Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-30T19:02:23.152Z Has data issue: false hasContentIssue false

4 - Interacting Interannual Variability of the Pacific and Atlantic Oceans

Published online by Cambridge University Press:  13 January 2021

Get access

Summary

The previous chapters have addressed the variability of the oceans and the fundamental understanding of the mechanisms at work for such variability. The basic concepts of teleconnections between ocean basins through the atmosphere were also examined. This chapter focuses on the principal modes of interannual variability of the coupled atmosphere–ocean system in the tropical Pacific and Atlantic Oceans and discusses the special ways in which these modes can influence each other.

Type
Chapter
Information
Interacting Climates of Ocean Basins
Observations, Mechanisms, Predictability, and Impacts
, pp. 120 - 152
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M., Scott, J. (2002). The influence of ENSO on air‐sea interaction in the Atlantic. Geophysical Research Letters, 29(14), doi.org/10.1029/2001GL014347.Google Scholar
Amaya, D. J., Foltz, G. R. (2014). Impacts of canonical and Modoki El Niño on tropical Atlantic SST. Journal of Geophysical Research: Oceans, 119(2), 777789.CrossRefGoogle Scholar
An, S.-I, Jin, F.-F. (2001). Collective role of thermocline and zonal advective feedbacks in the ENSO mode. Journal of Climate, 14, 34213432.Google Scholar
An, S.-I. (2009). A review of interdecadal changes in the nonlinearity of the El Niño–southern oscillation. Theoretical and Applied Climatology, 97, 2940, doi:10.1007/s00704-008-0071-z.Google Scholar
Ayarzagüena, B., López-Parages, J., Iza, M., et al. (2019). Stratospheric role in interdecadal changes of El Niño impacts over Europe. Climate Dynamics, 52(1–2), 11731186.CrossRefGoogle Scholar
Barreiro, M., Chang, P., Ji, L., et al. (2005). Dynamical elements of predicting boreal spring tropical Atlantic sea-surface temperatures. Dynamics of Atmospheres and Oceans, 39(1–2), 6185.CrossRefGoogle Scholar
Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97, 163172, doi:10.1175/1m520.Google Scholar
Brandt, P., Funk, A., Hormann, V., et al. (2011). Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean. Nature, 473(7348), 497500.CrossRefGoogle ScholarPubMed
Branstator, G. (1983). Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. Journal of Atmospheric Sciences, 40, 16891708.2.0.CO;2>CrossRefGoogle Scholar
Breugem, W. P., Hazeleger, W., Haarsma, R. J. (2006). Multimodel study of tropical Atlantic variability and change. Geophysical Research Letters, 33, L23706, doi:10.1029/2006GL027831.Google Scholar
Breugem, W. P., Hazeleger, W., Haarsma, R. J. (2007). Mechanisms of northern tropical Atlantic variability and response to CO2 doubling. Journal of Climate, 20(11), 26912705.Google Scholar
Bunge, L., Clarke, A. J. (2014). On the warm water volume and its changing relationship with ENSO. Journal of Physical Oceanography, 44(5), 13721385.CrossRefGoogle Scholar
Cai, W., Santoso, A., Wang, G., Weller, E., Wu, L., Ashok, K., Masumoto, Y., Yamagata, T. (2014). Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 510(7504), 254258.CrossRefGoogle ScholarPubMed
Cai, W., Santoso, A., Wang, G., Yeh, S. W., An, S. I., Cobb, K. M., Collins, M., Guilyardi, E., Jin, F.-F., Kug, J. S., Lengaigne, M., McPhaden, M. J., Takahashi, K., Timmermann, A., Vecchi, G., Watanabe, M., Wu, L. (2015). ENSO and greenhouse warming. Nature Climate Change, 5(9), 849.Google Scholar
Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., McPhaden, M. J. (2018). Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206.Google Scholar
Cai, W., Wu, L., Lengaigne, M. Li, T., McGregor, S., Kug, J.-S., Yu, J.-Y., Stuecker, M. F., Santoso, A., Li, X., Ham, Y.-G., Chikamoto, Y., Ng, B., McPhaden, M. J., Du, Y., Dommenget, D., Jia, F., Kajtar, J. B., Keenlyside, N. S., Lin, X., Luo, J.-J., Martín del Rey, M., Ruprich-Robert, Y., Wang, G., Xie, S.-P., Yang, Y., Kang, S. M., Choi, J.-Y., Gan, B., Kim, G.-I. Kim, C.-E., Kim, S., Kim, J.-H., Chang, P. (2019). Pan-tropical climate interactions. Science, 36(6430), eaav4236.Google Scholar
Cane, M. A., Zebiak, S. E. (1985). A theory for El Niño and the southern oscillation. Science, 228(4703), 10851087, doi:10.1126/science.228.4703.1085.Google Scholar
