Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-08T05:27:38.572Z Has data issue: false hasContentIssue false

26 - Color in competition contexts in non-human animals

from Part VII - Color effects on psychological and biological functioning

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernethy, K. A., White, L. J. T., and Wickings, E. J. (2002). Hordes of mandrills (Mandrillus sphinx): extreme group size and seasonal male presence. Journal of Zoology, 258, 131–7.CrossRefGoogle Scholar
Altmann, S. A. (1973). The pregnancy sign in savannah baboons. Journal of Zoo Animal Medicine, 4, 812.CrossRefGoogle Scholar
Amundsen, T. (2000). Why are female birds ornamented? Trends in Ecology Evolution, 15(4), 149–55.CrossRefGoogle ScholarPubMed
Amundsen, T., and Parn, H. (2006). Female coloration: review of functional and nonfunctional hypotheses. In Hill, and McGraw, , Bird Coloration, vol. II, pp. 280345.Google Scholar
Andersson, M. (1994). Sexual Selection. Princeton University Press.CrossRefGoogle Scholar
Ayres, J. M. C. (1996). Uakaris and Amazonian Flooded Forest. Cambridge University Press.Google Scholar
Barlow, G. E. (1973). Competition between color morphs of the polychromatic Midas cichlid Cichlasoma citrinellum. Science, 179, 806–7.CrossRefGoogle ScholarPubMed
Barlow, G. E., and Wallach, S. J. (1976). Colour and levels of aggression in the Midas cichlid. Animal Behaviour, 24, 814–17.CrossRefGoogle Scholar
Baulu, J. (1976). Seasonal sex skin coloration and hormonal fluctuations in free-ranging and captive monkeys. Hormones and Behavior, 7, 495507.CrossRefGoogle ScholarPubMed
Berard, J. D., Nürnberg, P., Epplen, J., and Schmidtke, J. (1993). Male rank, reproductive behavior, and reproductive success in free-ranging rhesus macaques. Primates, 34, 481–9.CrossRefGoogle Scholar
Bercovitch, F. B. (1996). Testicular function and scrotal coloration in patas monkeys. Journal of Zoology, 239, 93100.CrossRefGoogle Scholar
Bergman, T. J., and Beehner, J. C. (2008). A simple method for measuring colour in wild animals: validation and use on chest patch color in geladas (Theropithecus gelada). Biological Journal of the Linnean Society, 94, 231–40.CrossRefGoogle Scholar
Bergman, T. J., Ho, L., and Beehner, J. C. (2009). Chest color and social status in male geladas (Theropithecus gelada). International Journal of Primatology, 30, 791806.CrossRefGoogle Scholar
Bergman, T. J., and Sheehan, M. J. (2012). Social knowledge and signals in primates. American Journal of Primatology, 75, 683–94.Google ScholarPubMed
Bielert, C., Czaja, J. A., Eisele, S., Scheffler, G., Robinson, J. A., and Goy, R. W. (1976). Mating in the rhesus monkey (Macaca mulatta) after conception and its relationship to oestradiol and progesterone levels throughout pregnancy. Journal of Reproduction and Fertility, 46, 179–82.CrossRefGoogle ScholarPubMed
Bradbury, J. W., and Vehrencamp, S. L. (1998). Principles of Animal Communication. Sunderland, MA: Sinauer Associates.Google Scholar
Bradley, B. J., and Mundy, N. I. (2008). The primate palette: the evolution of primate coloration. Evolutionary Anthropology, 17, 97111.CrossRefGoogle Scholar
Brown, J. (1997). A theory of mate choice based on heterozygosity. Behavioral Ecology, 8, 60–5.CrossRefGoogle Scholar
Buchanan, K. (2000). Stress and the evolution of condition-dependent signals. Trends in Ecology and Evolution, 15, 156–60.CrossRefGoogle ScholarPubMed
Candolin, U. (2003). The use of multiple cues in mate choice. Biological Reviews of the Cambridge Philosophical Society, 78, 575–95.CrossRefGoogle ScholarPubMed
