Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-01T14:20:35.431Z Has data issue: false hasContentIssue false

Prenatal sensory development

from Part III - Prenatal development and the newborn

Published online by Cambridge University Press:  26 October 2017

Brian Hopkins
Affiliation:
Lancaster University
Elena Geangu
Affiliation:
Lancaster University
Sally Linkenauger
Affiliation:
Lancaster University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Benders, M.J., Palmu, K., Menache, C., Borradori-Tolsa, C., Lazeyras, F., Sizonenko, S.,… & Hüppi, P.S. (2014). Early brain activity relates to subsequent brain growth in premature infants. Cerebral Cortex, 25, 30143024.CrossRefGoogle ScholarPubMed
Eswaran, H., Haddad, N.I., Shihabuddin, B.S., Preissl, H., Siegel, E.R., Murphy, P., & Lowery, C.L. (2007). Non-invasive detection and identification of brain activity patterns in the developing fetus. Clinical Neurophysiology, 118, 19401946.CrossRefGoogle ScholarPubMed
Tymofiyeva, O., Hess, C.P., Ziv, E., Tian, N., Bonifacio, S.L., McQuillen, P.S., … & Xu, D. (2012). Towards the “baby connectome”: Mapping the structural connectivity of the newborn brain. PLoS ONE, 7, e31029.Google Scholar

References

Anderson, A.L., & Thomason, M.E. (2013). Functional plasticity before the cradle: A review of neural functional imaging in the human fetus. Neuroscience & Biobehavioral Reviews, 37, 22202232.CrossRefGoogle ScholarPubMed
Ando, Y., & Hattori, H. (1970). Effects of intense noise during fetal life upon postnatal adaptability (statistical study of the reactions of babies to aircraft noise). Journal of the Acoustical Society of America, 47, 11281130.CrossRefGoogle ScholarPubMed
Aoun, P., Jones, T., Shaw, G.L., & Bodner, M. (2005). Long-term enhancement of maze learning in mice via a generalized Mozart effect. Neurological Research, 27, 791796.CrossRefGoogle Scholar
Aylward, G.P. (2002). Cognitive and neuropsychological outcomes: More than IQ scores. Mental Retardation and Developmental Disabilities Research Reviews, 8, 234240.CrossRefGoogle ScholarPubMed
Azoulay, R., Fallet-Bianco, C., Garel, C., Grabar, S., Kalifa, G., & Adamsbaum, C. (2006). MRI of the olfactory bulbs and sulci in human fetuses. Pediatric Radiology, 36, 97107.Google Scholar
Bahrick, L.E., Lickliter, R., & Flom, R. (2004). Intersensory redundancy guides the development of selective attention, perception, and cognition in infancy. Current Directions in Psychological Science, 13, 99102.Google Scholar
Becker, J., Czamara, D., Scerri, T.S., Ramus, F., pe, V., Talcott, J.B., … & Schumacher, J. (2014). Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort. European Journal of Human Genetics, 22, 675680.CrossRefGoogle ScholarPubMed
Blinowska, K.J., & Kaminski, M. (2013). Functional brain networks: Random, “small world” or deterministic? PLoS ONE, 8, e78763.Google Scholar
Brauer, J., Anwander, A., & Friederici, A.D. (2011). Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21, 459466.CrossRefGoogle ScholarPubMed
Chandrasekar, G., Vesterlund, L., Hultenby, K., Tapia-Páez, I., & Kere, J. (2013). The zebrafish orthologue of the dyslexia candidate gene DYX1C1 is essential for cilia growth and function. PLoS One, 8, e63123.Google Scholar
Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 47, 236246.Google Scholar
Chang, E., & Merzenich, M.M. (2003). Environmental noise retards auditory cortical development. Science, 300, 498502.CrossRefGoogle ScholarPubMed
Cheour, M., Čėponiené, R., Leppänen, P., Alho, K., Kujala, T., Renlund, M., … & Näätänen, R. (2002). The auditory sensory memory trace decays rapidly in newborns. Scandinavian Journal of Psychology, 43, 3339.CrossRefGoogle ScholarPubMed
Crider, K.S., Whitehead, N., & Buus, R.M. (2005). Genetic variation associated with preterm birth: A HuGE review. Genetics in Medicine, 7, 593604.CrossRefGoogle ScholarPubMed
De Araujo, I.E., Rolls, E.T., Kringelbach, M.L., McGlone, F., & Phillips, N. (2003). Taste–olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. European Journal of Neuroscience, 18, 20592068.Google Scholar
De Vries, J.I.P., & Fong, B.F. (2006). Normal fetal motility: An overview. Ultrasound in Obstetrics & Gynecology, 27, 702711.CrossRefGoogle ScholarPubMed
