and Jutan, A. AIChE J. 2004; 50(8):1786–94.Google Scholar
Hu, Q., Rohani, S., and Jutan, A. Comput. Chem. Eng. 2005a; 29:911–18.CrossRefGoogle Scholar
Hu, Q., Rohani, S., Wang, D. X., and Jutan, A. Powder Technol. 2005b; 156:170–76.Google Scholar
Hulburt, H. M., and Katz, S. Chem. Eng. Sci. 1964; 19:555–74.CrossRefGoogle Scholar
Jancic, S. J., and Grootscholten, P. A. M. Industrial Crystallization. Delft University Press, Delft, 1984.Google Scholar
Janse, A. H., and de Jong, E. J. In Industrial Crystallization, ed. Mullin, J. W. Plenum Press, New York, NY, 1976, p. 145.Google Scholar
Jiang, M., Zhu, X., Molaro, M. C., et al. Ind. Eng. Chem. Res. 2014; 53, 5325–36.Google Scholar
Jones, A. G., and Chianese, A. Chem. Eng. Commun. 1987; 62:516.CrossRefGoogle Scholar
Jones, A. G., and Mullin, J. W. Trans. Inst. Chem. Eng. 1973; 51:302–4.Google Scholar
Kim, D. Y., Paul, M., Repke, J.-U., Wozny, G., and Yang, D. R. Korean J. Chem. Eng. 2009; 26(5):1220–25.Google Scholar
Kobari, M., Kubota, N., and Hirasawa, I. Crystal Eng. Commun. 2014; 6:6049–58.Google Scholar
Kumar, J., Warnecke, G., Peglow, M., and Heinrich, S. Powder Technol. 2009; 189:218–29.Google Scholar
Kwon, J. S., Nayhouse, M., Christofides, P. D., and Orkoulas, G. Chem. Eng. Sci. 2013; 104:484–97.Google Scholar
Kwon, J. S., Nayhouse, M., Orkoulas, G., and Christofides, P. D. Chem. Eng. Sci. 2014; 119:3039.Google Scholar
Lindberg, M., and Rasmuson, Å. C. Chem. Eng. Sci. 1999; 54:483–94.Google Scholar
Lindenberg, C., Krättli, M., Cornel, J., and Mazzotti, M. Crystal Growth Des. 2009; 9(2):1124–36.Google Scholar
Lindenberg, C., Schöll, J., Vicum, L., Mazzotti, M., and Brozio, J. Crystal Growth Des. 2008; 8(1):224–37.Google Scholar
Liu, J. J., Hu, Y. D., and Wang, X. Z. Comput. Chem. Eng. 2013; 57B:113–40.Google Scholar
Ma, D. L., Tafti, D. K., and Braaz, R. D. Comput. Chem. Eng. 2002; 26:1103–16.Google Scholar
Ma, C. Y., Wang, X. Z., and Roberts, K. J. Adv. Powder Technol. 2007; 18(6):707–23.CrossRefGoogle Scholar
Ma, C. Y., and Wang, X. Z. Chem. Eng. Sci. 2012a; 70:2230.Google Scholar
Ma, C. Y., Wan, J., and Wang, X. Z. Powder Technol. 2012b; 227:96103.CrossRefGoogle Scholar
Majumder, A. M., Kariwala, V., Ansumali, S., and Rajendran, A. Ind. Eng. Chem. Res. 2010; 49:3862–72.CrossRefGoogle Scholar
Majumder, A. M., Kariwala, V., Ansumali, S., and Rajendran, A. Chem. Eng. Sci. 2012; 70:121–34.Google Scholar
Majumder, A., and Nagy, Z. K. Chem. Eng. Sci. 2013; 101;593602.Google Scholar
Majumder, A., and Nagy, Z. K. Crystal Growth Des. 2015; 15;1129–40.Google Scholar
Manjunath, S., Gandhi, K. S., Kumar, R., and Ramkrishna, D. Chem. Eng. Sci. 1994; 49(9):1451–63.Google Scholar