Changizi, M. A., Zhang, Q., and Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biology Letters, 2, 217–21.CrossRefGoogle ScholarPubMed
Charpentier, M. J. E., Peignot, P., Hossaeart-McKey, M., Gimenez, O., Setchell, J. M., and Wickings, E. J. (2005). Constraints on control: factors influencing reproductive success in male mandrills (Mandrillus sphinx). Behavioral Ecology, 16, 614–23.CrossRefGoogle Scholar
Clough, D., Heistermann, M., and Kappeler, P. M. (2009). Individual facial coloration in male Eulemur fulvus rufus: a condition-dependent ornament? International Journal of Primatology, 30, 859–75.CrossRefGoogle Scholar
Clutton-Brock, T. H. (2009). Sexual selection in females. Animal Behaviour, 77, 341.CrossRefGoogle Scholar
Cotton, S., Fowler, K., and Pomiankowski, A. (2004). Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proceedings of the Royal Society of London. Series B, Biological Sciences, 271, 771–83.Google ScholarPubMed
Cramer, J. D., Gaetano, T., Gray, J. P., Grobler, P., Lorenz, J. G., Freimer, N. B., and Turner, T. R. (2013). Variation in scrotal color among widely distributed vervet monkey populations (Chlorocebus aethiops pygerythrus and Chlorocebus aethiops sabaeus). American Journal of Primatology, 75, 752–62.CrossRefGoogle ScholarPubMed
Cuthill, I. C. (2006). Color perception. In Hill, and McGraw, , Bird Coloration, vol. I, pp. 340.CrossRefGoogle Scholar
Czaja, J. A., Robinson, J. A., Eisele, S. G., Scheffler, G., and Goy, R. W. (1977). Relationship between sexual skin colour of female rhesus monkeys and midcycle plasma levels of oestradiol and progesterone. Journal of Reproduction and Fertility, 49, 147–50.CrossRefGoogle Scholar
Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex. London, 2 vols.: John Murray.Google Scholar
Darwin, C. (1876). Sexual selection in relation to monkeys. Nature, 15, 1819.CrossRefGoogle Scholar
Dixson, A. F. (2012). Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes and Humans, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Dixson, A. F., and Herbert, J. (1974). The effects of testosterone on the sexual skin and genitalia of the male talapoin monkey. Journal of Reproduction and Fertility, 38, 217–19.CrossRefGoogle ScholarPubMed
Drury, J. P. (2010). Immunity and mate choice: a new outlook. Animal Behaviour, 79, 539–45.CrossRefGoogle Scholar
Dubuc, C., Brent, L. J. N., Accamando, A. K., Gerald, M. S., MacLarnon, A., Semple, S., and Engelhardt, A. (2009). Sexual skin color contains information about the timing of the fertile phase in free-ranging Macaca mulatta. International Journal of Primatology, 30, 777–89.CrossRefGoogle Scholar
Dubuc, C., Muniz, L., Heistermann, M., Engelhardt, A., and Widdig, A. (2011). Testing the priority-of-access model in a seasonally breeding primate species. Behavioral Ecology and Sociobiology, 65, 1615–27.CrossRefGoogle Scholar
Dunbar, R. I. M. (1984). Reproductive Decisions: An Economic Analysis of Gelada Baboon Social Strategies. Princeton University Press.Google Scholar
Dunbar, R. I. M., and Dunbar, E. P. (1975). Social Dynamics of Gelada Baboons. Basel: Karger.Google ScholarPubMed
Dunbar, R. I. M., and Dunbar, E. P. (1977). Dominance and reproductive success among female gelada baboons. Nature, 266, 351–2.CrossRefGoogle ScholarPubMed
Endler, J. A. (1980). Natural selection on color patterns in Poecilia reticulata. Evolution, 34, 7691.CrossRefGoogle ScholarPubMed
