Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-01T01:15:56.751Z Has data issue: false hasContentIssue false

Chapter 19 - Spinal Tumors

from Section 2 - Clinical Neurosurgical Diseases

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Tumors of the spine are a heterogeneous group of neoplasms involving the spinal column and spinal cord. They can be distinguished based on their location within the spine into three groups: intradural–intramedullary, intradural–extramedullary, and extradural. Another classification seeks to separate out these tumors based on their cell of origin, with primary spine tumors arising from either the spinal cord itself, its surrounding coverings including the leptomeninges, bone, cartilage, and soft tissue, or as secondary tumors arising from spinal involvement of a systemic neoplasm such as myeloma or as a metastasis from a distant site. This chapter seeks to discuss current evidence on the genetic, epigenetic, and cellular underpinnings of spine tumors with emphasis on the pathobiology and mechanisms underlying these neoplasms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asthagiri, AR, Parry, DM, Butman, JA, et al. Neurofibromatosis type 2. Lancet 2009;373(9679):1974–86. https://doi.org/10.1016/S0140-6736(09)60259-2.Google Scholar
Barton, VN, Donson, AM, Kleinschmidt-DeMasters, BK, Birks, DK, Handler, MH, Foreman, NK. Unique molecular characteristics of pediatric myxopapillary ependymoma. Brain Pathol 2010;20(3):560–70. https://doi.org/10.1111/j.1750-3639.2009.00333.xGoogle Scholar
Bettegowda, C, Agrawal, N, Jiao, Y, et al. Exomic sequencing of four rare central nervous system tumor types. Oncotarget 2013;4(4):572–83. https://doi.org/10.18632/oncotarget.964.Google Scholar
Biswas, A, Puri, T, Goyal, S, et al. Spinal intradural primary germ cell tumour–review of literature and case report. Acta Neurochir (Wien) 2009;151(3):277–84. https://doi.org/10.1007/s00701-009-0200-1.Google Scholar
Bompas, E, Le Cesne, A, Tresch-Bruneel, E, et al. Sorafenib in patients with locally advanced and metastatic chordomas: a phase II trial of the French Sarcoma Group (GSF/GETO). Ann Oncol 2015;26(10):2168–173. https://doi.org/10.1093/annonc/mdv300.Google Scholar
Bourgeois, JM, Knezevich, SR, Mathers, JA, Sorensen, PH. Molecular detection of the ETV6–NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol 2000;24(7):937–46. https://doi.org/10.1097/00000478-200007000-00005.Google Scholar
Brat, DJ, Giannini, C, Scheithauer, BW, Burger, PC. Primary melanocytic neoplasms of the central nervous systems. Am J Surg Pathol 1999;23(7):745–54. https://doi.org/10.1097/00000478-199907000-00001.Google Scholar
Buerki, RA, Horbinski, CM, Kruser, T, Horowitz, PM, James, CD, Lukas, RV. An overview of meningiomas. Future Oncol 2018;14(21):2161–77. https://doi.org/10.2217/fon-2018-0006.Google Scholar
Chamberlain, MC, Tredway, TL. Adult primary intradural spinal cord tumors: a review. Curr Neurol Neurosci Rep 2011;11(3):320–8. https://doi.org/10.1007/s11910-011-0190-2.Google Scholar
DeClerck, YA. Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer 2000;36(10):1258–68. https://doi.org/10.1007/s11910-011-0190-2.Google Scholar
Desai, SS, Jambhekar, NA. Pathology of Ewing’s sarcoma/PNET: current opinion and emerging concepts. Indian J Orthop 2010;44(4):363–8. https://doi.org/10.4103/0019-5413.69304.Google Scholar
