Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-27T08:37:06.827Z Has data issue: false hasContentIssue false

2 - Understanding Mars and Its Atmosphere

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuna, M. H., Connerney, J. E. P., Ness, N. F., et al. (1999), Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284: 790793, doi:10.1126/science.284.5415.790.Google Scholar
Anderson, E. M. and Leovy, C. B. (1978), Mariner 9 television limb observations of dust and ice hazes on Mars. J. Atmos. Sci. 35: 723734.Google Scholar
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al. (2002), Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297: 8185, doi:10.1126/science.1073722.CrossRefGoogle ScholarPubMed
Bridges, N., Ayoub, F., Avouac, J.-P., et al. (2012a), Earth-like sand fluxes on Mars. Nature 485: 339342, doi:10.1038/nature11022.Google Scholar
Bridges, N., Bourke, M. C., Geissler, P. E., et al. (2012b), Planet-wide sand motion on Mars. Geology 40: 3134, doi:10.1130/G23273.1.CrossRefGoogle Scholar
Byrne, S., Dundas, C. M., Kennedy, M. R., et al. (2009), Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325: 16741676, doi:10.1126/science.1175307.CrossRefGoogle ScholarPubMed
Cassini, (1666), J. Savants 2: 316.Google Scholar
Chamberlain, M. A., and Boynton, W. V. (2007), Response of Martian ground ice to orbit-induced climate change. J. Geophysical Res.–Planets 112, doi:10.1029/2006JE002801.Google Scholar
Chapman, S., and Lindzen, R. S (1970), Atmospheric Tides (New York: Gordon and Breach).Google Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J., et al. (2000), An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105: 95539571.Google Scholar
Coblentz, W. W., and Lampland, C. O. (1927), Further radiometric measurements and temperature estimates of the planet Mars. Sci. Paper Natl. Bur. Stds. 22: 237276.Google Scholar
Conrath, B. J. (1976), Influence of planetary-scale topography on the diurnal thermal tide during the 1971 Martian dust storm. J. Atmos. Sci. 33: 24302439.Google Scholar
Curran, R. J., Conrath, B. J., Hanel, R. A., Kunde, V. G., and Pearl, J. C. (1973), Mars: Mariner 9 spectroscopic evidence for H2O ice clouds. Science 182: 381383.Google Scholar
Daubar, I. J., McEwen, A. S., Byrne, S., Kennedy, M. R., and Ivanov, B. (2013), The current Martian cratering rate. Icarus 225: 506516, doi:10.1016/j.icarus.2013.4.9.Google Scholar
De Vaucouleurs, G. (1954), Physics of the Planet Mars (London: Faber and Faber).Google Scholar
Di Achille, G., and Hynek, B. M. (2010), Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geoscience 3: 459463.Google Scholar
Dundas, C. M., Byrne, S., McEwen, A. S., et al. (2014), HiRISE observations of new impact craters exposing Martian ground ice. J. Geophys. Res. 119, doi:10.1002/2013JE004482.Google Scholar
Edwards, C. S., and Ehlmann, B. L. (2015), Carbon sequestration on Mars. Geology 43, doi:10.1130/G36983.1.Google Scholar
Ehlmann, B. L., and Edwards, C. S. (2014), Mineralogy of the Martian surface. Annual Review of Earth and Planetary Sciences 42: 291315, doi:10.1146/annurev-earth-060313-055024.CrossRefGoogle Scholar
Ehlmann, B. L., Mustard, J. F., Murchie, S. L., et al. (2011), Subsurface water and clay mineral formation during the early history of Mars. Nature 479: 5360, doi:10.1038/nature10582.Google Scholar
Fanale, F. P., Salvail, J. R., Banerdt, W. B., and Saunders, R. S. (1982), Mars: the regolith–atmosphere–cap system and climate change. Icarus 50: 381407.Google Scholar
Farley, K. A., Malespin, C., Mahaffy, P., et al. (2013), In situ radiometric and exposure age dating of the Martian surface. Science 343, doi:10.1126/science.1247166.Google Scholar
Farmer, C. B., Davies, D. W., Holland, A. L., Laporte, D. D., and Doms, P. E. (1977), Mars: water vapor observations from the Viking Orbiters. J. Geophys. Res. 82: 42254248.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al. (2002), Global distribution of neutrons from Mars: results from Mars Odyssey. Science 297: 7578, doi:10.1126/science.1073541.Google Scholar
