Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-11T13:51:37.928Z Has data issue: false hasContentIssue false

Chapter 24 - Craniofacial Neurosurgery

from Section 2 - Clinical Neurosurgical Diseases

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Craniosynostosis is a condition associated with the pathologic premature fusion of one or more cranial sutures. Physiologically, the metopic suture closes in infancy, while the remaining sutures close years later, even into adulthood. In craniosynostosis, characteristic calvarial deformity first appears on ultrasound in the second trimester and precedes identifiable suture fusion by 4–16 weeks. When this premature closure occurs, it is associated with restriction of calvarial growth perpendicular to the fused suture, with compensatory increase in growth at the remaining sutures. Previously there was debate as to whether the suture fusion itself drives this restriction of growth, or whether a cranial base deformity drives the abnormal development through tension bands in the dura. Currently there is a preponderance of evidence from human and rabbit studies supporting the idea that suture fusion is at least a significant contributor to the overall skull shape abnormality. The natural history of the disease is such that the deformity observed in infancy increases in severity if not surgically corrected.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adeeb, N, Mortazavi, MM, Tubbs, RS, Cohen-Gadol, AA. The cranial dura mater: a review of its history, embryology, and anatomy. Childs Nerv Syst 2012;28(6):827–37. https://doi.org/10.1007/s00381-012-1744-6.CrossRefGoogle ScholarPubMed
Agochukwu, NB, Solomon, BD, Muenke, M. Impact of genetics on the diagnosis and clinical management of syndromic craniosynostoses. Childs Nerv Syst 2012;28(9):1447–63. https://doi.org/10.1007/s00381-012-1756-2.CrossRefGoogle ScholarPubMed
Aldridge, K, Kane, AA, Marsh, JL, Yan, P, Govier, D, Richtsmeier, JT. Relationship of brain and skull in pre- and postoperative sagittal synostosis. J Anat 2005;206(4):373–85. https://doi.org/10.1111/j.1469-7580.2005.00397.x.Google Scholar
Azoury, SC, Reddy, S, Shukla, V, Deng, C-X. Fibroblast Growth Factor Receptor 2 (FGFR2) mutation related syndromic craniosynostosis. Int J Biol Sci 2017;13(12):1479–88. https://doi.org/10.7150/ijbs.22373.Google Scholar
Becker, DB, Petersen, JD, Kane, AA, Cradock, MM, Pilgram, TK, Marsh, JL. Speech, cognitive, and behavioral outcomes in nonsyndromic craniosynostosis. Plast Reconstr Surg 2005;116(2):400–7. https://doi.org/10.1097/01.prs.0000172763.71043.b8.CrossRefGoogle ScholarPubMed
Beckett, JS, Brooks, ED, Lacadie, C, et al. Altered brain connectivity in sagittal craniosynostosis. J Neurosurg Pediatr 2014;13(6):690–8. https://doi.org/10.3171/2014.3.PEDS13516.Google Scholar
Bolthauser, E, Ludwig, S, Dietrich, F, Landolt, MA. Sagittal craniosynostosis: cognitive development, behaviour, and quality of life in unoperated children. Neuropediatrics 2003;34(6):293300. https://doi.org/10.1055/s-2003-44667.Google Scholar
Bonfield, CM, Foley, LM, Kundu, S, et al. The influence of surgical correction on white matter microstructural integrity in rabbits with familial coronal suture craniosynostosis. Neurosurg Focus 2015;38(5):E3. https://doi.org/10.3171/2015.2.FOCUS14849.Google Scholar