DeWitt, JC, Mock, A, Louis, DN. The 2016 WHO classification of central nervous system tumors: what neurologists need to know. Curr Opin Neurol 2017;30(6):643–9. https://doi.org/10.1097/WCO.0000000000000490.Google Scholar
Eeles, RA, O’Brien, P, Horwich, A, Brada, M. Non-Hodgkin’s lymphoma presenting with extradural spinal cord compression: functional outcome and survival. Br J Cancer 1991;63(1):126–9. https://doi.org/10.1038/bjc.1991.25.Google Scholar
Farrokh, D, Fransen, P, Faverly, D. MR findings of a primary intramedullary malignant melanoma: case report and literature review. Am J Neuroradiol 2001;22(10):1864–6.Google Scholar
Foda, AAM, Alam, MS, Ikram, N, Rafi, S, Elnaghi, K. Spinal versus intracranial meningioma: expression of E-cadherin and Fascin with relation to clinicopathological features. Cancer Biomark 2019;25(4):333–9. https://doi.org/10.3233/CBM-190164.Google Scholar
Fomchenko, EI, Erson-Omay, EZ, Kundishora, AJ, et al. Genomic alterations underlying spinal metastases in pediatric H3K27M-mutant pineal parenchymal tumor of intermediate differentiation: case report. J Neurosurg Pediatr 2019. Online ahead of print. https://doi.org/10.3171/2019.8.PEDS18664.Google Scholar
Forschner, A, Forchhammer, S, Bonzheim, I. NTRK gene fusions in melanoma: detection, prevalence and potential therapeutic implications. J Dtsch Dermatol Ges 2020;18(12):1387–92. https://doi.org/10.1111/ddg.14160.Google Scholar
Garnier, L, Ducray, F, Verlut, C, et al. Prolonged response induced by single agent vemurafenib in a BRAF V600E spinal ganglioglioma: a case report and review of the literature. Front Oncol 2019;9:177. https://doi.org/10.3389/fonc.2019.00177.Google Scholar
Gdowski, AS, Ranjan, A, Vishwanatha, JK. Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. J Exp Clin Cancer Res 2017;36(1):108. https://doi.org/10.1186/s13046-017-0578-1.Google Scholar
Glasker, S. Central nervous system manifestations in VHL: genetics, pathology and clinical phenotypic features. Fam Cancer 2005;4(1):3742. https://doi.org/10.1007/s10689-004-5347-6.Google Scholar
Gottfried, ON, Viskochil, DH, Couldwell, WT. Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus 2010;28(1):E8. https://doi.org/10.3171/2009.11.FOCUS09221.Google Scholar
Grimm, S, Chamberlain, MC. Adult primary spinal cord tumors. Expert Rev Neurother 2009;9(10):1487–95. https://doi.org/10.1586/ern.09.101.Google Scholar
Hamburger, C, Buttner, A, Weis, S. Ganglioglioma of the spinal cord: report of two rare cases and review of the literature. Neurosurgery 1997;41(6):1410–15; discussion 1415–6. https://doi.org/10.1097/00006123-199712000-00038.Google Scholar
Hashi, S, Goodwin, CR, Ahmed, AK, Sciubba, DM. Management of extranodal lymphoma of the spine: a study of 30 patients. CNS Oncol 2018;7(2):CNS11. https://doi.org/10.2217/cns-2017-0033.Google Scholar
Hasselblatt, M. Ependymal tumors. Recent Results Cancer Res 2009;171:5166. https://doi.org/10.1007/978-3-540-31206-2_3.Google Scholar
Healey, JH, Lane, JM. Chordoma: a critical review of diagnosis and treatment. Orthop Clin North Am 1989;20(3):417–26.Google Scholar
Horbinski, C. To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 2013;72(1):27. https://doi.org/10.1097/NEN.0b013e318279f3db.Google Scholar
Horbinski, C, Hamilton, RL, Nikiforov, Y, Pollack, IF. Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 2010;119(5):641–9. https://doi.org/10.1007/s00401-009-0634-9.Google Scholar