Evans, M., Goldsmith, A., and Norris, S. (2000). The effects of testosterone on antibody production and plumage coloration in male house sparrows (Passer domesticus). Behavioral Ecology and Sociobiology, 47, 156–63.CrossRefGoogle Scholar
Fairbanks, L. A., Fontenot, M. B., Phillips-Conroy, J. E., Jolly, C. J., Kaplan, J. R., and Mann, J. J. (1999). CSF monoamines, age and impulsivity in wild grivet monkeys (Cercopithecus aethiops aethiops). Brain, Behavior and Evolution, 53, 305–12.CrossRefGoogle ScholarPubMed
Fairbanks, L. A., Melega, W. P., Jorgensen, M. J., Kaplan, J. R., and McGuire, M. T. (2001). Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology, 24, 370–8.CrossRefGoogle ScholarPubMed
Faivre, B., Grégoire, A., Préault, M., Cezilly, F., and Sorci, G. (2003). Immune activation rapidly mirrored in a secondary sexual trait. Science, 300, 103.CrossRefGoogle Scholar
Fernandez, A., and Morris, M. (2007). Sexual selection and trichromatic color vision in primates: statistical support for the preexisting bias hypothesis. American Naturalist, 170, 1020.CrossRefGoogle ScholarPubMed
Foerster, K., Delhey, K., Johnson, A., Lifjeld, J. T., and Kempenaers, B. (2003). Females increase offspring heterozygosity and fitness through extra-pair matings. Nature, 425, 714–17.CrossRefGoogle ScholarPubMed
Folstad, I., and Karter, A. J. (1992). Parasites, bright males, and the immunocompetence handicap. American Naturalist, 139, 603–22.CrossRefGoogle Scholar
Fujita, S., Sugiura, H., Mitsunaga, F., and Shimizu, K. (2004). Hormone profiles and reproductive characteristics in wild female Japanese macaques (Macaca fuscata). American Journal of Primatology, 64, 367–75.CrossRefGoogle ScholarPubMed
Gartlan, J. S., and Brain, C. K. (1968). Ecology and social variability in Cercopithecus aethiops and C. mitis. In Jay, P. J. (ed.), Primates: Studies in Adaptation and Variability (pp. 253–92). New York: Holt, Rinehart, and Winston.Google Scholar
Gauthier, C.-A. (1999). Reproductive parameters and paracallosal skin color changes in captive female guinea baboons, Papio papio. American Journal of Primatology, 47, 6774.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Gerald, M. S. (2001). Primate colour predicts social status and aggressive outcome. Animal Behaviour, 61, 559–66.CrossRefGoogle Scholar
Gerald, M. S. (2003). How color may guide the primate world: possible relationships between sexual selection and sexual dichromatism. In Jones, C. B. (ed.), Sexual Selection and Reproductive Competition in Primates: New Perspectives and Directions, vol. III, pp. 141–72). Special Topics in Primatology. Norman, OK: American Society of Primatologists.Google Scholar
Gerald, M. S., Bernstein, J., Hinkson, R., and Fosbury, R. A. E. (2001). Formal method for objective assessment of primate color. American Journal of Primatology, 53, 7985.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Gerald, M. S., and McGuire, M. T. (2008). Secondary sexual coloration and CSF 5-HIAA are correlated in vervet monkeys (Cercopithecus aethiops sabaeus). Journal of Medical Primatology, 36, 348–54.Google Scholar
Gerald, M. S., Waitt, C., and Little, A. C. (2008). Pregnancy coloration in macaques may act as a warning signal to reduce antagonism by conspecifics. Behavioural Processes, 80, 711.CrossRefGoogle ScholarPubMed
Gerald, M. S., Waitt, C., Little, A. C., and Kraiselburd, E. (2007). Females pay attention to female secondary sexual color. International Journal of Primatology, 28, 17.CrossRefGoogle Scholar
Grubb, P. (1973). Distribution, divergence and speciation of the drill and mandrill. Folia Primatologica, 20, 161–77.CrossRefGoogle ScholarPubMed