Cassou, C., Terray, L., Phillips, A. S. (2005). Tropical Atlantic influence on European heat waves. Journal of Climate, 18(15), 28052811.Google Scholar
Chang, P., Fang, Y., Saravanan, R., Ji, L., Seidel, H. (2006). The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328.Google Scholar
Chen, S., Wu, R., Chen, W. (2014). The changing relationship between interannual variations of the North Atlantic Oscillation and Northern Tropical Atlantic SST. Journal of Climate, 28, 485504.Google Scholar
Chiang, J. C. H., Sobel, A. H. (2002). Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. Journal of Climate, 15(18), 26162631.Google Scholar
Choi, J., An, S.-I., Kug, J. S., Yeh, S. W. (2011). The role of mean state on changes in El Niño’s flavor. Climate Dynamics, 37, 12051215.CrossRefGoogle Scholar
Choi, J., An, S.-I., Yeh, S.-W. (2012). Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dynamics, 38, 26312644.Google Scholar
Collins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F. F., Jochum, M., Legaigne, M., Power, S., Timmerman, A., Vecchi, G., Wittenberg, A. (2010). The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 3(6), 391397.Google Scholar
Czaja, A., Van der Vaart, P., Marshall, J. (2002). A diagnostic study of the role of remote forcing in tropical Atlantic variability. Journal of Climate, 15(22), 32803290.Google Scholar
Czaja, A. (2004). Why is north tropical Atlantic SST variability stronger in boreal spring? Journal of Climate, 17(15), 30173025.2.0.CO;2>CrossRefGoogle Scholar
Dayan, H., Vialard, J., Izumo, T., Lengaigne, M. (2014). Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Climate Dynamics, 43(5–6), 13111325.Google Scholar
DiNezio, P. N., Kirtman, B. P., Clement, A. C., Lee, S.-K., Vecchi, G. A., Wittenberg, A. (2012). Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. Journal of Climate, 25(21), 73997420.Google Scholar
Ding, H., Keenlyside, N. S., Latif, M. (2012). Impact of the equatorial Atlantic on the El Nino Southern Oscillation. Climate Dynamics, 38, 19651972.CrossRefGoogle Scholar
Dommenget, D., Semenov, V., Latif, M. (2006). Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophysical Research Letters, 33, L11701.Google Scholar
Dommenget, D., Yu, Y. (2017). The effects of remote SST forcings on ENSO dynamics, variability and diversity. Climate Dynamics, 49(7–8), 26052624.Google Scholar
Dong, B., Sutton, R. T., Scaife, A. A. (2006). Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophysical Research Letters, 33(8), doi:10.1029/2006GL025766.Google Scholar
Dong, B., Sutton, R. T. (2007). Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. Journal of Climate, 20, 49204939.CrossRefGoogle Scholar
Dong, B., Zhou, T. (2014). The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO. Journal of Geophysical Research: Atmosphere, 119, 1127211287.Google Scholar
Enfield, D. B., Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. Journal of Geophysical Research, 102, 929945.CrossRefGoogle Scholar
Enfield, D. B., Mestas‐Nuñez, A. M., Trimble, P. J. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophysical Research Letters, 28(10), 20772080.Google Scholar
Enfield, D. B., Lee, S.-K., Wang, C. (2006). How are large Western Hemisphere warm pools formed? Progress in Oceanography, 70, 346365.Google Scholar
Fang, G., Huang, B. (2019). Seasonal predictability of the tropical Atlantic variability: Northern tropical Atlantic pattern. Climate Dynamics, 52(11), 69096929.Google Scholar
Fedorov, A., Philander, S. G. H. (2000). Is El Niño changing? Science, 288, 19972002.Google Scholar
Feng, J., Chen, W., Li, Y. (2017). Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO. Climate Dynamics, 48, 21352151.Google Scholar
Foltz, G. R., McPhaden, M. J. (2010a). Interaction between the Atlantic meridional and Niño modes. Geophysical Research Letters, 37, L18604, doi:10.1029/2010GL044001.CrossRefGoogle Scholar
Foltz, G. R., McPhaden, M. J. (2010b). Abrupt equatorial wave‐induced cooling of the Atlantic cold tongue in 2009. Geophysical Research Letters, 37, L24605, doi:10.1029/2010GL045522.CrossRefGoogle Scholar
Frauen, C., Dommenget, D. (2012). Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophysical Research Letters, 39, L02706, doi:10.1029/2011GL050520.Google Scholar