Bottero, L, Lajeunie, E, Arnaud, E, Marchac, D, Renier, D. Functional outcome after surgery for trigonocephaly. Plast Reconstr Surg 1998;102(4):952–8; discussion 959–60.Google Scholar
Boulet, SL, Rasmussen, SA, Honein, MA. A population-based study of craniosynostosis in metropolitan Atlanta, 1989–2003. Am J Med Genet A 2008;146A(8):984–91. https://doi.org/10.1002/ajmg.a.32208.Google Scholar
Boyadjiev, S, for the International Craniosynostosis Consortium. Genetic analysis of non-syndromic craniosynostosis. Orthod Craniofac Res 2007;10(3):129–37. https://doi.org/10.1111/j.1601-6343.2007.00393.x.CrossRefGoogle ScholarPubMed
Brooks, ED, Yang, J, Beckett, JS, et al. Normalization of brain morphology after surgery in sagittal craniosynostosis. J Neurosurg Pediatr 2016;17(4):460–8. https://doi.org/10.3171/2015.7.PEDS15221.CrossRefGoogle ScholarPubMed
Cabrejo, R, Lacadie, C, Brooks, E, et al. Understanding the learning disabilities linked to sagittal craniosynostosis. J Craniofac Surg 2019a;30(2):497502. https://doi.org/10.1097/SCS.0000000000005194.Google Scholar
Cabrejo, R, Lacadie, C, Chuang, C, et al. What is the functional difference between sagittal with metopic and isolated sagittal craniosynotosis? J Craniofac Surg 2019b;30(4):968–73. https://doi.org/10.1097/SCS.0000000000005288.Google Scholar
Cariboni, A, Maggi, R. Kallmann’s syndrome, a neuronal migration defect. Cell Mol Life Sci 2006;63(21):2512–26. https://doi.org/10.1007/s00018-005-5604-3.CrossRefGoogle ScholarPubMed
Christensen, FK, Clark, DB. The effect of restricted suture growth on brain growth in dogs. Surg Forum 1970;21:439–40. https://doi.org/10.3389/fcell.2021.653579.Google Scholar
Chuang, C, Rolison, M, Yang, JF, et al. Normalization of speech processing after whole-vault cranioplasty in sagittal synostosis: J Craniofac Surg 2018;29(5):1132–6. https://doi.org/10.1097/SCS.0000000000004474.CrossRefGoogle ScholarPubMed
Church, MW, Parent-Jenkins, L, Rozzelle, AA, Eldis, FE, Kazzi, SNJ. Auditory brainstem response abnormalities and hearing loss in children with craniosynostosis. Pediatrics 2007;119(6):e1351–60. https://doi.org/10.1542/peds.2006-3009.Google Scholar
Churchill, JD, Grossman, AW, Irwin, SA, et al. A converging-methods approach to fragile X syndrome. Dev Psychobiol 2002;40(3):323338. https://doi.org/10.1002/dev.10036.Google Scholar
Ciurea, AV, Toader, C. Genetics of craniosynostosis: review of the literature. J Med Life 2009;2(1):517.Google ScholarPubMed
Cohen, SR, Persing, JA. Intracranial pressure in single-suture craniosynostosis. Cleft Palate–Craniofacial J 1998;35(3):194–6. https://doi.org/10.1597/1545-1569_1998_035_0194_ipissc_2.3.co_2.Google Scholar
Collett, BR, Kapp-Simon, KA, Wallace, E, Cradock, MM, Buono, L, Speltz, ML. Attention and executive function in children with and without single-suture craniosynostosis. Child Neuropsychol 2017;23(1):8398. https://doi.org/10.1080/09297049.2015.1085005.Google Scholar
Collmann, H, Sörensen, N, Krauß, J. Hydrocephalus in craniosynostosis: a review. Childs Nerv Syst 2005;21(10):902–12. https://doi.org/10.1007/s00381-004-1116-y.Google Scholar
Cradock, MM, Gray, KE, Kapp-Simon, KA, Collett, BR, Buono, LA, Speltz, ML. Sex differences in the neurodevelopment of school-age children with and without single-suture craniosynostosis. Childs Nerv Syst 2015;31(7):1103–11. https://doi.org/10.1007/s00381-015-2671-0.CrossRefGoogle ScholarPubMed