Hamilton, W., and Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites? Science, 218, 384–7.CrossRefGoogle Scholar
Harrison, M. (1988). The mandrill in Gabon’s rain forest – ecology, distribution and status. Oryx, 22, 218–28.CrossRefGoogle Scholar
Henzi, S. P. (1985). Genital signaling and the coexistence of male vervet monkeys (Cercopithecus aethiops pygerythrus). Folia Primatologica, 45, 129–47.CrossRefGoogle ScholarPubMed
Herdegen, M., Dudka, K., and Radwan, J. (2014). Heterozygosity and orange coloration are associated in the guppy (Poecilia reticulata). Journal of Evolutionary Biology, 27, 220–5.CrossRefGoogle ScholarPubMed
Higham, J. P., Hughes, K. D., Brent, L. J. N., Dubuc, C., Engelhardt, A., Heistermann, M., and Stevens, M. (2011). Familiarity affects the assessment of female facial signals of fertility by free-ranging male rhesus macaques. Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, 3452–8.Google ScholarPubMed
Higham, J. P., MacLarnon, A. M., Ross, C., Heistermann, M., and Semple, S. (2008). Baboon sexual swellings: information content of size and color. Hormones and Behavior, 53, 452–62.CrossRefGoogle ScholarPubMed
Higham, J. P., Pfefferle, D., Heistermann, M., Maestripieri, D., and Stevens, M. (2013). Signaling in multiple modalities in male rhesus macaques: barks and sex skin coloration in relation to androgen levels, social status and mating behaviour. Behavioral Ecology and Sociobiology, 67, 1457–69.CrossRefGoogle Scholar
Hill, G. E. (2006). Environmental regulation of ornamental coloration. In Hill, and McGraw, , Bird Coloration, vol. I, pp. 507–60.CrossRefGoogle Scholar
Hill, G. E., and McGraw, K. J. (2006). Bird Coloration, vol. I: Mechanisms and Measurements; vol. II: Function and Evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Hillgarth, N., and Wingfield, J. (1997). Parasite-mediated sexual selection: endocrine aspects. In Clayton, D. H. and Moore, J. (eds.), Host–Parasite Evolution (pp. 78104). Oxford University Press.CrossRefGoogle Scholar
Isbell, L. (1995). Seasonal and social correlates of changes in hair, skin, and scrotal condition in vervet monkeys (Cercopithecus aethiops) of Amboseli National Park, Kenya. American Journal of Primatology, 36, 6170.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Deegan, J. F. II. (1999). Uniformity of colour vision in Old World monkeys. Proceedings of the Royal Society of London. Series B, Biological Sciences, 26, 2023–8.Google Scholar
Johnstone, R. A. (1995). Sexual selection, honest advertisement and the handicap principle – reviewing the evidence. Biological Reviews of the Cambridge Philosophical Society, 70, 165.CrossRefGoogle ScholarPubMed
Khan, S. A., Levine, W. J., Dobson, S. D., and Kralik, J. D. (2011). Red signals dominance in male rhesus macaques. Psychological Science, 22, 1001–3.CrossRefGoogle ScholarPubMed
Lande, R. (1980). Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution, 34, 292305.CrossRefGoogle ScholarPubMed
Lasry, J. E., and Sheridan, B. W. (1965). Chagas’ myocarditis and heart failure in the red uakari. International Zoo Yearbook, 5, 182–4.CrossRefGoogle Scholar
Lewis, R. J., and van Schaik, C. P. (2007). Bimorphism in male Verreaux’s sifaka in the Kirindy Forest of Madagascar. International Journal of Primatology, 28, 159–82.CrossRefGoogle Scholar
Ligon, R. A., and McGraw, K. J. (2013). Chameleons communicate with complex colour changes during contests: different body regions convey different information. Biology Letters, 9, 20130892.CrossRefGoogle ScholarPubMed