De Vries, J.I.P., Visser, G.H.A., & Prechtl, H.F. (1982). The emergence of fetal behaviour. I. Qualitative aspects. Early Human Development, 7, 301322.CrossRefGoogle ScholarPubMed
DiPietro, J.A., Hodgson, D.M., Costigan, K.A., Hilton, S.C., & Johnson, T.R. (1996). Fetal neurobehavioral development. Child Development, 67, 25532567.CrossRefGoogle ScholarPubMed
Elliott, G.B., & Elliott, K.A. (1964). Some pathological, radiological and clinical implications of the precocious development of the human ear. The Laryngoscope, 74, 11601171.CrossRefGoogle ScholarPubMed
Eswaran, H., Wilson, J.D., Preissl, H., Robinson, S.E., Vrba, J., Murphy, P., … & Lowery, C.L. (2002). Magnetoencephalographic recordings of visual evoked brain activity in the human fetus. Lancet, 360, 779780.CrossRefGoogle ScholarPubMed
Feldman, R., Rosenthal, Z., & Eidelman, A.I. (2014). Maternal–preterm skin-to-skin contact enhances child physiologic organization and cognitive control across the first 10 years of life. Biological Psychiatry, 75, 5664.CrossRefGoogle ScholarPubMed
Finney, E.M., Fine, I., & Dobkins, K.R. (2001). Visual stimuli activate auditory cortex in the deaf. Nature Neuroscience, 4, 11711173.CrossRefGoogle ScholarPubMed
Fulford, J., Vadeyar, S.H., Dodampahala, S.H., Moore, R.J., Young, P., Baker, P.N., … & Gowland, P.A. (2003). Fetal brain activity in response to a visual stimulus. Human Brain Mapping, 20, 239245.Google Scholar
Friederici, A.D., Friedrich, M., & Weber, C. (2002). Neural manifestation of cognitive and precognitive mismatch detection in early infancy. Neuroreport, 13, 12511254.CrossRefGoogle ScholarPubMed
Gibson, J.J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
Granier-Deferre, C., Bassereau, S., Ribeiro, A., Jacquet, A.Y., & DeCasper, A.J. (2011). A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS ONE, 6, e17304.Google Scholar
Griffiths, S.K., Brown, Jr, W.S., Gerhardt, K.J., Abrams, R.M., & Morris, R.J. (1994). The perception of speech sounds recorded within the uterus of a pregnant sheep. Journal of the Acoustical Society of America, 96, 20552063.CrossRefGoogle ScholarPubMed
Hannon, E.E., & Trehub, S.E. (2005). Tuning in to musical rhythms: Infants learn more readily than adults. Proceedings of the National Academy of Sciences of the United States of America, 102, 1263912643.CrossRefGoogle ScholarPubMed
Hannon, E.E., & Trainor, L.J. (2007). Music acquisition: Effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11, 466472.Google Scholar
Hatoum, N., Clapp, J.F., Newman, M.R., Dajani, N., & Amini, S.B. (1997). Effects of maternal exercise on fetal activity in late gestation. Journal of Maternal–Fetal and Neonatal Medicine, 6, 134139.CrossRefGoogle ScholarPubMed
Hooker, D. (1952). Early human fetal activity. Anatomical Record, 113, 503.Google ScholarPubMed
Huotilainen, M. (2010). Building blocks of fetal cognition: Emotion and language. Infant and Child Development, 19, 9498.Google Scholar
Huttenlocher, P. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517527.CrossRefGoogle ScholarPubMed
Hykin, J., Moore, R., Duncan, K., Clare, S., Baker, P., Johnson, I., … & Gowland, P. (1999). Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet, 354, 645646.CrossRefGoogle ScholarPubMed
Jaime, M., Bahrick, L., & Lickliter, R. (2010). The critical role of temporal synchrony in the salience of intersensory redundancy during prenatal development. Infancy, 15, 6182.CrossRefGoogle ScholarPubMed
James, D.K. (2010). Fetal learning: A critical review. Infant and Child Development, 19, 4554.CrossRefGoogle Scholar
Jamon, M. (2104). The development of vestibular system and related functions in mammals: Impact of gravity. Frontiers in Integrative Neuroscience, 8, 11.Google Scholar
Jardri, R., Houfflin-Debarge, V., Delion, P., Pruvo, J., Thomas, P., & Pins, D. (2012). Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. International Journal of Developmental Neuroscience, 30, 159161.Google Scholar
Johnson, M.H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2, 475483.Google Scholar
Katz, L., & Shatz, C. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 11331138.Google Scholar
Keller, P., & Rieger, M. (2009). Editorial comment for Special Issue: Musical movement and synchronization. Music Perception, 26, 397400.Google Scholar