Creuzet, SE, Martinez, S, Le Douarin, NM. The cephalic neural crest exerts a critical effect on forebrain and midbrain development. Proc Natl Acad Sci 2006;103(38):14033–8. https://doi.org/10.1073/pnas.0605899103.CrossRefGoogle ScholarPubMed
Da Costa, AC, Walters, I, Savarirayan, R, Anderson, VA, Wrennall, JA, Meara, JG. Intellectual outcomes in children and adolescents with syndromic and nonsyndromic craniosynostosis. Plast Reconstr Surg 2006;118(1):175–81. https://doi.org/10.1097/01.prs.0000221009.93022.50.Google Scholar
David, LR, Wilson, JA, Watson, NE, Argenta, LC. Cerebral perfusion defects secondary to simple craniosynostosis. J Craniofac Surg 1996;7(3):177–85. https://doi.org/10.1097/00001665-199605000-00003.Google Scholar
de Jong, T, Maliepaard, M, Bannink, N, Raat, H, Mathijssen, IMJ. Health-related problems and quality of life in patients with syndromic and complex craniosynostosis. Childs Nerv Syst 2012;28(6):879–82. https://doi.org/10.1007/s00381-012-1681-4.Google ScholarPubMed
Delahaye, S, Bernard, JP, Rénier, D, Ville, Y. Prenatal ultrasound diagnosis of fetal craniosynostosis: fetal craniosynostosis. Ultrasound Obstet Gynecol 2003;21(4):347–53. https://doi.org/10.1002/uog.91.Google Scholar
Delashaw, JB, Persing, JA, Broaddus, WC, Jane, JA. Cranial vault growth in craniosynostosis. J Neurosurg 1989;70(2):159–65. https://doi.org/10.3171/jns.1989.70.2.0159.Google Scholar
Di Rocco, F, Arnaud, E, Renier, D. Evolution in the frequency of nonsyndromic craniosynostosis: clinical article. J Neurosurg Pediatr 2009;4(1):21–5. https://doi.org/10.3171/2009.3.PEDS08355.Google Scholar
Doerga, PN, Lequin, MH, Dremmen, MHG, et al. Cerebral blood flow in children with syndromic craniosynostosis: cohort arterial spin labeling studies. J Neurosurg Pediatr 2020;25(4):340–50. https://doi.org/10.3171/2019.10.PEDS19150.CrossRefGoogle Scholar
Doherty, P, Walsh, FS. CAM–FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 1996;8(2–3):99111. https://doi.org/10.1006/mcne.1996.0049.Google Scholar
Donati, R, Landi, A, Rovati, LC, et al. Neurophysiological evaluation with multimodality evoked potentials in craniostenosis and craniofacial stenosis. J Craniofac Surg 1997;8(4):286–9. https://doi.org/10.1097/00001665-199707000-00011.Google Scholar
Engel, M, Hoffmann, J, Mühling, J, Castrillón-Oberndorfer, G, Seeberger, R, Freudlsperger, C. Magnetic resonance imaging in isolated sagittal synostosis. J Craniofac Surg 2012;23(4):e366–9. https://doi.org/10.1097/SCS.0b013e3182543258.Google Scholar
Fellows-Mayle, W, Hitchens, TK, Simplaceanu, E, et al. Testing causal mechanisms of nonsyndromic craniosynostosis using path analysis of cranial contents in rabbits with uncorrected craniosynostosis. Cleft Palate Craniofac J 2006;43(5):524–31. https://doi.org/10.1597/05-107.Google Scholar
Florisson, JMG, Dudink, J, Koning, IV, et al. Assessment of white matter microstructural integrity in children with syndromic craniosynostosis: a diffusion-tensor imaging study. Radiology 2011;261(2):534–41. https://doi.org/10.1148/radiol.11101024.Google Scholar
Gabrick, KS, Wu, RT, Singh, A, Persing, JA, Alperovich, M. Radiographic severity of metopic craniosynostosis correlates with long-term neurocognitive outcomes. Plast Reconstr Surg 2020;145(5):1241–8. https://doi.org/10.1097/PRS.0000000000006746.CrossRefGoogle ScholarPubMed
Grandhi, R, Peitz, GW, Foley, LM, et al. The influence of suturectomy on age-related changes in cerebral blood flow in rabbits with familial bicoronal suture craniosynostosis: a quantitative analysis. PLoS One 2018;13(6):e0197296. https://doi.org/10.1371/journal.pone.0197296.Google Scholar