Ilaslan, H, Sundaram, M, Unni, KK, Dekutoski, MB. Primary Ewing’s sarcoma of the vertebral column. Skeletal Radiol 2004;33(9):506–13. https://doi.org/10.1007/s00256-004-0810-xGoogle Scholar
Jett, K, Friedman, JM. Clinical and genetic aspects of neurofibromatosis 1. Genet Med. 2010;12(1):111. https://doi.org/10.1097/GIM.0b013e3181bf15e3.Google Scholar
Johnson, RA, Wright, KD, Poppleton, H, et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 2010;466(7306):632–6. https://doi.org/10.1038/nature09173.Google Scholar
Jones, V, Wykes, V, Cohen, N, Thompson, D, Jacques, TS. The pathology of lumbosacral lipomas: macroscopic and microscopic disparity have implications for embryogenesis and mode of clinical deterioration. Histopathology 2018;72(7):1136–44. https://doi.org/10.1111/his.13469.Google Scholar
Karsy, M, Guan, J, Sivakumar, W, Neil, JA, Schmidt, MH, Mahan, MA. The genetic basis of intradural spinal tumors and its impact on clinical treatment. Neurosurg Focus 2015;39(2):E3. https://doi.org/10.3171/2015.5.FOCUS15143.Google Scholar
Katonis, P, Alpantaki, K, Michail, K, et al. Spinal chondrosarcoma: a review. Sarcoma 2011;2011:378957. https://doi.org/10.1155/2011/378957.Google Scholar
Katonis, P, Datsis, G, Karantanas, A, et al. Spinal osteosarcoma. Clin Med Insights Oncol 2013;7:199208. https://doi.org/10.4137/CMO.S10099.Google Scholar
Kitamura, H, Kubota, Y, Yamaguchi, K, et al. Successful autologous hematopoietic stem cell transplantation followed by bortezomib maintenance in a patient with relapsed CD138-low multiple solitary plasmacytomas harboring a 17p deletion. Intern Med 2018;57(6):855–60. https://doi.org/10.2169/internalmedicine.9446-17.Google Scholar
Korshunov, A, Neben, K, Wrobel, G, et al. Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 2003;163(5):1721–7. https://doi.org/10.1016/S0002-9440(10)63530-4.Google Scholar
Kubista, B, Klinglmueller, F, Bilban, M, et al. Microarray analysis identifies distinct gene expression profiles associated with histological subtype in human osteosarcoma. Int Orthop 2011;35(3):401–11. https://doi.org/10.1007/s00264-010-0996-6.Google Scholar
Liang, Y, Yi, L, Liu, P, et al. CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway. J Cancer 2018;9(19):3603–12. https://doi.org/10.7150/jca.26497.Google Scholar
Liu, W, Wei, H, Gao, Z, et al. COL5A1 may contribute the metastasis of lung adenocarcinoma. Gene 2018;665:5766. https://doi.org/10.1016/j.gene.2018.04.066.Google Scholar
Liu, W, Xie, X, Wu, J. Mechanism of lung adenocarcinoma spine metastasis induced by CXCL17. Cell Oncol (Dordr) 2020;43(2):311–20. https://doi.org/10.1007/s13402-019-00491-7.Google Scholar
Louis, DN, Ohgaki, H, Wiestler, OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114(2):97109. https://doi.org/10.1007/s00401-007-0243-4.Google Scholar
Loya, JJ, Jung, H, Temmins, C, Cho, N, Singh, H. Primary spinal germ cell tumors: a case analysis and review of treatment paradigms. Case Rep Med 2013;2013:798358. https://doi.org/10.1155/2013/798358.Google Scholar
Ma, J, Ma, S, Yang, J, Jia, G, Jia, W. Primary spinal primitive neuroectodermal tumor: a single center series with literature review. J Spinal Cord Med 2020;43(6):895903. https://doi.org/10.1080/10790268.2018.1547862.Google Scholar
Maccauro, G, Spinelli, MS, Mauro, S, Perisano, C, Graci, C, Rosa, MA. Physiopathology of spine metastasis. Int J Surg Oncol 2011;2011:107969. https://doi.org/10.1155/2011/107969.Google Scholar