Frauen, C., Dommenget, D., Tyrrell, N., Rezny, M., Wales, S. (2014). Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. Journal of Climate, 27, 62256244.Google Scholar
García-Serrano, J., Cassou, C., Douville, H., Giannini, A., Doblas-Reyes, F. J. (2017). Revisiting the ENSO teleconnection to the tropical North Atlantic. Journal of Climate, 30(17), 69456957.CrossRefGoogle Scholar
Giannini, A., Chiang, J. C., Cane, M. A., Kushnir, Y., Seager, R. (2001). The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. Journal of Climate, 14(24), 45304544.Google Scholar
Giannini, A., Saravanan, R., Chang, P. (2004). The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: Implications for the prediction of Nordeste rainfall. Climate Dynamics, 22(8), 839855.CrossRefGoogle Scholar
Gill, A. E. (1980). Some simple solutions for heat‐induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106(449), 447462.Google Scholar
Goldenberg, S. B., Shapiro, L. J. (1996). Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity, Journal of Climate, 9, 11691187.Google Scholar
Goldenberg, S. B., Landsea, C., Mestas-Nuñez, A. M., Gray, W. M. (2001). The recent increase in Atlantic hurricane activity, Science, 293, 474479.CrossRefGoogle ScholarPubMed
Graf, H.-F., Zanchettin, D. (2012). Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. Journal of Geophysical Research-Atmospheres, 117, D01102.CrossRefGoogle Scholar
Ham, Y.-G., Kug, J.-S., Kang, I.-S. (2007). Role of moist energy advection in formulating anomalous Walker Circulation associated with El Niño. Journal of Geophysical Research-Atmospheres, 112(24), 110.Google Scholar
Ham, Y.-G., Kug, J.-S., Park, J.-Y. (2013a). Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophysical Research Letters, 40, 40124017.Google Scholar
Ham, Y.-G., Kug, J.-S., Park, J.-Y., Jin, F.-F. (2013b). Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geoscience, 6(2), 112116.Google Scholar
Handoh, I. C., Matthews, A. J., Bigg, G. R., Stevens, D. P. (2006a). Interannual variability of the Tropical Atlantic independent of and associated with ENSO: Part I. The North Tropical Atlantic. International Journal of Climatology, 26(14), 19371956.Google Scholar
Handoh, I. C., Bigg, G. R., Matthews, A. J., Stevens, D. P. (2006b). Interannual variability of the Tropical Atlantic independent of and associated with ENSO: Part II. The South Tropical Atlantic. International Journal of Climatology, 26(14), 19571976.Google Scholar
Hastenrath, S. (2000). Interannual and longer-term variability of upper air circulation in the Northeast Brazil–tropical Atlantic sector. Journal of Geophysical Research-Atmosphere, 105(D6), 73227335.Google Scholar
Hastenrath, S. (2006). Circulation and teleconnection mechanisms of Northeast Brazil droughts. Progress in Oceanography, 70, 407415.Google Scholar
Hu, Z.-Z., Kumar, A., Ren, H.-L., Wang, H., L’Heureux, M., Jin, F.-F. (2012). Weakened Interannual Variability in the Tropical Pacific Ocean since 2000. Journal of Climate, 26, 26012613.Google Scholar
Hurwitz, M. M., Calvo, N., Garfinkel, C. I., Butler, A. H., Ineson, S., Cagnazzo, C., Manzini, E., Peña-Ortiz, C. (2014). Extra-tropical atmospheric response to ENSO in the CMIP5 models. Climate Dynamics, 43(12), 33673376.Google Scholar
Imada, Y., Kimoto, M. (2009). ENSO amplitude modulation related to Pacific decadal variability. Geophysical Research Letters, 36(3), L03706, doi:10.1029/2008GL036421.Google Scholar
Jansen, M., Dommenget, D., Keenlyside, N. S. (2009). Tropical atmosphere–ocean interactions in a conceptual framework. Journal of Climate, 22(3), 550567, doi:10.1175/2008JCLI2243.1.Google Scholar
Jia, F., Wu, L., Gan, B., Cai, W. (2016). Global warming attenuates the tropical Atlantic-Pacific teleconnection. Scientific Reports, 6, 20078.CrossRefGoogle ScholarPubMed
Jin, F.-F. (1997). An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model. Journal of Atmospheric Sciences, 54(7), 811829.Google Scholar
Johnson, N. C. (2013). How many ENSO flavors can we distinguish? Journal of Climate, 26, 48164827.Google Scholar
Kalnay, E., Kanamitsu, M., Kistler, R., et al. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437471.Google Scholar