Kiefer-Schmidt, I., Raufer, J., Brändle, J., Münßinger, J., Abele, H., Wallwiener, D., … & Preissl, H. (2013). Is there a relationship between fetal brain function and the fetal behavioral state? A fetal MEG-study. Journal of Perinatal Medicine, 41, 605612.Google Scholar
Kostović, I., & Jovanov-Milošević, N. (2006). The development of cerebral connections during the first 20–45 weeks’ gestation. Seminars in Fetal and Neonatal Medicine, 11, 415422.Google Scholar
Kostović, I., & Judas, M. (2010). The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatrica, 99, 11191127.CrossRefGoogle ScholarPubMed
Kuhl, P.K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5, 831843.CrossRefGoogle ScholarPubMed
Lahav, A. (2015). Questionable sound exposure outside of the womb: Frequency analysis of environmental noise in the neonatal intensive care unit. Acta Paediatrica, 104, e14e18.Google Scholar
Lecanuet, J.P., & Schaal, B. (1996). Fetal sensory competencies. European Journal of Obstetrics & Gynecology and Reproductive Biology, 68, 123.Google Scholar
Leppänen, P.H., Hämäläinen, J.A., Salminen, H.K., Eklund, K.M., Guttorm, T.K., Lohvansuu, K., … & Lyytinen, H. (2010). Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex, 46, 13621376.Google Scholar
Lillo-Martin, D., de Quadros, R.M., Pichler, D.C., & Fieldsteel, Z. (2014). Language choice in bimodal bilingual development. Frontiers in Psychology, 5, 1163.Google Scholar
Maier, J.X., Wachowiak, M., & Katz, D.B. (2012). Chemosensory convergence on primary olfactory cortex. Journal of Neuroscience, 32, 1703717047.Google Scholar
Mampe, B., Friederici, A.D., Christophe, A., & Wermke, K. (2009). Newborns’ cry melody is shaped by their native language. Current Biology, 19, 19941997.Google Scholar
Mao, Y.T., Hua, T.M., & Pallas, S.L. (2011). Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas. Journal of Neurophysiology, 105, 15581573.Google Scholar
Mao, Y.T., & Pallas, S.L. (2013). Cross-modal plasticity results in increased inhibition in primary auditory cortical areas. Neural Plasticity, 2013, 530651.Google Scholar
Martin, R.P., Noyes, J., Wisenbaker, J., & Huttunen, M.O. (1999). Prediction of early childhood negative emotionality and inhibition from maternal distress during pregnancy. Merrill-Palmer Quarterly, 45, 370391.Google Scholar
Martynova, O., Kirjavainen, J., & Cheour, M. (2003). Mismatch negativity and late discriminative negativity in sleeping human newborns. Neuroscience Letters, 340, 7578.Google Scholar
Mistretta, C.M., & Bradley, R.M. (1978). Taste responses in sheep medulla: Changes during development. Science, 202, 535537.Google Scholar
Moon, C.M., & Fifer, W.P. (2000). Evidence of transnatal auditory learning. Journal of Perinatology, 20, S37–44.Google Scholar
Moon, C., Lagercrantz, H., & Kuhl, P.K. (2013). Language experienced in utero affects vowel perception after birth: A two‐country study. Acta Paediatrica, 102, 156160.CrossRefGoogle ScholarPubMed
Moss, E., & St-Laurent, D. (2001). Attachment at school age and academic performance. Developmental Psychology, 37, 863874.CrossRefGoogle ScholarPubMed
Muir, D.W., & Mitchell, D.E. (1973). Visual resolution and experience: Acuity deficits in cats following early selective visual deprivation. Science, 180, 420422.Google Scholar
Nijhuis, J.G., Prechtl, H.F., Martin Jr, C.B., & Bots, R.S. G.M. (1982). Are there behavioural states in the human fetus? Early Human Development, 6, 177195.Google Scholar
Orton, J., Spittle, A., Doyle, L., Anderson, P., & Boyd, R. (2009). Do early intervention programmes improve cognitive and motor outcomes for preterm infants after discharge? A systematic review. Developmental Medicine & Child Neurology, 51, 851859.CrossRefGoogle ScholarPubMed
Parraguez, V.H., Sales, F., Valenzuela, G.J., Vergara, M., Catalán, L., & Serón-Ferré, M. (1998). Diurnal changes in light intensity inside the pregnant uterus in sheep. Animal Reproduction Science, 52, 123130.Google Scholar
Partanen, E., Kujala, T., Näätänen, R., Liitola, A., Sambeth, A., & Huotilainen, M. (2013a). Learning-induced neural plasticity of speech processing before birth. Proceedings of the National Academy of Sciences, 100, 1514515150.CrossRefGoogle Scholar