Magnaghi, P, Salom, B, Cozzi, L, et al. Afatinib is a new therapeutic approach in chordoma with a unique ability to target EGFR and brachyury. Mol Cancer Ther 2018;17(3):603–13. https://doi.org/10.1158/1535-7163.MCT-17-0324.Google Scholar
Mehta, VA, Kretzer, RM, Orr, B, Jallo, GI. Primary intramedullary spinal germ cell tumors. World Neurosurg 2011;76(5):478 e471–6. https://doi.org/10.1016/j.wneu.2011.01.024.Google Scholar
Nagaishi, M, Nobusawa, S, Yokoo, H, et al. Genetic mutations in high grade gliomas of the adult spinal cord. Brain Tumor Pathol 2016;33(4):267–9. https://doi.org/10.1007/s10014-016-0263-7.Google Scholar
Nagasawa, DT, Trang, A, Choy, W, et al. Genetic expression profiles of adult and pediatric ependymomas: molecular pathways, prognostic indicators, and therapeutic targets. Clin Neurol Neurosurg 2013;115(4):388–99. https://doi.org/10.1016/j.clineuro.2012.12.006.Google Scholar
Ostrom, QT, Gittleman, H, Liao, P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014;16(Suppl 4):iv163. https://doi.org/10.1093/neuonc/nou223.Google Scholar
Pang, D, Zovickian, J, Oviedo, A. Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode, part II: outcome analysis and preoperative profiling. Neurosurgery 2010;66(2):253–72; discussion 272–3. https://doi.org/10.1227/01.NEU.0000363598.81101.7B.Google Scholar
Pasalic, I, Brgic, K, Nemir, J, Kolenc, D, Njiric, N, Mrak, G. Intramedullary spinal cord lipoma mimicking a late subacute hematoma. Asian J Neurosurg 2018;13(4):1282–4. https://doi.org/10.4103/ajns.AJNS_112_18.Google Scholar
Saeedinia, S, Nouri, M, Alimohammadi, M, Moradi, H, Amirjamshidi, A. Primary spinal extradural Ewing’s sarcoma (primitive neuroectodermal tumor): report of a case and meta-analysis of the reported cases in the literature. Surg Neurol Int 2012;3:55. https://doi.org/10.4103/2152-7806.96154.Google Scholar
Samak, EM, Abdel Latif, AM, Ghany, WA, Hewedi, IH, Amer, A, Moharram, H. Spinal intramedullary hamartoma with acute presentation in a 13-month old infant: case report. J Neurosurg Pediatr 2016;18(2):177–82. https://doi.org/10.3171/2016.2.PEDS15561.Google Scholar
Sayagues, JM, Tabernero, MD, Maillo, A, et al. Microarray-based analysis of spinal versus intracranial meningiomas: different clinical, biological, and genetic characteristics associated with distinct patterns of gene expression. J Neuropathol Exp Neurol 2006;65(5):445–54. https://doi.org/10.1097/01.jnen.0000229234.13372.d8.Google Scholar
Schindler, G, Capper, D, Meyer, J, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011;121(3):397405. https://doi.org/10.1007/s00401-011-0802-6.Google Scholar
Schneider, SJ, Blacklock, JB, Bruner, JM. Melanoma arising in a spinal nerve root. Case report. J Neurosurg 1987;67(6):923–7. https://doi.org/10.3171/jns.1987.67.6.0923.Google Scholar
Shankar, GM, Lelic, N, Gill, CM, et al. BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. Acta Neuropathol 2016;131(1):147–50. https://doi.org/10.1007/s00401-015-1492-2.Google Scholar
Singh, PK, Gutmann, DH, Fuller, CE, Newsham, IF, Perry, A. Differential involvement of protein 4.1 family members DAL-1 and NF2 in intracranial and intraspinal ependymomas. Mod Pathol 2002;15(5):526–31. https://doi.org/10.1038/modpathol.3880558.Google Scholar
Skarli, SO, Wolf, AL, Kristt, DA, Numaguchi, Y. Melanoma arising in a cervical spinal nerve root: report of a case with a benign course and malignant features. Neurosurgery 1994;34(3):533–7; discussion 637. https://doi.org/10.1227/00006123-199403000-00023.Google Scholar