Fergason, R. L., Christensen, P. R., and Kieffer, H. H. (2006), High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): thermal model and applications. J. Geophys. Res. 111, E12004, doi:10.1029/2006JE002735.Google Scholar
Forget, F., Hourdin, F., Fournier, R., et al. (1999), Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104: 2415524176.Google Scholar
Gierasch, P. J. (1974), Martian dust storms. Rev. Geophys. Space Phys. 12: 730734.Google Scholar
Gierasch, P. J., and Goody, R. M. (1967), An approximate calculation of radiative heating and radiative equilibrium in the Martian atmosphere. Planet. Space Sci. 15: 14651477.CrossRefGoogle Scholar
Gierasch, P. J., and Goody, R. M. (1968), A study of the thermal and dynamical structure of the Martian lower atmosphere. Planet. Space Sci. 16: 615646.Google Scholar
Gierasch, P. J., and Goody, R. M. (1972), The effect of dust on the temperature of the Mars atmosphere. J. Atmos. Sci. 29: 400402.Google Scholar
Goody, R. M., and Belton, M. J. S. (1967), Radiative relaxation times for Mars: a discussion of Martian atmospheric dynamics. Planet. Space Sci. 15: 247256.Google Scholar
Haberle, R. M., Leovy, C. B. and Pollack, J. B. (1982), Some effects of global dust storms on the atmospheric circulation of Mars. Icarus 50: 322367, doi:10.1016/0019-1035(82)90129-4.Google Scholar
Hanel, R. A., B. J. Conrath, W. A. Hovis, , et al. (1972), Infrared spectroscopy experiment on the Mariner 9 mission: preliminary results. Science 175: 305308.Google Scholar
Hansen, C. J., Thomas, N., Portyankina, G., et al. (2010), HiRISE observations of gas sublimation-driven activity in Mars southern polar regions: I. Erosion of the surface. Icarus 205: 283295.CrossRefGoogle Scholar
Hansen, C. J., Byrne, S., Portyankina, G., et al. (2013), Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes. Icarus 225: 881897.Google Scholar
Hansen, C. J., Diniega, S., Bridges, N., et al. (2015), Agents of change on Mars’ northern dunes: CO2 ice and wind. Icarus, 251: 264274.CrossRefGoogle Scholar
Hartmann, W. K., and Raper, O. (1974), The New Mars: The Discoveries of Mariner 9, NASA SP-337 (Library of Congress Catalog Card #74-600084).Google Scholar
Hayne, P. O., Paige, D. A., Schofield, J. T., et al. (2012), Carbon dioxide snow clouds on Mars: south polar winter observations by the Mars Climate Sounder. J. Geophys. Res. 117, E08014, 10.1029/2011JE004040.Google Scholar
Hayne, P. O., Paige, D. A., Heavens, N. G., et al. (2014), The role of snowfall in forming the seasonal ice caps of Mars: models and constraints from the Mars Climate Sounder. Icarus 231: 122130.Google Scholar
Heavens, N. G., Richardson, M. I., Kleinböhl, A., et al. (2011), The vertical distribution of dust in the Martian atmosphere during northern spring and summer: observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles. J. Geophys. Res., 116, E4, E04003, doi:10.1029/2010JE003691.Google Scholar
Heavens, N. G., Johnson, M. S., Abdou, W. A., et al. (2014), Seasonal and diurnal variability of detached dust layers in the Mars atmosphere. J. Geophys. Res. Planets 119: 17481774, doi:10.1002/2014JE004619.CrossRefGoogle Scholar
Herschel, W. (1784), On the remarkable appearances of the polar regions of the planet Mars, the inclination of its axis, the position of its poles, and its spheroidical figure; with a few hints relating to its real diameter and atmosphere. Phil. Trans. 24: 233273.Google Scholar
Hess, S. (1950), Some aspects of the meteorology of Mars. J. Meteorol. 7: 113.Google Scholar
Hess, S. L., Henry, R. M., Leovy, C. B., et al. (1977), Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res. 82, 45594574.Google Scholar
Kahn, R. (1985), The evolution of CO2 on Mars. Icarus 62: 175190.Google Scholar
Kaplan, L. D., Munch, G., and Spinrad, H. (1964), An analysis of the spectrum of Mars. Astrophys. J. 139: 115.Google Scholar