Partanen, E., Kujala, T., Tervaniemi, M., & Huotilainen, M. (2013b). Prenatal music exposure induces long-term neural effects. PLoS ONE, 8, e78946.CrossRefGoogle ScholarPubMed
Patrick, J., Campbell, K., Carmichael, L., & Probert, C. (1982). Influence of maternal heart rate and gross fetal body movements on the daily pattern of fetal heart rate near term. American Journal of Obstetrics and Gynecology, 144, 533538.CrossRefGoogle ScholarPubMed
Paus, T. (2010). Growth of white matter in the adolescent brain: Myelin or axon? Brain and Cognition, 72, 2635.Google Scholar
Perani, D., Saccuman, M.C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., … & Friederici, A.D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences, 108, 1605616061.CrossRefGoogle ScholarPubMed
Phillips-Silver, J., & Trainor, L.J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308, 14301430.Google Scholar
Plantinga, J., & Trainor, L.J. (2005). Memory for melody: Infants use a relative pitch code. Cognition, 98, 111.CrossRefGoogle ScholarPubMed
Rao, S., Chun, C., Fan, J., Kofron, J.M., Yang, M.B., Hegde, R.S., … & Lang, R.A. (2013). A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature, 494, 243246.Google Scholar
Richards, D.S., Frentzen, B., Gerhardt, K.J., McCann, M.E., & Abrams, R.M. (1992). Sound levels in the human uterus. Obstetrics & Gynecology, 80, 186190.Google Scholar
Salmaso, N., Jablonska, B., Scafidi, J., Vaccarino, F.M., & Gallo, V. (2014). Neurobiology of premature brain injury. Nature Neuroscience, 17, 341346.CrossRefGoogle ScholarPubMed
Schaal, B., Hummel, T., & Soussignan, R. (2004). Olfaction in the fetal and premature infant: Functional status and clinical implications. Clinics in Perinatology, 31, 261285.Google Scholar
Schaal, B., Marlier, L., & Soussignan, R. (1998). Olfactory function in the human fetus: Evidence from selective neonatal responsiveness to the odor of amniotic fluid. Behavioral Neuroscience, 112, 14381449.CrossRefGoogle Scholar
Schöpf, V., Schlegl, T., Jakab, A., Kasprian, G., Woitek, R., Prayer, D., & Langs, G. (2014). The relationship between eye movement and vision develops before birth. Frontiers in Human Neuroscience, 8, 755.Google Scholar
Sheridan, C., Draganova, R., Ware, M., Murphy, P., Govindan, R., Siegel, E.R., … & Preissl, H. (2010). Early development of brain responses to rapidly presented auditory stimulation: A magnetoencephalographic study. Brain and Development, 32, 642657.CrossRefGoogle ScholarPubMed
Small, D.M., Jones-Gotman, M., Zatorre, R.J., Petrides, M., & Evans, A.C. (1997). Flavor processing: More than the sum of its parts. Neuroreport, 8, 39133917.CrossRefGoogle Scholar
Spence, M.J., & DeCasper, A.J. (1987). Prenatal experience with low-frequency maternal-voice sounds influence neonatal perception of maternal voice samples. Infant Behavior and Development, 10, 133142.Google Scholar
Starr, A., Amlie, R.N., Martin, W.H., & Sanders, S. (1977). Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics, 60, 831839.Google Scholar
Thomason, M.E., Grove, L.E., Lozon, T.A., Vila, A.M., Ye, Y., Nye, M.J., … & Romero, R. (2015). Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero. Developmental Cognitive Neuroscience, 11, 96104.Google Scholar
Van den Bergh, B., Mulder, E., Mennes, M, & Glover, V. (2005). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms. A review. Neuroscience and Biobehavioral Reviews, 29, 237258.Google Scholar
Vanhatalo, S., & Kaila., K. (2006). Development of neonatal EEG activity: From phenomenology to physiology. Seminars in Fetal Neonatal Medicine, 11, 471478.Google Scholar
Wallace, M.T. (2004). The development of multisensory processes. Cognitive Processing, 5, 6983.Google Scholar
Werker, J.F., & Tees, R.C. (1999). Influences on infant speech processing: Toward a new synthesis. Annual Review of Psychology, 50, 509535.Google Scholar
Yakovlev, P.I., & Lecours, A.R. (1967). The myelogenetic cycles of regional maturation of the brain. In Minkowski, A. (Ed.), Regional development of the brain in early life (pp. 370). Oxford, UK: Blackwell.Google Scholar
Yates, B.J. (1996). Vestibular influences on the autonomic nervous system. Annals of the New York Academy of Sciences, 781, 458473.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×