Soutar, R, Lucraft, H, Jackson, G, et al. Guidelines on the diagnosis and management of solitary plasmacytoma of bone and solitary extramedullary plasmacytoma. Clin Oncol (R Coll Radiol) 2004;16(6):405–13. https://doi.org/10.1016/j.clon.2004.02.007.Google Scholar
Stacchiotti, S, Tamborini, E, Lo Vullo, S, et al. Phase II study on lapatinib in advanced EGFR-positive chordoma. Ann Oncol 2013;24(7):1931–6. https://doi.org/10.1093/annonc/mdt117.Google Scholar
Sumegi, J, Nishio, J, Nelson, M, Frayer, RW, Perry, D, Bridge, JA. A novel t(4;22)(q31;q12) produces an EWSR1–SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mod Pathol 2011;24(3):333–42. https://doi.org/10.1038/modpathol.2010.201.Google Scholar
Szerlip, NJ, Calinescu, A, Smith, E, et al. Dural cells release factors which promote cancer cell malignancy and induce immunosuppressive markers in bone marrow myeloid cells. Neurosurgery 2018;83(6):1306–16. https://doi.org/10.1093/neuros/nyx626.Google Scholar
Takai, K, Taniguchi, M, Takahashi, H, Usui, M, Saito, N. Comparative analysis of spinal hemangioblastomas in sporadic disease and Von Hippel–Lindau syndrome. Neurol Med Chir (Tokyo) 2010;50(7):560–7. https://doi.org/10.2176/nmc.50.560.Google Scholar
Tarpey, PS, Behjati, S, Young, MD, et al. The driver landscape of sporadic chordoma. Nat Commun 2017;8(1):890. https://doi.org/10.1038/s41467-017-01026-0.Google Scholar
Thiery, JP, Acloque, H, Huang, RY, Nieto, MA. Epithelial–mesenchymal transitions in development and disease. Cell 2009;139(5):871–90. https://doi.org/10.1016/j.cell.2009.11.007.Google Scholar
Uematsu, Y, Tsuura, Y, Miyamoto, K, Itakura, T, Hayashi, S, Komai, N. The recurrence of primary intracranial germinomas. Special reference to germinoma with STGC (syncytiotrophoblastic giant cell). J Neurooncol 1992;13(3):247–56. https://doi.org/10.1007/BF00172477.Google Scholar
Wellik, DM. Hox patterning of the vertebrate axial skeleton. Dev Dyn. 2007;236(9):2454–63. https://doi.org/10.1002/dvdy.21286.Google Scholar
Westhoff, MA, Serrels, B, Fincham, VJ, Frame, MC, Carragher, NO. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol 2004;24(18):8113–33. https://doi.org/10.1128/MCB.24.18.8113-8133.2004.Google Scholar
Wright, CH, Wright, J, Onyewadume, L, et al. Diagnosis, treatment, and survival in spinal dissemination of primary intracranial glioblastoma: systematic literature review. J Neurosurg Spine 2019:110. Online ahead of print. https://doi.org/10.3171/2019.5.SPINE19164.Google Scholar
Yanamadala, V, Koffie, RM, Shankar, GM, et al. Spinal cord glioblastoma: 25 years of experience from a single institution. J Clin Neurosci 2016;27:138–41. https://doi.org/10.1016/j.jocn.2015.11.011.Google Scholar
Yang, J, Antin, P, Berx, G, et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2020;21(6):341–52. https://doi.org/10.1038/s41580-020-0237-9.Google Scholar
Yang, XR, Ng, D, Alcorta, DA, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet 2009;41(11):1176–8. https://doi.org/10.1038/ng.454Google Scholar
Zheng, JS, Wang, M, Wan, S, et al. Isolated primary non-Hodgkin’s lymphoma of the thoracic spine: a case report with a review of the literature. J Int Med Res 2010;38(4):1553–60. https://doi.org/10.1177/147323001003800440.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×