Martín, J., and López, P. (2009). Multiple color signals may reveal multiple messages in male Schreiber’s green lizards, Lacerta schreiberi. Behavioral Ecology and Sociobiology, 63, 1743–55.CrossRefGoogle Scholar
Marty, J. S., Higham, J. P., Gadsby, E. L., and Ross, C. (2009). Dominance, coloration, and social and sexual behavior in male drills Mandrillus leucophaeus. International Journal of Primatology, 30, 807–23.CrossRefGoogle Scholar
Mitani, J. C., Call, J., Kappeler, P. M., Palombit, R. A., and Silk, J. B. (eds.) (2013). The Evolution of Primate Societies. University of Chicago Press.Google Scholar
Møller, A. P., and Hoglund, J. (1991). Patterns of fluctuating asymmetry in avian feather ornaments: implications for models of sexual selection. Proceedings of the Royal Society of London. Series B, Biological Sciences, 245, 15.Google Scholar
Montgomerie, R. (2006a). Cosmetic and adventitious colors. In Hill, and McGraw, , Bird Coloration, vol. I, pp. 399430.Google Scholar
Montgomerie, R. (2006b). Analyzing colors. In Hill, and McGraw, , Bird Coloration, vol. I, pp. 90147.Google Scholar
Müller, G., and Ward, P. I. (1995). Parasitism and heterozygosity influence the secondary sexual characters of the European minnow, Phoxinus phoxinus (L.) (Cyprinidae). Ethology, 100, 309–19.CrossRefGoogle Scholar
Negro, J. J., Sarasola, J. H., Farinas, F., and Zorrilla, I. (2006). Function and occurrence of facial flushing in birds. Comparative Biochemistry and Physiology A, 143, 7884.CrossRefGoogle ScholarPubMed
Nunn, C. L., van Schaik, C. P., and Zinner, D. (2001). Do exaggerated sexual swellings function in female mating competition in primates? A comparative test of the reliable indicator hypothesis. Behavioral Ecology, 12, 646–54.CrossRefGoogle Scholar
Ortolani, A. (1999). Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method. Biological Journal of the Linnean Society, 67, 433–76.CrossRefGoogle Scholar
Osman Hill, W. C. (1966). Primates, Comparative Anatomy and Taxonomy, vol. VI: Catarrhini Cercopithecoidea: Cercopithecinae. Edinburgh University Press.Google Scholar
Osman Hill, W. C. (1970). Primates, Comparative Anatomy and Taxonomy, vol. VIII: Cynopithecinae, Papio, Mandrillus, Theropithecus. Edinburgh University Press.Google Scholar
Penn, D., and Potts, W. K. (1998). Chemical signals and parasite-mediated sexual selection. Trends in Ecology and Evolution, 13, 391–6.CrossRefGoogle ScholarPubMed
Plavcan, J. M. (2001). Sexual dimorphism in primate evolution. American Journal of Physical Anthropology, 44, 2553.CrossRefGoogle Scholar
Poiani, A., Goldsmith, A., and Evans, M. (2000). Ectoparasites of house sparrows (Passer domesticus): an experimental test of the immunocompetence handicap hypothesis and a new model. Behavioral Ecology and Sociobiology, 47, 230–42.CrossRefGoogle Scholar
Preuschoft, S., and van Schaik, C. P. (2000). Dominance and communication: conflict management in various social settings. In Aureli, F. and de Waal, F. B. M. (eds.), Natural Conflict Resolution (pp. 77105). Oakland, CA: University of California Press.Google Scholar
Price, J. S., Burton, J. L., Shuster, S., and Wolff, K. (1976). Control of scrotal color in the vervet monkey. Journal of Medical Primatology, 5, 296304.Google ScholarPubMed
Price, T., and Birch, G. L. (1996). Repeated evolution of sexual color dimorphism in passerine birds. Auk, 113, 842–8.CrossRefGoogle Scholar
Prum, R. O., and Torres, R. (2003). Structural coloration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 206, 2409–29.CrossRefGoogle ScholarPubMed