Kang, I.-S., No, H.-H., Kucharski, F. (2014). ENSO Amplitude modulation associated with the mean SST changes in the Tropical Central Pacific induced by Atlantic Multidecadal Oscillation. Journal of Climate, 27, 79117920.Google Scholar
Kao, H.-Y., Yu, J.-Y. (2009). Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. Journal of Climate, 22, 615632.Google Scholar
Keenlyside, N. S., Latif, M. (2007). Understanding equatorial Atlantic interannual variability. Journal of Climate, 30, 131142.Google Scholar
Keenlyside, N. S., Ding, H., Latif, M. (2013). Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophysical Research Letters, 40(10), 22782283.Google Scholar
Kim, S. T., Yu, J.-Y. (2012). The two types of ENSO in CMIP5 models. Geophysical Research Letters, 39, L11704, doi:10.1029/2012GL052006.CrossRefGoogle Scholar
Knaff, J. A. (1997). Implications of summertime sea level pressure anomalies in the tropical Atlantic region. Journal of Climate, 10, 789804.2.0.CO;2>CrossRefGoogle Scholar
Kucharski, F., Kang, I. S., Farneti, R., Feudale, L. (2011). Tropical Pacific response to 20th century Atlantic warming. Geophysical Research Letters, 38, L03702, doi:10.1029/2010GL046248.Google Scholar
Kucharski, F., Syed, F. S., Burhan, A., Farah, I., Gohar, A. (2015a). Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Climate Dynamics, 44, 881896.Google Scholar
Kucharski, F., Farah Ikram, F., Molteni, F., Farneti, R., Kang, I. S., No, H.-H., King, M. P., Giuliani, G., Mogensen, K. (2015b). Atlantic forcing of Pacific decadal variability. Climate Dynamics, 46, 23372351.Google Scholar
Kucharski, F., Parvin, A., Rodríguez-Fonseca, B., Farneti, R., Martín-Rey, M., Polo, I., Mohino, E., Losada, T., Mechoso, C. R. (2016). The teleconnection of the Tropical Atlantic to Indo-Pacific Sea Surface Temperatures on Inter-Annual to Centennial Times Scales: A review of recent findings. Atmosphere, 7, 29, doi: 10.3390/atmos7020029.CrossRefGoogle Scholar
Kug, J. S., Jin, F.-F., An, S.-I. (2009). Two types of El Nino events: Cold Tongue El Nino and Warm Pool El Nino. Journal of Climate, 22, 14991515.Google Scholar
Kug, J. S., Choi, J., An, S.-I., Jin, F.-F., Wittenberg, A. T. (2010). Warm Pool and Cold Tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. Journal of Climate, 23, 12261239.Google Scholar
Kug, J.-S., Ham, Y.-G. (2011). Are there two types of La Niña? Geophysical Research Letters, 38, L16704, doi:10.1029/2011GL048237.Google Scholar
Larson, S., Lee, S.-K., Wang, C., Ching, C., Enfield, E.-S., D. (2012). Impacts of non-canonical El Niño patterns on Atlantic hurricane activity. Geophysical Research Letters, 39, L14706, doi:10.1029/2012GL052595.Google Scholar
Latif, M., Grötzner, A. (2000). The equatorial Atlantic oscillation and its response to ENSO. Climate Dynamics, 16(2-3), 213218.Google Scholar
Latif, M., Semenov, V. A., Park, W. (2015). Super El Niños in response to global warming in a climate model. Climatic Change, 132, 489500.Google Scholar
Lau, N.-C., Nath, M. J. (2001). Impact of ENSO on SST variability in the North Pacific and North Atlantic: Seasonal dependence and role of extratropical air-sea coupling, Journal of Climate, 14, 28462866.Google Scholar
Lee, S.-K., Enfield, D. B., Wang, C. (2008). Why do some El Niños have no impact on tropical North Atlantic SST? Geophysical Research Letters, 35, L16705, doi:10.1029/2008GL034734.CrossRefGoogle Scholar
Lee, T., McPhaden, M. J. (2008). Decadal phase change in large‐scale sea level and winds in the Indo‐Pacific region at the end of the 20th century. Geophysical Research Letters, 35(1), L01605, doi:10.1029/2007GL032419.Google Scholar
Lee, T., McPhaden, M. J. (2010). Increasing intensity of El Niño in the central-equatorial Pacific. Geophysical Research Letters, 37, L14603, doi:10.1029/2007GL032419.Google Scholar
Lee, S.-K., Wang, C., Mapes, B. E. (2009). A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. Journal of Climate, 22, 272284, doi.org/10.1175/2008JCLI2303.1.Google Scholar
Lee, S.-K., DiNezio, P. N., Chung, E. S., Yeh, S.-W., Wittenberg, A. T., Wang, C. (2014). Spring persistence, transition and resurgence of El Nino. Geophysical Research Letters, 41, 85788585.Google Scholar
Lee, S.-K., Wittenberg, A. T., Enfield, D. B., Weaver, S. J., Wang, C., Atlas, R. (2016). U.S. regional tornado outbreaks and their links to ENSO flavors and North Atlantic SST variability. Environmental Research Letters, 11(4), doi: 10.1088/1748-9326/11/4/044008.Google Scholar