Marchisio, D. L., and Barresi, A. A. Chem. Eng. Sci. 2003; 58:3579–87.Google Scholar
Merkus, H. G. Particle Size Measurements: Fundamentals, Practice, Quality (Springer Particle Technology Series Vol. 17). Springer, New York, NY, 2009.Google Scholar
Mullin, J. W., and Nývlt, J. Chem. Eng. Sci. 1971; 26:369–77.Google Scholar
Nagy, Z. K., Aamir, E., and Rielly, C. D. Crystal Growth Des. 2011; 11:2205–19.Google Scholar
Nyvlt, J., Söhnel, O., Matuchova, M., and Broul, M. The Kinetics of Industrial Crystallization. Elsevier, Amsterdam, 1985.Google Scholar
Ochsenbein, D. R., Schorsch, S., Vetter, T., Mazzotti, M., and Morari, M. Ind. Eng. Chem. Res. 2014; 53:9136–48.Google Scholar
Orkomi, A. A., and Shahrokhi, M. Chem. Eng. Commun. 2014; 201:870–95.Google Scholar
Oucherif, K. A., Raina, S., Taylor, L. S., and Litster, J. D. Crystal Eng. Commun. 2013; 15:2197–205.Google Scholar
Paengjuntuek, W., Arpornwichanop, A., and Kittisupakorn, P. Chem. Eng. J. 2008; 139:344–50.Google Scholar
Palwe, B. G., Chivate, M. R., and Tavare, N. S. Chem. Eng. Sci. 1984; 39(5):903–5.Google Scholar
Phillips, R., Rohani, S., and Baldyga, J. AIChE J. 1999; 45:8292.Google Scholar
Piton, D., Fox, R. O., and Marcant, B. Can. J. Chem. Eng. 2000; 78:983–93.Google Scholar
Pohar, A., and Likozar, B. Ind. Eng. Chem. Res. 2014; 53:10762–74.Google Scholar
Puel, F., Févotte, G., and Klein, J. P. Chem. Eng. Sci. 2003; 58:3715–27.Google Scholar
Qamar, S., Ashfaq, A., Warnecke, G., et al. Comput. Chem. Eng. 2007; 31:1296–311.Google Scholar
Qamar, S., Mukhtar, S., and Seidel-Morgenstern, A. J. Crystal Growth 2010; 312:2936–45.Google Scholar
Qamar, S., Noor, S., Rehman, M., and Seidel-Morgenstern, A. Comput. Chem. Eng. 2011; 35:412–22.Google Scholar
Qiu, Y., and Rasmuson, Å. C. Chem. Eng. Sci. 1991; 46:1659–67.CrossRefGoogle Scholar
Qiu, Y., and Rasmuson, Å. C. AIChE J. 1994; 40(5):799812.Google Scholar
Quon, J. L., Zhang, H., Alvarez, A., et al. Crystal Growth Des. 2012; 12:3036–44.Google Scholar
Randolph, A. D., and Larsson, M. A. AIChE J. 1962; 8(5):639–45.Google Scholar
Randolph, A. D., and Larson, M. A. Theory of Particulate Processes. Academic Press, New York, NY, 1971, 1988.Google Scholar
Randolph, A. D., and White, E. T. Chem. Eng. Sci. 1977; 32:1067–76.Google Scholar
Ridder, B. J., Majumder, A., and Nagy, Z. K. Ind. Eng. Chem. Res. 2014; 53:4387–97.Google Scholar
Sato, K., Nagai, H., Hasegawa, K., et al. Chem. Eng. Sci. 2008; 63:3271–78.Google Scholar
Schöll, J., Bonalumi, D., Vicum, L., Mazzotti, M., and Muller, M. Crystal Growth Des. 2006; 6(4):881–91.CrossRefGoogle Scholar
Schöll, J., Lindenberg, C., Vicum, L., Mazzotti, M., and Brozio, J. Crystal Growth Des 2007; 7(9):1653–61.Google Scholar