Prum, R. O., and Torres, R. (2004). Structural coloration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 207, 2157–72.CrossRefGoogle ScholarPubMed
Pusey, A. (2013). Magnitude and sources of variation in female reproductive performance. In Mitani, J. C., Call, J., Kappeler, P. M., Palombit, R. A., and Silk, J. B. (eds.), The Evolution of Primate Societies (pp. 143–66). University of Chicago Press.Google Scholar
Renoult, J. P., Schaefer, H. M., Sallé, B., and Charpentier, M. J. E. (2011). The evolution of the multicoloured face of mandrills: insights from the perceptual space of colousr vision. PLoS ONE, 6, e29117.CrossRefGoogle ScholarPubMed
Rhodes, L., Argersinger, M. E., Gantert, L. T., Friscino, B. H., Hom, G., Pikounis, B., and Rhodes, W. L. (1997). Effects of administration of testosterone, dihydrotestosterone, oestrogen and fadrozole, an aromatase inhibitor, on sex skin colour in intact male rhesus macaques. Journal of Reproduction and Fertility, 111, 51–7.CrossRefGoogle ScholarPubMed
Rohwer, S. (1975). The social significance of avian winter plumage variability. Evolution, 29, 593610.CrossRefGoogle ScholarPubMed
Rohwer, S. (1977). Status signalling in Harris sparrows. Behaviour, 61, 107–29.CrossRefGoogle Scholar
Rohwer, S., and Ewald, P. (1981). The cost of dominance and advantage of subordination in a badge signaling system. Evolution, 35, 441–54.CrossRefGoogle Scholar
Rohwer, S., and Rohwer, F. C. (1978). Status signalling in Harris sparrows: experimental deceptions achieved. Animal Behaviour, 26, 1012–22.CrossRefGoogle Scholar
Rowell, T. E. (1972). Female reproduction cycles and social behavior in primates. Advances in the Study of Behavior, 4, 69105.CrossRefGoogle Scholar
Ruxton, G. D., and Schaefer, H. M. (2011). Resolving current disagreements and ambiguities in the terminology of animal communication. Journal of Evolutionary Biology, 24, 2574–85.CrossRefGoogle ScholarPubMed
Sade, D. (1964). Seasonal cycle in size of testes of free-ranging Macaca mulatta. Folia Primatologica, 2, 171–80.CrossRefGoogle Scholar
Santana, S. E., Lynch Alfaro, J., and Alfaro, M. E. (2012). Adaptive evolution of facial colour patterns in Neotropical primates. Proceedings of the Royal Society of London. B, Biological Sciences, 279, 2204–11.Google ScholarPubMed
Senar, J. C. (2006). Color displays as intrasexual signals of aggression and dominance. In Hill, and McGraw, , Bird Coloration, vol. II, pp. 87136.Google Scholar
Setchell, J. M. (1999). Socio-Sexual Development in the Male Mandrill (Mandrillus sphinx). Cambridge University Press.Google Scholar
Setchell, J. M., Charpentier, M. J. E., Abbott, K. M., Wickings, E. J., and Knapp, L. A. (2009). Is brightest best? Testing the Hamilton–Zuk hypothesis in mandrills. International Journal of Primatology, 30, 825–44.CrossRefGoogle Scholar
Setchell, J. M., Charpentier, M. J. E., and Wickings, E. J. (2005). Mate-guarding and paternity in mandrills (Mandrillus sphinx): factors influencing monopolisation of females by the alpha male. Animal Behaviour, 70, 1105–20.CrossRefGoogle Scholar
Setchell, J. M., and Dixson, A. F. (2001a). Arrested development of secondary sexual adornments in subordinate adult male mandrills (Mandrillus sphinx). American Journal of Physical Anthropology, 115, 245–52.CrossRefGoogle ScholarPubMed
Setchell, J. M., and Dixson, A. F. (2001b). Circannual changes in the secondary sexual adornments of semifree-ranging male and female mandrills (Mandrillus sphinx). American Journal of Primatology, 121, 109–21.Google Scholar