Graziani, LJ, Weitzman, ED, Velasco, MS. Neurologic maturation and auditory evoked responses in low birth weight infants. Pediatrics 1968;41(2):483–94.CrossRefGoogle ScholarPubMed
Guttorm, TK, Leppänen, PHT, Hämäläinen, JA, Eklund, KM, Lyytinen, HJ. Newborn event-related potentials predict poorer pre-reading skills in children at risk for dyslexia. J Learn Disabil 2010;43(5):391401. https://doi.org/:10.1177/0022219409345005.CrossRefGoogle ScholarPubMed
Hack, M, Taylor, HG, Drotar, D, et al. Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics 2005;116(2):333–41. https://doi.org/10.1542/peds.2005-0173.Google Scholar
Hashim, PW, Patel, A, Yang, JF, et al. The effects of whole-vault cranioplasty versus strip craniectomy on long-term neuropsychological outcomes in sagittal craniosynostosis. Plast Reconstr Surg 2014;134(3):491501. https://doi.org/10.1097/PRS.0000000000000420.CrossRefGoogle ScholarPubMed
Hebert, JM. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 2003;130(6):1101–11. https://doi.org/10.1242/dev.00334.Google Scholar
Heller, JB, Heller, MM, Knoll, B, Gabbay, JS, Duncan, C, Persing, JA. Intracranial volume and cephalic index outcomes for total calvarial reconstruction among nonsyndromic sagittal synostosis patients. Plast Reconstr Surg 2008;121(1):187–95. https://doi.org/10.1097/01.prs.0000293762.71115.c5.Google Scholar
Hukki, A, Koljonen, V, Karppinen, A, Valanne, L, Leikola, J. Brain anomalies in 121 children with non-syndromic single suture craniosynostosis by MR imaging. Eur J Paediatr Neurol 2012;16(6):671–5. https://doi.org/10.1016/j.ejpn.2012.04.003.Google Scholar
Inglis-Broadgate, SL, Thomson, RE, Pellicano, F, et al. FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development. Dev Biol 2005;279(1):7385. https://doi.org/10.1016/j.ydbio.2004.11.035.Google Scholar
Jessell, TM, Sanes, JR. Development. Curr Opin Neurobiol 2000;10(5):599611. https://doi.org/10.1016/S0959-4388(00)00136-7.Google Scholar
Kamiguchi, H, Lemmon, V. Neural cell adhesion molecule L1: signaling pathways and growth cone motility. J Neurosci Res 1997;49(1):18. https://doi.org/10.1002/(sici)1097-4547(19970701)49:1<1::aid-jnr1>3.0.co;2-h.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Kapp-Simon, KA, Speltz, ML, Cunningham, ML, Patel, PK, Tomita, T. Neurodevelopment of children with single suture craniosynostosis: a review. Childs Nerv Syst 2007;23(3):269–81. https://doi.org/10.1007/s00381-006-0251-z.Google Scholar
Kljajić, M, Maltese, G, Tarnow, P, Sand, P, Kölby, L. The cognitive profile of children with nonsyndromic craniosynostosis. Plast Reconstr Surg 2019;143(5):1037e–52e. https://doi.org/10.1097/PRS.0000000000005515.Google Scholar
Kostović, I, Judaš, M, Petanjek, Z, Šimić, G. Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psychophysiol 1995;19(2):85102. https://doi.org/10.1016/0167-8760(94)00081-O.Google Scholar
Kurtzberg, D, Hitpert, PL, Kreuzer, JA, Vaughan, HG. Differential maturation of cortical auditory evoked potentials to speech sounds in normal fullterm and very low-birthweight infants. Dev Med Child Neurol 2008;26(4):466–75. https://doi.org/10.1111/j.1469-8749.1984.tb04473.x.Google Scholar
Lajeunie, E, Crimmins, DW, Arnaud, E, Renier, D. Genetic considerations in nonsyndromic midline craniosynostoses: a study of twins and their families. J Neurosurg Pediatr 2005;103(4):353–6. https://doi.org/10.3171/ped.2005.103.4.0353.Google Scholar