Levine, A. F., McPhaden, M. J., Frierson, D. M. (2017). The impact of the AMO on multidecadal ENSO variability. Geophysical Research Letters, 44(8), 38773886.Google Scholar
Liu, P., Sui, C.–H. (2014). An observational analysis of the oceanic and atmospheric structure of global-scale multi-decadal variability. Advances in Atmospheric Sciences, 31, 316330.Google Scholar
Losada, T., Rodríguez-Fonseca, B., Polo, I, Janicot, S., Gervois, S., Chauvin, F., Ruti, P. (2010). Tropical response to the Atlantic equatorial mode: AGCM multimodel approach. Climate Dynamics, 35(1), 4552.Google Scholar
Losada, T., Rodríguez-Fonseca, B., Mohino, E., Bader, J., Janicot, S., Mechoso, C. R. (2012). Tropical SST and Sahel rainfall: A non-stationary relationship. Geophysical Research Letters, 39, L12705, doi:10.1029/2012GL052423.Google Scholar
Losada, T., Rodríguez-Fonseca, B. (2016). Tropical atmospheric response to decadal changes in the Atlantic Equatorial Mode. Climate Dynamics, 47, 12111224.Google Scholar
Lübbecke, J. F., Böning, C. W., Keenlyside, N. S., Xie, S.-P. (2010). On the connection between Benguela and equatorial Atlantic Niños and the role of the South Atlantic Anticyclone. Journal of Geophysical Research: Oceans, 115, C09015, doi:10.1029/2009JC00596.CrossRefGoogle Scholar
Lübbecke, J. F., McPhaden, M. J. (2012) On the inconsistent relationship between Pacific and Atlantic Niños. Journal of Climate, 25, 42944303.CrossRefGoogle Scholar
Lübbecke, J. F., Burls, N. J., Reason, C. J. C., McPhaden, M. J. (2014). Variability in the South Atlantic anticyclone and the Atlantic Niño mode. Journal of Climate, 27, 81358150.Google Scholar
Lübbecke, J. F., Rodríguez-Fonseca, B., Richter, I., Martin-Rey, M., Losada, T., Polo, I., Keenlyside, N. S. (2018). Equatorial Atlantic variability—Modes, mechanisms, and global teleconnections. WIREs Climate Change, 9(4), e527.CrossRefGoogle Scholar
Martin-Rey, M., Rodriguez-Fonseca, B., Polo, I., Kucharski, F. (2014). On the Atlantic-Pacific Ninos connection: A multidecadal modulated mode. Climate Dynamics, 43, 31633178.Google Scholar
Martin-Rey, M., Rodriguez-Fonseca, B., Polo, I. (2015). Atlantic opportunities for ENSO prediction. Geophysical Research Letters, 42, 68026810.Google Scholar
Martín-Rey, M., Polo, I., Rodríguez-Fonseca, B., Losada, T., Lazar, A. (2018). Is there evidence of changes in tropical Atlantic variability modes under AMO phases in the observational record? Journal of Climate, 31, 515536.Google Scholar
Martín-Rey, M., Lazar, A. (2019). Is the boreal spring tropical Atlantic variability a precursor of the Equatorial Mode? Climate Dynamics, 53(3), 23392353.CrossRefGoogle Scholar
Martín-Rey, M., Polo, I., Rodríguez-Fonseca, B., Lazar, A., Losada, T. (2019). Ocean dynamics shapes the structure and timing of tropical Atlantic variability modes. Journal of Geophysical Research: Oceans, 124(11), 75297544.Google Scholar
McPhaden, M. J. (2008). Evolution of the 2006–07 El Niño: The role of intraseasonal to interannual time scale dynamics. Advances in Geoscience, 14, 219230, doi:10.5194/adgeo-14-219-2008.Google Scholar
McPhaden, M. Lee, T., McClurg, D. (2011). El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophysical Research Letters, 38, L15709, doi:10.1029/2011GL048275.Google Scholar
McPhaden, M. J. (2012). A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophysical Research Letters, 39, L09706, doi:10.1029/2012GL051826.Google Scholar
Mechoso, C. R., Robertson, A. W., Barth, N., Davey, M. K., Delecluse, P., Gent, P. R., Ineson, S., Kirtman, B., Latif, M., Le Treut, L., Nagai, T., Neelin, J. D., Philander, S. G. H., Polcher, J., Schopf, P. S., Stockdale, T., Suarez, M. J., Terray, L., Thual, O., Tribbia, J. J. (1995). The seasonal cycle over the Tropical Pacific in General Circulation Models. Monthly Weather Review, 123, 28252838.Google Scholar
Meinen, C. S., McPhaden, M. J. (2000). Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. Journal of Climate, 13(20), 35513559.Google Scholar
Neske, S., McGregor, S. (2018). Understanding the warm water volume precursor of ENSO events and its interdecadal variation. Geophysical Research Letters, 45(3), 15771585.CrossRefGoogle Scholar
Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., Mantua, N. J., Miller, A. J., Minobe, S., Nakamura, H., Schneider, N. (2016). The Pacific decadal oscillation, revisited. Journal of Climate, 29, 43994427.Google Scholar
Nnamchi, H. C., Li, J., Kucharski, F., Kang, I.-S., Keenlyside, N. S., Chang, P., Farneti, R. (2015). Thermodynamic controls of the Atlantic Niño. Nature Communications, 6, 8895.Google Scholar
Nnamchi, H. C., Li, J., Kucharski, F., Kang, I. S., Keenlyside, N. S., Chang, P., Farneti, R. (2016). An equatorial–extratropical dipole structure of the Atlantic Niño. Journal of Climate, 29(20), 72957311.Google Scholar
Oettli, P., Morioka, Y., Yamagata, T. (2016). A regional climate mode discovered in the North Atlantic: Dakar Niño/Niña. Scientific Reports, 6, 18782.CrossRefGoogle ScholarPubMed
Ott, I., Romberg, K., Jacobeit, J. (2014). Teleconnections of the tropical Atlantic and Pacific Oceans in a CMIP5 model ensemble. Climate Dynamics, 44 (11–12), 30433055.Google Scholar
Park, J. H., Kug, J. S., Li, T., Behera, S. K. (2018). Predicting El Niño beyond 1-year lead: Effect of the Western Hemisphere warm pool. Scientific Reports, 8(1), 14957.Google Scholar
Park, J. H., Li, T. (2019). Interdecadal modulation of El Niño–tropical North Atlantic teleconnection by the Atlantic multi-decadal oscillation. Climate Dynamics, 52, 53455360.Google Scholar
Pezzi, L. P, Cavalcanti, I. F. A. (2001). The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: A numerical study. Climate Dynamics, 17, 205212.CrossRefGoogle Scholar
Polo, I, Rodríguez-Fonseca, B., Losada, T., García-Serrano, J. (2008). Tropical Atlantic variability modes (1979–2002). Part I: Time evolving SST modes related to West African rainfall. Journal of Climate 21, 64576475.Google Scholar
Polo, I., Dong, B., Sutton, R. (2013). Changes in tropical Atlantic interannual variability from a substantial weakening of the meridional overturning circulation. Climate Dynamics, 41, 27652784.Google Scholar
Polo, I., Martín-Rey, M., Rodriguez-Fonseca, B., Kucharski, F., Mechoso, C. R. (2015). Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dynamics, 44, 115131.Google Scholar
Ren, H. L., Scaife, A. A., Dunstone, N., Tian, B., Liu, Y., Ineson, S., Lee, J. Y., Smith, D., Liu, C., Thompson, V., Vellinga, M., MacLahlan, C., (2019). Seasonal predictability of winter ENSO types in operational dynamical model predictions. Climate Dynamics, 52(7–8), 38693890.Google Scholar
Richter, I., Xie, S.-P. (2008). On the origin of equatorial Atlantic biases in coupled general circulation models. Climate Dynamics, 31, 587598.Google Scholar
Richter, I., Behera, S. K., Masumoto, Y., Taguchi, B., Sasaki, H., Yamagata, T. (2013). Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nature Geoscience, 6, 4347.Google Scholar
Richter, I., Behera, S. K., Doi, T., Taguchi, B., Masumoto, Y., Xie, S.-P. (2014). What controls equatorial Atlantic winds in boreal spring? Climate Dynamics, 43, 30913104.Google Scholar
Rodríguez-Fonseca, B., Polo, I., García-Serrano, J., Losada, T., Mohino, E., Mechoso, C. R., Kucharski, F. (2009). Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophysical Research Letters, 36, L20705, doi:10.1029/2009GL040048.Google Scholar
Rodrigues, R. R., Haarsma, R. J., Campos, E. J., Ambrizzi, T. (2011). The impacts of inter-El Niño variability on the tropical Atlantic and northeast Brazil climate. Journal of Climate, 24(13), 34023422.Google Scholar
Rodrigues, R. R., McPhaden, M. J. (2014). Why did the 2011–2012 La Niña cause a severe drought in the Brazilian Northeast? Geophysical Research Letters, 41, 10121018.Google Scholar
Rodrigues, R. R., Campos, E. J., Haarsma, R. (2015). The impact of ENSO on the South Atlantic subtropical dipole mode. Journal of Climate, 28, 26912705.CrossRefGoogle Scholar
Roy, C., Reason, C. (2001). ENSO related modulation of coastal upwelling in the eastern Atlantic. Progress in Oceanography, 49(1–4), 245255.CrossRefGoogle Scholar
Ruprich-Robert, Y., Delworth, T., Msadek, R., Castruccio, F., Yeager, S., Danabasoglu, G. (2018). Impacts of the Atlantic Multidecadal Variability on North American Summer Climate and Heat Waves. Journal of Climate, 31(9), 36793700.Google Scholar
Saravanan, R., Chang, P. (2000). Interaction between tropical Atlantic variability and El Niño–Southern oscillation. Journal of Climate, 13(13), 21772194.Google Scholar
