Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T01:40:58.292Z Has data issue: false hasContentIssue false

30 - Non-visual effects of colored light

from Part VII - Color effects on psychological and biological functioning

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpern, M., and Campbell, F. (1962). The spectral sensitivity of the consensual light reflex. Journal of Physiology, 164(3), 478507.CrossRefGoogle ScholarPubMed
Badia, P., Myers, B., Boecker, M., Culpepper, J., and Harsh, J. R. (1991). Bright light effects on body temperature, alertness, EEG and behavior. Physiology and Behavior, 50(3), 583–8.CrossRefGoogle ScholarPubMed
Bailes, H. J., and Lucas, R. J. (2010). Melanopsin and inner retinal photoreception. Cellular and Molecular Life Sciences, 67(1), 99111.CrossRefGoogle ScholarPubMed
Belenky, M. A., Smeraski, C. A., Provencio, I., Sollars, P. J., and Pickard, G. E. (2003). Melanopsin ganglion cells receive bipolar and amacrine cell synapses. Journal of Comparative Neurology, 460, 380–93.Google ScholarPubMed
Berson, D. M., Dunn, F. A., and Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070–3.CrossRefGoogle ScholarPubMed
Borbely, A. A. (1982). A two process model of sleep regulation. Human Neurobiology, 1(3), 195204.Google ScholarPubMed
Borbely, A. A., and Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. Journal of Biological Rhythms, 14(6), 557–68.Google ScholarPubMed
Brainard, G. C., Hanifin, J. P., Greeson, J. M., Byrne, B., Glickman, G., Gerner, E., and Rollag, M. D. (2001). Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. Journal of Neuroscience, 21(16), 6405–12.CrossRefGoogle ScholarPubMed
Brainard, G. C., Sliney, D., Hanifin, J. P., Glickman, G., Byrne, B., Greeson, J. M., et al. (2008). Sensitivity of the human circadian system to short-wavelength (420-nm) light. Journal of Biological Rhythms, 23(5), 379–86.CrossRefGoogle ScholarPubMed
Bullough, J. D., Figueiro, M. G., Possidente, B. P., Parsons, R. H., and Rea, M. S. (2005). Additivity in murine circadian phototransduction. Zoological Science, 22(2), 223–7.CrossRefGoogle ScholarPubMed
Cahn, B. R., Delorme, A., and Polich, J. (2010). Occipital gamma activation during Vipassana meditation. Cognitive Processing, 11(1), 3956.CrossRefGoogle ScholarPubMed
Cajochen, C., Munch, M., Kobialka, S., Krauchi, K., Steiner, R., Oelhafen, P., et al. (2005). High sensitivity of human melatonin, alertness, thermoregulation and heart rate to short wavelength light. Journal of Clinical Endocrinology and Metabolism, 90, 1311–16.CrossRefGoogle ScholarPubMed
Cajochen, C., Zeitzer, J. M., Czeisler, C. A., and Dijk, D. J. (2000). Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behavioural Brain Research, 115(1), 7583.CrossRefGoogle ScholarPubMed
Chaput, J.-P., Despres, J.-P., Bouchard, C., and Tremblay, A. (2007). Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Quebec family study. Obesity, 15(1), 253–61.CrossRefGoogle ScholarPubMed
Clow, A., Hucklebridge, F., Stalder, T., Evans, P., and Thorn, L. (2010). The cortisol awakening response: more than a measure of HPA axis function. Neuroscience and Biobehavioral Reviews, 35(1), 97103.CrossRefGoogle ScholarPubMed
Clow, A., Thorn, L., Evans, P., and Hucklebridge, F. (2004). The awakening cortisol response: methodological issues and significance. Stress, 7(1), 2937.CrossRefGoogle ScholarPubMed
Dacey, D., Liao, H., Peterson, B., Robinson, F., Smith, V., Pokorny, J., et al. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature, 433, 749–54.CrossRefGoogle Scholar
Eastman, C. I. (1990). What the placebo literature can tell us about light therapy for SAD. Psychopharmacology Bulletin, 26(4), 495504.Google ScholarPubMed
Eastman, C. I., Young, M. A., Fogg, L. F., Liu, L., and Meaden, P. M. (1998). Bright light treatment of winter depression: a placebo-controlled trial. Archives of General Psychiatry, 55(10), 883–9.CrossRefGoogle ScholarPubMed
Figueiro, M. G., Bierman, A., Plitnick, B., and Rea, M. S. (2009). Preliminary evidence that both blue and red light can induce alertness at night. BMC Neuroscience, 10, 105.CrossRefGoogle ScholarPubMed
Figueiro, M. G., Bierman, A., and Rea, M. S. (2008). Retinal mechanisms determine the subadditive response to polychromatic light by the human circadian system. Neuroscience Letters, 438(2), 242–5.CrossRefGoogle ScholarPubMed