Lajeunie, E, Le Merrer, M, Bonaïti-Pellie, C, Marchac, D, Renier, D. Genetic study of scaphocephaly. Am J Med Genet 1996;62(3):282–5. https://doi.org/10.1002/(SICI)1096-8628(19960329)62:3<282::AID-AJMG15>3.0.CO;2-G.Google Scholar
Lajeunie, E, Le Merrer, M, Marchac, D, Renier, D. Syndromal and nonsyndromal primary trigonocephaly: analysis of a series of 237 patients. Am J Med Genet 1998;75(2):211–5. https://doi.org/10.1002/(sici)1096-8628(19980113)75:2<211::aid-ajmg19>3.0.co;2-s.Google Scholar
Lenton, KA, Nacamuli, RP, Wan, DC, Helms, JA, Longaker, MT. Cranial suture biology. Curr Topics Devel Biol 2005;66:287328. https://doi.org/10.1016/S0070-2153(05)66009-7.Google Scholar
Levitt, P. Structural and functional maturation of the developing primate brain. J Pediatr 2003;143(4):3545. https://doi.org/10.1067/S0022-3476(03)00400-1.Google Scholar
Liasis, A. Monitoring visual function in children with syndromic craniosynostosis: a comparison of 3 methods. Arch Ophthalmol 2006;124(8):1119. https://doi.org/10.1001/archopht.124.8.1119.Google Scholar
Lu, X, Forte, AJ, Steinbacher, DM, Alperovich, M, Alonso, N, Persing, JA. Enlarged anterior cranial fossa and restricted posterior cranial fossa, the disproportionate growth of basicranium in Crouzon syndrome. J Cranio-Maxillofac Surg 2019;47(9):1426–35. https://doi.org/10.1016/j.jcms.2019.06.003.Google Scholar
Lu, X, Sawh-Martinez, R, Forte, AJ, et al. Classification of subtypes of Crouzon syndrome based on the type of vault suture synostosis. J Craniofac Surg 2020;31(3):678–84. https://doi.org/10.1097/SCS.0000000000006173.Google Scholar
Magge, SN, Westerveld, M, Pruzinsky, T, Persing, JA. Long-term neuropsychological effects of sagittal craniosynostosis on child development. J Craniofac Surg 2002;13(1):99104. https://doi.org/10.1097/00001665-200201000-00023.Google Scholar
Martini, M, Röhrig, A, Wenghoefer, M, Schindler, E, Messing-Jünger, AM. Cerebral oxygenation and hemodynamic measurements during craniosynostosis surgery with near-infrared spectroscopy. Childs Nerv Syst 2014;30(8):1367–74. https://doi.org/10.1007/s00381-014-2418-3.Google Scholar
Molfese, DL. Predicting dyslexia at 8 years of age using neonatal brain responses. Brain Lang 2000;72(3):238–45. https://doi.org/10.1006/brln.2000.2287.Google Scholar
Mooney, MP, Siegel, MI, Burrows, AM, et al. A rabbit model of human familial, nonsyndromic unicoronal suture synostosis I. Synostotic onset, pathology, and sutural growth patterns. Childs Nerv Syst 1998;14(6):236–46. https://doi.org/10.1007/s003810050219.Google Scholar
Morton, JB, Munakata, Y. What’s the difference? Contrasting modular and neural network approaches to understanding developmental variability. J Dev Behav Pediatr 2005;26(2):128–39. https://doi.org/10.1097/00004703-200504000-00010.CrossRefGoogle ScholarPubMed
Moss, ML, Salentijn, L. The primary role of functional matrices in facial growth. Am J Orthod 1969;55(6):566–77. https://doi.org/10.1016/0002-9416(69)90034-7.Google Scholar
Munakata, Y, Casey, BJ, Diamond, A. Developmental cognitive neuroscience: progress and potential. Trends Cogn Sci 2004;8(3):122–8. https://doi.org/10.1016/j.tics.2004.01.005.Google Scholar
Mursch, K, Brockmann, K, Lang, JK, Markakis, E, Behnke-Mursch, J. Visually evoked potentials in 52 children requiring operative repair of craniosynostosis. Pediatr Neurosurg 1998;29(6):320–3. https://doi.org/10.1159/000028746.Google Scholar