Sardeshmukh, P. D., Hoskins, B. J. (1988). The generation of global rotational flow by steady idealized tropical divergence. Journal of Atmospheric Sciences, 45, 12281251.Google Scholar
Sasaki, W., Doi, T., Richards, K. J., Masumoto, Y. (2015). The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM. Climate Dynamics, 44(1–2), 191202.Google Scholar
Servain, J., Caniaux, G., Kouadio, Y. K., McPhaden, M. J., Araujo, M. (2014). Recent climatic trends in the tropical Atlantic. Climate Dynamics, 43, 30713089, doi:10.1007/s00382–014-2168-7.Google Scholar
Suarez, M. J., Schopf, P. S. (1988). A delayed action oscillator for ENSO. Journal of Atmospheric Sciences, 45, 32833287.2.0.CO;2>CrossRefGoogle Scholar
Sung, M.-K., Kim, B.-M., An, S.-I. (2014). Altered atmospheric responses to eastern Pacific and central Pacific El Niños over the North Atlantic region due to stratospheric interference. Climate Dynamics, 42, 159170.CrossRefGoogle Scholar
Sutton, R. T., Hodson, D. R. L. (2007). Climate response to Basin-Scale Warming and Cooling of the North Atlantic Ocean. Journal of Climate, 20, 891907.Google Scholar
Svendsen, L., Kvamstø, N., Keenlyside, N. S. (2014). Weakening AMOC connects Equatorial Atlantic and Pacific interannual variability. Climate Dynamics, 43, 29312941.Google Scholar
Taschetto, A. S., Rodrigues, R. R., Meehl, G. A., McGregor, S., England, M. H. (2016). How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming? Climate Dynamics, 46, 18411860.CrossRefGoogle Scholar
Timmermann, A., An, S.-I., Krebs, U., Goosse, H. (2005). ENSO suppression due to weakening of the north Atlantic thermohaline circulation. Journal of Climate, 18, 31223139.Google Scholar
Timmermann, A., Okumara, Y., An, S. I., Coauthors, . (2007). The Influence of a Weakening of the Atlantic Meridional Overturning Circulation on ENSO. Journal of Climate, 20, 48994919.CrossRefGoogle Scholar
Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., Cobb, K., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K., Wittenberg, A. T., Yun, K.-S., Bayr, T., Chen, H.-C., Chikamoto, Y., Dewitte, B., Dommenget, D., Grothe, P., Guilyardi, E., Ham, Y.-G., Hayashi, M., Ineson, S., Kang, D., Kim, S., Kim, W., Lee, J.-Y., Li, T., Luo, J.-J., McGregor, S., Planton, Y., Power, S., Rashid, H., Ren, H.-L., Santoso, A., Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R., Yang, W.-H., Yeh, S.-W., Yoon, J., Zeller, E., Zhang, X., (2018). El Niño–Southern Oscillation complexity. Nature, 559, 535545.Google Scholar
Ting, M., Held, I. M. (1990). The stationary wave response to tropical SST anomaly in an idealized GCM. Journal of Atmospheric Sciences, 47, 25462566.Google Scholar
Ting, M., Kushnir, Y., Seager, R., Li, C. (2011). Robust features of Atlantic multi‐decadal variability and its climate impacts. Geophysical Research Letters, 38(17), L17705, doi:10.1029/2011GL048712.Google Scholar
Tokinaga, H., Xie, S.-P. (2011). Weakening of the equatorial Atlantic cold tongue over the past six decades. Nature Geoscience, 4, 222226.Google Scholar
Tokinaga, H., Richter, I., Kosaka, Y. (2019). ENSO influence on the Atlantic Niño, revisited: Multi-year versus single-year ENSO events. Journal of Climate, 32, 45854599.Google Scholar
Trenberth, K. E., Fasullo, J. T. (2012). Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. Journal of Geophysical Research: Atmospheres, 117, D17103, doi:10.1029/2012JD018020.Google Scholar
Vera, C., Silvestri, G., Barros, V., Carril, A. (2004). Differences in El Niño response over the Southern Hemisphere. Journal of Climate, 17, 17411753.Google Scholar
Vimont, D. J., Kossin, J. P. (2007). The Atlantic Meridional Mode and hurricane activity, Geophysical Research Letters, 34, L07709, doi:10.1029/2007GL029683.CrossRefGoogle Scholar
Wang, C. (2002). Atlantic climate variability and its associated atmospheric circulation cells. Journal of Climate, 15(13), 15161536.Google Scholar
Wang, C. (2006). An overlooked feature of tropical climate: Inter-Pacific–Atlantic variability. Geophysical Research Letters, 33, L12702, doi:10.1029/2006GL026324.Google Scholar
Wang, C., Enfield, D. B., Lee, S.-K., Landsea, C. W. (2006). Influences of Atlantic warm pool on Western Hemisphere summer rainfall and Atlantic hurricanes. Journal of Climate, 19, 30113028, doi.org/10.1175/JCLI3770.1.Google Scholar