Figueiro, M. G., Bullough, J. D., Bierman, A., Fay, C. R., and Rea, M. S. (2007). On light as an alerting stimulus at night. Acta Neurobiologiae Experimentalis, 67(2), 171–8.CrossRefGoogle ScholarPubMed
Figueiro, M. G., Lesniak, N. Z., and Rea, M. S. (2011). Implications of controlled blue light exposure for sleep in older adults. BMC Research Notes, 4, 334.CrossRefGoogle ScholarPubMed
Figueiro, M. G., Plitnick, B., and Rea, M. S. (2012). Light modulates leptin and ghrelin in sleep-restricted adults. International Journal of Endocrinology, Article ID 530726.CrossRefGoogle Scholar
Figueiro, M. G., and Rea, M. S. (2010). The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. International Journal of Endocrinology, Article ID 829351.CrossRefGoogle Scholar
Figueiro, M. G., and Rea, M. S. (2012a). Preliminary evidence that light through the eyelids can suppress melatonin and phase shift dim light melatonin onset. BMC Research Notes, 5(1), 221.CrossRefGoogle ScholarPubMed
Figueiro, M. G., and Rea, M. S. (2012b). Short-wavelength light enhances cortisol awakening response in sleep-restricted adolescents. International Journal of Endocrinology, Article ID 301935.CrossRefGoogle Scholar
Figueiro, M. G., Rea, M. S., and Bullough, J. D. (2006). Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin. Neuroscience Letters, 406(3), 293–7.CrossRefGoogle ScholarPubMed
Fries, E., Dettenborn, L., and Kirschbaum, C. (2009). The cortisol awakening response (CAR): facts and future directions. International Journal of Psychophysiology, 72(1), 6773.CrossRefGoogle ScholarPubMed
Glickman, G., Byrne, B., Pineda, C., Hauck, W. W., and Brainard, G. C. (2006). Light therapy for seasonal affective disorder with blue narrow-band light-emitting diodes (LEDs). Biological Psychiatry, 59(6), 502–7.CrossRefGoogle ScholarPubMed
Hattar, S., Lucas, R. J., Mrosovsky, N., Thompson, S. H., Douglas, R. H., Hankins, M. W., et al. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature, 424, 7581.CrossRefGoogle ScholarPubMed
Hauri, P. (2014). The Sleep Disorders. National Sleep Foundation ( http://sleepdisorders.sleepfoundation.org/).Google Scholar
Leproult, R., Colecchia, E. F., L’Hermite-Baleriaux, M., and Van Cauter, E. (2001). Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. Journal of Clinical Endocrinology and Metabolism, 86(1), 151–7.Google ScholarPubMed
Lockley, S. W., Evans, E. E., Scheer, F. A., Brainard, G. C., Czeisler, C. A., and Aeschbach, D. (2006). Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep, 29(2), 161–8.Google ScholarPubMed
Lucas, R., Freedman, M., and Munoz, M. (1999). Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science, 284, 505–7.CrossRefGoogle ScholarPubMed
Lucas, R., Hattar, S., and Takao, M. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science, 299, 245–7.CrossRefGoogle ScholarPubMed
Lucas, R. J., Douglas, R. H., and Foster, R. G. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neuroscience, 4(6), 621–6.CrossRefGoogle ScholarPubMed
Masland, R. (2001). The fundamental plan of the retina. Nature Neuroscience, 4(9), 877–86.CrossRefGoogle ScholarPubMed
McDougal, D. H., and Gamlin, P. D. (2010). The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Research, 50(1), 7287.CrossRefGoogle ScholarPubMed
Motivala, S. J., Tomiyama, A. J., Ziegler, M., Khandrika, S., and Irwin, M. R. (2009). Nocturnal levels of ghrelin and leptin and sleep in chronic insomnia. Psychoneuroendocrinology, 34(4).CrossRefGoogle ScholarPubMed
Nicolson, N. A. (2008). Measurement of cortisol. In Luecken, L. G. (ed.), Handbook of Psychological Research Methods in Health Psychology (pp. 3773). Thousand Oaks, CA: Sage.Google Scholar
Nuboer, J. F. W., van Nuys, W. M., and van Steenbergen, J. C. (1983). Colour changes in a light regimen as synchronizers of circadian activity. Journal of Comparative Physiology, 151, 359–66.Google Scholar
Panda, S., Sato, T. K., Castrucci, A. M., Rollag, M. D., DeGrip, W. J., Hogenesch, J. B., et al. (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science, 298(5601), 2213–16.CrossRefGoogle ScholarPubMed
Pauers, M. J., Kuchenbecker, J. A., Neitz, M., and Neitz, J. (2012). Changes in the colour of light cue circadian activity. Animal Behaviour, 83(5), 1143–51.CrossRefGoogle ScholarPubMed
Perrin, F., Peigneux, P., Fuchs, S., Verhaeghe, S., Laureys, S., Middleton, B., et al. (2004). Nonvisual responses to light exposure in the human brain during the circadian night. Current Issues in Biology, 14(20), 1842–6.Google ScholarPubMed