Setchell, J. M., and Dixson, A. F. (2001c). Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Hormones and Behavior, 39, 177–84.CrossRefGoogle ScholarPubMed
Setchell, J. M., and Dixson, A. F. (2002). Developmental variables and dominance rank in adolescent male mandrills (Mandrillus sphinx). American Journal of Primatology, 56, 925.CrossRefGoogle ScholarPubMed
Setchell, J. M., and Kappeler, P. M. (2003). Selection in relation to sex in primates. Advances in the Study of Behavior, 33, 87173.CrossRefGoogle Scholar
Setchell, J. M., Smith, T., Wickings, E. J., and Knapp, L. A. (2008). Social correlates of testosterone and ornamentation in male mandrills. Hormones and Behavior, 54, 365–72.CrossRefGoogle ScholarPubMed
Setchell, J. M., Smith, T., Wickings, E. J., and Knapp, L. A. (2010). Stress, social behaviour, and secondary sexual traits in a male primate. Hormones and Behavior, 58, 720–8.CrossRefGoogle Scholar
Setchell, J. M., Vaglio, S., Abbott, K. M., Moggi-Cecchi, J., Boscaro, F., Pieraccini, G., and Knapp, L. A. (2011). Odour signals MHC genotype in an Old World monkey. Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, 274–80.Google Scholar
Setchell, J. M., Vaglio, S., Moggi-Cecchi, J., Boscaro, F., Calamai, L., and Knapp, L. A. (2010). Chemical composition of scent-gland secretions in an Old World monkey (Mandrillus sphinx): influence of sex, male status, and individual identity. Chemical Senses, 35, 205–20.CrossRefGoogle Scholar
Setchell, J. M., and Wickings, E. J. (2004a). Social and seasonal influences on the reproductive cycle in female mandrills (Mandrillus sphinx). American Journal of Physical Anthropology, 125, 7384.CrossRefGoogle ScholarPubMed
Setchell, J. M., and Wickings, E. J. (2004b). Sexual swellings in mandrills (Mandrillus sphinx): a test of the reliable indicator hypothesis. Behavioral Ecology, 15, 438–45.CrossRefGoogle Scholar
Setchell, J. M., and Wickings, E. J. (2005). Dominance, status signals and coloration in mandrills (Mandrillus sphinx). Ethology, 111, 2550.CrossRefGoogle Scholar
Setchell, J. M., Wickings, E. J., and Knapp, L. A. (2006a). Signal content of red facial coloration in female mandrills (Mandrillus sphinx). Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 23952400.Google ScholarPubMed
Setchell, J. M., Wickings, E. J., and Knapp, L. A. (2006b). Life history in male mandrills (Mandrillus sphinx): physical development, dominance rank and group association. American Journal of Physical Anthropology, 131, 44984510.CrossRefGoogle ScholarPubMed
Snyder-Mackler, N., Bergman, T. J., and Beehner, J. C. (2012). Defining higher levels in a gelada multilevel society. International Journal of Primatology, 33, 1054–68.CrossRefGoogle Scholar
Stevens, M., Parraga, C. A., Cuthill, I. C., Partridge, J. C., and Troscianko, T. S. (2007). Using digital photography to study animal coloration. Biological Journal of the Linnean Society, 90, 211–37.CrossRefGoogle Scholar
Stevens, M, Stoddard, M. C., and Higham, J. P. (2009). Studying primate color: towards visual system dependent methods. International Journal of Primatology, 30, 893917.CrossRefGoogle Scholar
Struhsaker, T. T. (1967). Behavior of vervet monkeys (Cercopithecus aethiops). University of California Publications in Zoology, 82, 164.Google Scholar
Strum, S. C., and Western, J. D. (1982). Variations in fecundity with age and environment in olive baboons (Papio anubis). American Journal of Primatology, 3, 6176.CrossRefGoogle ScholarPubMed