Wang, C., Lee, S.-K. (2007). Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophysical Research Letters, 34, L02703, doi:10.1029/2006GL028579.Google Scholar
Wang, C., Lee, S.-K., Enfield, D. B. (2008). Climate response to anomalously large and small Atlantic warm pools during the summer. Journal of Climate, 21, 24372450, doi.org/10.1175/2007JCLI2029.1.Google Scholar
Wang, C., Liu, H., Lee, S.-K., Atlas, R. (2011). Impact of the Atlantic warm pool on United States landfalling hurricanes. Geophysical Research Letters, 38, L19702, doi.org/10.1029/2011GL049265.CrossRefGoogle Scholar
Wang, C., Dong, S., Evan, A. T., Foltz, G. R., Lee, S.-K. (2012). Multidecadal co-variability of North Atlantic sea surface temperature, African dust, Sahel rainfall and Atlantic hurricanes. Journal of Climate, 25, 54045415, doi.org/10.1175/JCLI-D-11-00413.1.Google Scholar
Wang, C., Deser, C., Yu, J.-Y., DiNezio, P., Clement, A. (2016). El Nino-Southern Oscillation (ENSO): A review. In Coral Reefs of the Eastern Pacific, Glymn, P., Manzello, D. and Enochs, I., Eds., Springer Science Publisher, 85106.Google Scholar
Wang, R., Ren, H. L. (2017). The linkage between two ENSO types/modes and the interdecadal changes of ENSO around the year 2000. Atmospheric and Oceanic Science Letters, 10, 168174.Google Scholar
Wang, L., Yu, J.-Y., Paek, H. (2017). Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nature Communications, 8, 17. https://doi.org/10.1038/ncomms14887.Google Scholar
Wu, L., He, F., Liu, Z., Li, C. (2007). Atmospheric teleconnections of tropical Atlantic variability: Interhemispheric, tropical–extratropical, and cross-basin interactions. Journal of Climate, 20(5), 856870.Google Scholar
Wyrtki, K. (1985). Water displacements in the Pacific and the genesis of El Niño cycles. Journal of Geophysical Research, 91, 71297132.Google Scholar
Yeh, S. W., Kirtman, B. P. (2005). Pacific decadal variability and decadal ENSO amplitude modulation. Geophysical Research Letters, 32, L05703, doi:10.1029/2004GL021731.Google Scholar
Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H., Kirtman, B. P., Jin, F.-F. (2009). El Niño in a changing climate. Nature, 461(7263), 511514.Google Scholar
Yeh, S. W., Kirtman, B. P., Kug, J. S., Park, W., Latif, M. (2011). Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophysical Research Letters, 38, L02704, doi:10.1029/2010GL045886.Google Scholar
Yeh, S.-W., Kug, J.-S., An, S.-I. (2014). Recent progress on two types of El Niño: Observations, dynamics, and future changes, Asia-Pac. Journal of Atmospheric Sciences, 50, 6981.Google Scholar
Yeh, S. W., Cai, W., Min, S. K., McPhaden, M. J., Dommenget, D., Dewitte, B., Collins, M., Ashok, K., An, S. I., Yim, B., Kug, Y., J. S. (2018). ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Reviews of Geophysics, 56(1), 185206.Google Scholar
Yin, X., Zhou, L. T. (2019). An interdecadal change in the influence of the Central Pacific ENSO on the subsequent north tropical Atlantic spring SST variability around the mid-1980s. Climate Dynamics, 53(1–2), 879893.Google Scholar
Yu, J.-Y., Kao, P.-K., Paek, H., Hsu, H.-H., Hung, C.-W. Lu, M.-M., An, S. I. (2014). Linking Emergence of the Central Pacific El Niño to the Atlantic Multidecadal Oscillation. Journal of Climate, 28, 651662.Google Scholar
Zanchettin, D., Bothe, O., Graf, H. F., Omrani, N.-E., Rubino, A., Jungclaus, J. H. (2016). A decadally delayed response of the tropical Pacific to Atlantic multidecadal variability. Geophysical Research Letters, 43, 784792.Google Scholar
Zebiak, S. E., Cane, M. A. (1987). A model El Niño–Southern Oscillation. Monthly Weather Review, 115, 22622278, doi:10.1175/15200493(1987).Google Scholar
Zhang, R., Delworth, T. L. (2006). Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 33, L17712, doi:10.1029/2006GL026267.Google Scholar
Zhang, W., Wang, L., Xiang, B., Qi, L., He, J. (2014). Impacts of two types of La Niña on the NAO during boreal winter. Climate Dynamics, 44(5-6), 13511366.CrossRefGoogle Scholar
Zhong, W., Zheng, X.-T., Cai, W. (2017). A decadal tropical Pacific condition unfavorable to central Pacific El Niño. Geophysical Research Letters, 44, 79197926.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×