Novak, GP, Kurtzberg, D, Kreuzer, JA, Vaughan, HG. Cortical responses to speech sounds and their formants in normal infants: maturational sequence and spatiotemporal analysis. Electroencephalogr Clin Neurophysiol 1989;73(4):295305. https://doi.org/10.1016/0013-4694(89)90108-9.Google Scholar
Passos-Bueno, MR, Sertié, AL, Jehee, FS, Fanganiello, R, Yeh, E. Genetics of craniosynostosis: genes, syndromes, mutations and genotype–phenotype correlations. In Rice, DP (Ed.), Frontiers of Oral Biology, Vol 12. S. KARGER AG; 2008, pp. 107–43. https://doi.org/10.1159/000115035.Google Scholar
Patel, A, Yang, JF, Hashim, PW, et al. The impact of age at surgery on long-term neuropsychological outcomes in sagittal craniosynostosis. Plast Reconstr Surg 2014;134(4):608e–17e. https://doi.org/10.1097/PRS.0000000000000511.Google Scholar
Persing, JA, Babler, WJ, Jane, JA, Duckworth, PF. Experimental unilateral coronal synostosis in rabbits. Plast Reconstr Surg 1986;77(3):369–76. https://doi.org/10.1097/00006534-198603000-00003.Google Scholar
Persing, JA, Jane, JA. Craniosynostosis. Semin Neurol 1989;9(3):200–09. https://doi.org/10.1055/s-2008-1041326.Google Scholar
Persson, KM, Roy, WA, Persing, JA, Rodeheaver, GT, Winn, HR. Craniofacial growth following experimental craniosynostosis and craniectomy in rabbits. J Neurosurg 1979;50(2):187–97. https://doi.org/10.3171/jns.1979.50.2.0187.Google Scholar
Proudman, TW, Clark, BE, Moore, MH, Abbott, AH, David, DJ. Central nervous system imaging in Crouzonʼs syndrome: J Craniofac Surg 1995;6(5):401–05. https://doi.org/10.1097/00001665-199509000-00016.Google Scholar
Quintero-Rivera, F, Robson, CD, Reiss, RE, et al. Intracranial anomalies detected by imaging studies in 30 patients with Apert syndrome. Am J Med Genet A 2006;140A(12):1337–8. https://doi.org/10.1002/ajmg.a.31277.Google Scholar
Raybaud, C, Di Rocco, C. Brain malformation in syndromic craniosynostoses, a primary disorder of white matter: a review. Childs Nerv Syst 2007;23(12):1379–88. https://doi.org/10.1007/s00381-007-0474-7.Google Scholar
Renier, D, Lajeunie, E, Arnaud, E, Marchac, D. Management of craniosynostoses. Childs Nerv Syst 2000;16(10–11):645–58. https://doi.org/10.1007/s003810000320.Google Scholar
Renier, D, Sainte-Rose, C, Marchac, D, Hirsch, J-F. Intracranial pressure in craniostenosis. J Neurosurg 1982;57(3):370–7. https://doi.org/10.3171/jns.1982.57.3.0370.CrossRefGoogle ScholarPubMed
Richtsmeier, JT, Aldridge, K, DeLeon, VB, et al. Phenotypic integration of neurocranium and brain. J Exp Zoolog B Mol Dev Evol 2006;306B(4):360–78. https://doi.org/10.1002/jez.b.21092.Google Scholar
Rijken, BFM, Leemans, A, Lucas, Y, van Montfort, K, Mathijssen, IMJ, Lequin, MH. Diffusion tensor imaging and fiber tractography in children with craniosynostosis syndromes. Am J Neuroradiol 2015;36(8):1558–64. https://doi.org/10.3174/ajnr.A4301.Google Scholar
Salazar, V, Gamer, L, Rosen, V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 2016;12:203–21. https://doi.org/10.1038/nrendo.2016.1.Google Scholar
Satoh, M, Ishikawa, N, Enomoto, T, Takeda, T, Yoshizawa, T, Nose, T. [Study by I-123-IMP-SPECT before and after surgery for craniosynostosis]. Kaku Igaku 1990;27(12):1411–8.Google Scholar
Selber, J, Reid, RR, Chike-Obi, CJ, et al. The changing epidemiologic spectrum of single-suture synostoses. Plast Reconstr Surg 2008;122(2):527–33. https://doi.org/10.1097/PRS.0b013e31817d548c.Google Scholar