Sumner, P., and Mollon, J. (2003). Colors of primate pelage and skin: objective assessment of conspicuousness. American Journal of Primatology, 59, 6791.CrossRefGoogle ScholarPubMed
Thery, M. (2006). Effect of light environment on color communication. In Hill, and McGraw, , Bird Coloration, vol. I, pp. 148–76.Google Scholar
Thompson, C. W., and Moore, M. C. (1991). Throat colour reliably signals status in male tree lizards, Urosaurus ornatus. Animal Behaviour, 52, 745–53.Google Scholar
Tobias, J., Montgomerie, R., and Lyon, B. E. (2012). The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367, 2274–93.Google ScholarPubMed
Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (ed.), Sexual Selection and the Descent of Man (pp. 136–79). Chicago: Aldine.Google Scholar
Vandenburgh, J. G. (1965). Hormonal basis of sex skin in male rhesus monkeys. General and Comparative Endocrinology, 5, 31–4.Google Scholar
van Oosterhout, C., Trigg, R. E., Carvalho, G. R., Magurran, A. E., Hauser, L., and Shaw, P. W. (2003). Inbreeding depression and genetic load of sexually selected traits: how the guppy lost its spots. Journal of Evolutionary Biology, 16, 273–81.CrossRefGoogle ScholarPubMed
Von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D., and Wittzell, H. (1999). Good genes, oxidative stress and condition-dependent sexual signals. Proceedings of the Royal Society of London. Series B, Biological Sciences, 266, 112.CrossRefGoogle ScholarPubMed
Waitt, C., Gerald, M. S., Little, A. C., and Kraiselburd, E. (2006). Selective attention towards female secondary sexual color in male rhesus macaques. American Journal of Primatology, 68, 738–44.CrossRefGoogle Scholar
Westneat, D. F., and Birkhead, T. R. (1998). Alternative hypotheses linking the immune system and mate choice for good genes. Proceedings of the Royal Society of London. Series B,Biological Sciences, 265, 1065–73.Google Scholar
Wickings, E. J., and Dixson, A. F. (1992). Development from birth to sexual maturity in a semi-free-ranging colony of mandrills (Mandrillus sphinx) in Gabon. Journal of Reproduction and Fertility, 95, 129–38.CrossRefGoogle Scholar
Wickings, E. J., and Nieschlag, E. (1980). Seasonality in endocrine and exocrine testicular function of the adult rhesus monkey (Macaca mulatta) maintained in a controlled laboratory environment. International Journal of Andrology, 3, 87104.CrossRefGoogle Scholar
Widdig, A., Bercovitch, F. B., Streich, W. J., Sauermann, U., Nürnberg, P., and Krawczak, M. (2004). A longitudinal analysis of reproductive skew in male rhesus macaques. Proceedings of the Royal Society of London. Series B,Biological Sciences, 271, 819–26.Google ScholarPubMed
Wild, C., Morgan, B. J., and Dixson, A. F. (2005). Conservation of drill populations in Bakossiland, Cameroon: historical trends and current status. International Journal of Primatology, 26, 759–73.CrossRefGoogle Scholar
Yokoyama, S., and Yokoyama, R. (1989). Molecular evolution of human visual pigment genes. Molecular Biology and Evolution, 6, 186–97.Google ScholarPubMed
Zahavi, A. (1975). Mate selection—a selection for a handicap. Journal of Theoretical Biology, 53, 205–14.CrossRefGoogle ScholarPubMed
Zuckerman, S., and Parkes, A. S. (1939). Observations on the secondary sexual characters in monkeys. Journal of Endocrinology, 1, 430–9.CrossRefGoogle Scholar
Zuk, M. (1992). The role of parasites in sexual selection: current evidence and future directions. Advances in the Study of Behavior, 21, 3969.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×