Shaikh, L. J., Ranade, V. V., and Pandit, A. B. Ind. Eng. Chem. Res. 2014; 53:18966–74.Google Scholar
Shoji, M., and Takiyama, H. Crystal Growth Des. 2012; 12:5241–46.Google Scholar
Schorsch, S., Ochsenbein, D. R., Vetter, T., Morari, M., and Mazzotti, M. Chem. Eng. Sci. 2014; 105:155–68.Google Scholar
Schorsch, S., Vetter, T., and Mazzotti, M. Chem. Eng. Sci. 2012; 77:130–42.Google Scholar
Singh, M. R., and Ramkrishna, D. Crystal Growth Des. 2013; 13:1397–411.Google Scholar
Ståhl, M., and Rasmuson, Å. C. Chem. Eng. Sci. 2009; 64:1559–76.Google Scholar
Ståhl, M., Åslund, B. L., and Rasmuson, Å. C. AIChE J. 2001; 47:1544–60.Google Scholar
Steyer, C., Mangold, M., and Sundmacher, K. Ind. Eng. Chem. Res. 2010; 49:2456–68.CrossRefGoogle Scholar
Su, Q.-L., Chiu, M.-S., and Braatz, R. D. AIChE J. 2014; 60(8):2828–38.Google Scholar
Szilagyi, B., Agachi, P. S., and Lakatos, B. G. Powder Technol. 2015; 283:152162.Google Scholar
Tanimoto, A., Kobayashi, K., and Fujita, S. Int. Chem. Eng. 1964; 4(1):153.Google Scholar
Tavare, N. S. Industrial Crystallization: Process Simulation Analysis and Design. Springer Science+Business Media, New York, NY, 1995.CrossRefGoogle Scholar
Torbacke, M., and Rasmuson, Å. C. Chem. Eng. Sci. 2001; 56:2459–73.CrossRefGoogle Scholar
Torbacke, M., and Rasmuson, Å. C. AIChE J. 2004; 50:3107–19.Google Scholar
Uehara-Nagamine, E. Modeling and experimental validation of a single-feed semibatch precipitation process. Ph.D. thesis, Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 2001.Google Scholar
Vetter, T., Burcham, C. L., and Doherty, M. F. Chem. Eng. Sci. 2014; 106:167–80.Google Scholar
Vicum, L., Ottiger, S., Mazotti, M., Makowski, L., and Baldyga, J. Chem. Eng. Sci. 2004; 59:1767–81.Google Scholar
Villermaux, J., and Falk, L. Chem. Eng. Sci. 1994; 49:5127–40.Google Scholar
Wan, J., Wang, X. Z., and Ma, C. Y. AIChE J. 2009; 55(8):2049–61.Google Scholar
Wei, H., Zhou, W., and Garside, J. Ind. Eng. Chem. Res. 2001; 40:5255–61.Google Scholar
Woo, X. Y., Tan, R. B. H., Chow, P. S., and Braatz, R. D. Crystal Growth Des. 2006; 6(6):1291–303.Google Scholar
Zauner, R., and Jones, A. G. Trans. IchemE 2000a; 78 (A):894902.Google Scholar
Zauner, R., and Jones, A. G. Ind. Eng. Chem. Res. 2000b; 39:2392–403.Google Scholar
Zauner, R., and Jones, A. G. Chem. Eng. Sci. 2002; 57:821–31.Google Scholar
Zhang, Y., and Doherty, M. F. AIChE J. 2004; 50(9):2101–12.Google Scholar
Zhang, Y., Liu, J. J., Wan, J., and Wang, X. Z. Adv. Powder Technol. 2015; 26:672–78.Google Scholar
Zhao, Y., Kamarju, V. K., Hou, G., et al. Chem. Eng. Sci. 2015; 133:106–15.Google Scholar
Zhou, L., Wang, S., Xu, D., and Guo, Y. Ind. Eng. Chem. Res. 2014; 53:481–93.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×