Kieffer, H., Jakosky, B. M., Snyder, C. W., and Mathews, M. S. (Eds) (1992), Mars (Tucson, AZ: University of Arizona Press).Google Scholar
Kleinböhl, A., Wilson, R. J., Kass, D., Schofield, J. T., and McCleese, D. J. (2013), The semidiurnal tide in the middle atmosphere of Mars, Geophys. Res. Lett. 40: 19521959, doi:10.1002/grl.50497.Google Scholar
Kuiper, G. P. (1952), The Atmospheres of the Earth and Planets, rev. ed. (Chicago: University of Chicago Press), 358361.Google Scholar
Laskar, J., Correia, A. C. M., Gastineau, M., et al. (2004), Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170: 343364.Google Scholar
Lee, C., Lawson, W. G., Richardson, M. I., et al. (2009), Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder. J. Geophys. Res. 114, E03005, doi:10.1029/2008JE003285.Google Scholar
Leighton, R. B., and Murray, B. C. (1966), Behavior of carbon dioxide and other volatiles on Mars. Science 153: 136144.Google Scholar
Leovy, C. B. (1966), Note on thermal properties of Mars. Icarus 5: 16.Google Scholar
Leovy, C. B., and Mintz, Y. (1969), Numerical simulation of the atmospheric circulation and climate of Mars. J. Atmos. Sci. 26: 11671190.Google Scholar
Lindzen, R. S. (1970), The application and applicability of terrestrial atmospheric tidal theory to Venus and Mars. J. Atmos. Sci., 27: 536549.Google Scholar
Lowell, P. (1895), Mars (London: Longmans and Green).Google Scholar
Lowell, P. (1896), Mars (Boston: Houghton Mifflin).Google Scholar
Lowell, P. (1906), Mars and Its Canals (New York: Macmillan).Google Scholar
Lowell, P. (1908), Mars as the Abode of Life (New York: Macmillan).Google Scholar
Mahaffy, P. R., Webster, C. R., Atreya, S. K., et al. (2013), Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity Rover. Science 341: 263266, doi:10.1126/science.1237966.Google Scholar
Malin, M. C., Caplinger, M. A., and Davis, S. D. (2001), Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science 294: 21462148, doi:10.1126/science.1066416.Google Scholar
Martin, L. J., James, P. B., Dollfus, A., Iwasaki, K., and Beish, J. (1992), Comparative aspects of the climate of Mars: telescopic observations: visual, photographic, polarimetric. In Mars, ed. Kieffer, H. et al. (Univ. Arizona Press, Tucson), 3470.Google Scholar
McCleese, D. G., Heavens, N. G., Schofield, J. T., et al. (2010), The structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: 1. Seasonal variations in zonal mean temperature, dust and water ice aerosols. J. Geophys. Res. 115, E12016, doi:10.1029/2010JE003677.Google Scholar
McEwen, A. S., Dundas, C. M., Mattson, S. S., et al. (2014), Recurring slope lineae in equatorial regions of Mars. Nature Geoscience 7: 5358.Google Scholar
Mellon, M. T., Arvidson, R. E., Sizemore, H. G., et al. (2009), Ground ice at the Phoenix landing site: stability state and origin. J. Geophys. Res. 114, E00E07, doi:10.1029/2009JE003417.CrossRefGoogle Scholar
Mintz, Y. (1961), The general circulation of planetary atmospheres. The Atmospheres of Mars and Venus, ed. Kellogg, and Sagan, C., NAS-NRC Publ. 944: 107146.Google Scholar
Mitrofanov, I., Anfimov, D., Lozyrev, A., et al. (2002), Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science 297: 7881, doi:10.1126/science.1073616.Google Scholar
Murchie, S. L., Mustard, J., Ehlmann, B. L., et al. (2009), A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, doi:10.1029/2009JE003342.Google Scholar
Ojha, L., Wilhelm, M. B., Murchie, S. L., et al. (2015), Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience 8: 829832, doi:10:1038/ngeo2546.Google Scholar
Owen, T. (1992) The composition and early history of the atmosphere of Mars. In Mars, ed. Kieffer, H. et al. (Univ. Arizona Press, Tucson), 818834.Google Scholar
Phillips, R. J., Zuber, M. T., Smrekar, S. E., et al. (2008), Mars north polar deposits: stratigraphy, age, and geodynamical response. Science 320: 11821185, doi:10.1126/science.1157546.Google Scholar