Sen, A, Dougal, P, Padhy, AK, et al. Technetium-99m-HMPAO SPECT cerebral blood flow study in children with craniosynostosis. J Nucl Med 1995;36(3):394–8.Google Scholar
Sun, AH, Eilbott, J, Chuang, C, et al. An investigation of brain functional connectivity by form of craniosynostosis. J Craniofac Surg 2019;30(6):1719–23. https://doi.org/10.1097/SCS.0000000000005537.Google Scholar
Thiele-Nygaard, AE, Foss-Skiftesvik, J, Juhler, M. Intracranial pressure, brain morphology and cognitive outcome in children with sagittal craniosynostosis. Childs Nerv Syst 2020;36(4):689–95. https://doi.org/10.1007/s00381-020-04502-z.Google Scholar
Thompson, DA, Liasis, A, Hardy, S, et al. Prevalence of abnormal pattern reversal visual evoked potentials in craniosynostosis. Plast Reconstr Surg 2006;118(1):184–92. https://doi.org/10.1097/01.prs.0000220873.72953.3e.Google Scholar
Thwin, M, Schultz, TJ, Anderson, PJ. Morphological, functional and neurological outcomes of craniectomy versus cranial vault remodeling for isolated nonsyndromic synostosis of the sagittal suture: a systematic review. JBI Database Syst Rev Implement Rep 2015;13(9):309–68. https://doi.org/10.11124/jbisrir-2015-2470.Google ScholarPubMed
Timberlake, AT, Choi, J, Zaidi, S, et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. eLife 2016;5. https://doi.org/10.7554/eLife.20125.CrossRefGoogle ScholarPubMed
Timberlake, AT, Jin, SC, Nelson-Williams, C, et al. Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis. Proc Natl Acad Sci U S A 2019;116(30):15116–21. https://doi.org/10.1073/pnas.1902041116.Google Scholar
Timberlake, AT, Persing, JA. Genetics of nonsyndromic craniosynostosis. Plast Reconstr Surg 2018;141(6):1508–16. https://doi.org/10.1097/PRS.0000000000004374.Google Scholar
Tokumaru, AM, Barkovich, AJ, Ciricillo, SF, Edwards, MS. Skull base and calvarial deformities: association with intracranial changes in craniofacial syndromes. Am J Neuroradiol 1996;17(4):619–30.Google Scholar
Tonni, G, Panteghini, M, Rossi, A, et al. Craniosynostosis: prenatal diagnosis by means of ultrasound and SSSE-MRI. Family series with report of neurodevelopmental outcome and review of the literature. Arch Gynecol Obstet 2011;283(4):909–16. https://doi.org/10.1007/s00404-010-1643-6.CrossRefGoogle ScholarPubMed
Wu, RT, Timberlake, AT, Abraham, PF, et al. SMAD6 genotype predicts neurodevelopment in nonsyndromic craniosynostosis. Plast Reconstr Surg 2020;145(1):117e–25e. https://doi.org/10.1097/PRS.0000000000006319.Google Scholar
Wu, RT, Yang, JF, Zucconi, W, et al. Frustration and emotional regulation in nonsyndromic craniosynostosis: a functional magnetic resonance imaging study. Plast Reconstr Surg 2019;144(6):1371–83. https://doi.org/10.1097/PRS.0000000000005850.Google Scholar
Yacubian-Fernandes, A, Palhares, A, Giglio, A, et al. Apert syndrome: analysis of associated brain malformations and conformational changes determined by surgical treatment. J Neuroradiol 2004;31(2):116–22. https://doi.org/10.1016/S0150-9861(04)96978-7.CrossRefGoogle ScholarPubMed
Yang, JF, Brooks, ED, Hashim, PW, et al. The severity of deformity in metopic craniosynostosis is correlated with the degree of neurologic dysfunction. Plast Reconstr Surg 2017;139(2):442–7. https://doi.org/10.1097/PRS.0000000000002952.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×