Phipps-Nelson, J., Redman, J. R., Schlangen, L. J., and Rajaratnam, S. M. (2009). Blue light exposure reduces objective measures of sleepiness during prolonged nighttime performance testing. Chronobiology International, 26(5), 891912.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Wolf, O. T., Hellhammer, D. H., Buske-Kirschbaum, A., von Auer, K., Jobst, S., et al. (1997). Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sciences, 61(26), 2539–49.CrossRefGoogle ScholarPubMed
Rea, M. S. (2013). Value Metrics for Better Lighting. Bellingham, WA: SPIE.CrossRefGoogle Scholar
Rea, M. S., Figueiro, M. G., Bierman, A., and Hamner, R. (2012). Modeling the spectral sensitivity of the human circadian system. Lighting Research and Technology, 44(4), 386–96.CrossRefGoogle Scholar
Rea, M. S., Figueiro, M. G., Bullough, J. D., and Bierman, A. (2005). A model of phototransduction by the human circadian system. Brain Research Reviews, 50(2), 213–28.CrossRefGoogle Scholar
Ruby, N., Brennan, T., and Xie, X. (2002). Role of melanopsin in circadian responses to light. Science, 298, 2211–13.CrossRefGoogle ScholarPubMed
Sahin, L., and Figueiro, M. G. (2013). Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon. Physiology and Behavior, 116–17, 17.CrossRefGoogle ScholarPubMed
Scheer, F. A., and Buijs, R. M. (1999). Light affects morning salivary cortisol in humans. Journal of Clinical Endocrinology and Metabolism, 84(9), 3395–8.CrossRefGoogle ScholarPubMed
Schmid, S. M., Hallschmid, M., Jauch-Chara, K., Born, J., and Schultes, B. (2008). A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. Journal of Sleep Research, 17(3).CrossRefGoogle ScholarPubMed
Spiegel, K., Leproult, R., L’Hermite-Balériaux, M., Copinschi, G., Penev, P. D., and Van Cauter, E. (2004a). Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. Journal of Clinical Endocrinology and Metabolism, 89(11), 5762–71.CrossRefGoogle ScholarPubMed
Spiegel, K., Tasali, E., Penev, P., and Van Cauter, E. (2004b). Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Annals of Internal Medicine, 141(11), 846–50.CrossRefGoogle ScholarPubMed
Strong, R. E., Marchant, B. K., Reimherr, F. W., Williams, E., Soni, P., and Mestas, R. (2009). Narrow-band blue-light treatment of seasonal affective disorder in adults and the influence of additional nonseasonal symptoms. Depression and Anxiety, 26(3), 273–8.CrossRefGoogle ScholarPubMed
Sun, Y., Ahmed, S., and Smith, R. G. (2003). Deletion of ghrelin impairs neither growth nor appetite. Molecular and Cellular Biology, 23(22), 7973–81.CrossRefGoogle ScholarPubMed
Taheri, S., Lin, L., Austin, D., Young, T., and Mignot, E. (2004). Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Medicine, 1(3), e62.CrossRefGoogle ScholarPubMed
Terman, M. (2009). Blue in the face. Sleep Medicine, 10(3), 277.CrossRefGoogle ScholarPubMed
Thapan, K., Arendt, J., and Skene, D. J. (2001). An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. Journal of Physiology, 535(1), 261–7.CrossRefGoogle ScholarPubMed
Vandewalle, G., Collignon, O., Hull, J. T., Daneault, V., Albouy, G., Lepore, F., et al. (2013). Blue light stimulates cognitive brain activity in visually blind individuals. Journal of Cognitive Neuroscience, 25(12), 2072–85.CrossRefGoogle ScholarPubMed
Vandewalle, G., Gais, S., Schabus, M., Balteau, E., Carrier, J., Darsaud, A., et al. (2007). Wavelength-dependent modulation of brain responses to a working memory task by daytime light exposure. Cerebral Cortex, 17(12), 2788–95.CrossRefGoogle ScholarPubMed
Vandewalle, G., Schmidt, C., Albouy, G., Sterpenich, V., Darsaud, A., Rauchs, G., et al. (2007). Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem. PLoS ONE, 2(11), e1247.CrossRefGoogle ScholarPubMed
Wirz-Justice, A., Benedetti, F., and Terman, M. (2009). Chronotherapeutics for Affective Disorders. Cambridge University Press.CrossRefGoogle Scholar
Yildiz, B. O., Suchard, M. A., Wong, M. L., McCann, S. M., and Licinio, J. (2004). Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proceedings of the National Academy of Sciences of the United States of America, 101(28), 10434–9.Google ScholarPubMed
Zeitzer, J. M., Dijk, D. J., Kronauer, R., Brown, E., and Czeisler, C. (2000). Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. Journal of Physiology, 526(3), 695702.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×