Phillips, R. J., Davis, B. J., Tanaka, K. L., et al. (2011), Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 332: 838841, doi:10.1126/science.1203091.CrossRefGoogle ScholarPubMed
Pollack, J. B., Leovy, C. B., Mintz, Y. H., and Van Camp, W. (1976), Winds on Mars during the Viking season: predictions based on a general circulation model with topography. Geophysical Research Letters 3, doi:10.1029/GL003i008p00479.CrossRefGoogle Scholar
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K. (1987), The case for a wet, warm climate on early Mars. Icarus 71: 203224.Google Scholar
Richardson, M. I., Toigo, A. D., and Newman, C. E. (2007), PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112, E09001, doi:10.1029/2006JE002825.Google Scholar
Sagan, C. A., and Pollack, J. B. (1969), Windblown dust on Mars. Nature 223: 791794.Google Scholar
Seiff, A., and Kirk, D. B. (1977), Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82: 43644378.Google Scholar
Shirley, J. H. (2015), Solar system dynamics and global-scale dust storms on Mars. Icarus 252: 128144, 10.1016/j.icarus.2014.09.038.Google Scholar
Slipher, E. C. (1962), The Photographic Story of Mars (Flagstaff: Northland Press).Google Scholar
Smith, D. E., Zuber, M. T., Solomon, S. C., et al. (1999), The global topography of Mars and implications for surface evolution. Science 284: 14951503.Google Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (2001), Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res.: Planets 106: 2368923722.Google Scholar
Smith, P. H., Tamppari, L. K., Arvidson, R. E., et al. (2009), H2O at the Phoenix landing site. Science 325: 5861, doi:10.1126/science.1172339.Google Scholar
Spinrad, H., Munch, G., and Kaplan, L. D. (1963), The detection of water vapor on Mars. Astrophys. J. 137: 13191321.Google Scholar
Spinrad, H., Schorn, R. A., Moore, R., Giver, L. P., and Smith, H. J. (1966), High dispersion spectroscopic observations of Mars. I. The CO2 content and surface pressure. Astrophys. J. 146: 331338.Google Scholar
Stewart, A. I., Barth, C. A., Hord, C. W., and Lane, A. L. (1972), Mariner 9 ultraviolet spectrometer experiment: structure of Mars upper atmosphere. Icarus 17: 469474.Google Scholar
Tamppari, L., Zurek, R. W., and Paige, D. A. (2000), Viking era water-ice clouds. J. Geophys. Res. 105: 40874107.Google Scholar
Thomas, P. C., Calvin, W., Haberle, R., et al. (2014), Mass balance of Mars’ south polar residual cap from spacecraft imaging. In Eighth International Conference on Mars, LPI Contribution 1791: 1085.Google Scholar
Thomas, P. C., Calvin, W., Cantor, B., et al. (2016), Mass balance of Mars’ residual south polar cap from CTX images and other data, Icarus, in press.Google Scholar
Tolson, R. H., Keating, G. M., Zurek, R. W., et al. (2007), Application of accelerometer data to atmospheric modeling during Mars aerobraking operations. J. Spacecraft and Rockets 44(6): (11721179).Google Scholar
Von Braun, W., and Ley, W. (1956), The Exploration of Mars (New York: Viking Press).Google Scholar
Wallace, A. R. (1907), Is Mars Habitable? (London: Macmillan).Google Scholar
Wilson, R. J. (2000), Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data. Geophys. Res. Lett. 27(23): 38893892, doi:10.1029/2000GL012028.Google Scholar
Zurek, R. W. (1976), Diurnal tide in the Martian atmosphere. J. Atmos. Sci. 33: 321337.Google Scholar
Zurek, R. W. (1980), Surface pressure response to elevated tidal heating sources: comparison of Earth and Mars. J. Atmos. Sci. 37: 11321136.Google Scholar
Zurek, R. W. (1982), Martian Dust Storms, An Update. Icarus 50: 288310.Google Scholar
Zurek, R. W. (1992), Comparative aspects of the climate of Mars: an introduction to the current atmosphere. Mars, ed. Kieffer, H. et al. (University of Arizona Press), Tucson, 799817.Google Scholar
Zurek, R. W., and Leovy, C. B. (1981), Thermal tides in the dusty Martian atmosphere: a verification of theory. Science 213 (4506): 437439, doi:10.1126/science.213.4506.437.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×