Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-19T12:41:37.568Z Has data issue: false hasContentIssue false

4 - Thermal Structure and Composition

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altieri, F., Zasova, L., D’Aversa, E., et al. (2009) O2 1.27 mm emission maps as derived from OMEGA/MEx data, Icarus, 204, 499511.CrossRefGoogle Scholar
Angelats i Coll, M., Forget, F., López-Valverde, M. A., et al. (2004) Upper atmosphere of Mars up to 120 km: Mars Global Surveyor accelerometer data analysis with the LMD general circulation model, J. Geophys. Res., 109, E01011, doi:10.1029/2003JE002163.Google Scholar
Angelats i Coll, M., Forget, F., López-Valverde, M. A., and González-Galindo, F. (2005) The first Mars thermospheric general circulation model: the Martian atmosphere from the ground to 240 km, Geophys. Res. Lett., 32, L04201, doi:10.1029/2004GL021368.Google Scholar
Anderson, D. E., and Hord, C. W. (1971) Mariner 6 and 7 ultraviolet spectrometer experiment: analysis of hydrogen Lyman-alpha data, J. Geophys. Res., 76, 66666673.Google Scholar
Arvidson, R. E., Ashley, J. W., BellIII, J. F., et al. (2011) Opportunity Mars Rover mission: overview and selected results from Purgatory ripple to traverses to Endeavour Crater, J. Geophys. Res., 116, E00F15, doi:10.1029/2010JE003746.Google Scholar
Atreya, S. K., Mahaffy, P. R., and Wong, A.-S. (2007) Methane and related trace species on Mars: origin, loss, implication for life and habitability, Planet. Space Sci., 55, 358369.Google Scholar
Atreya, S. K., Trainer, M. G., Franz, H. B., et al. (2013) Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss, Geophys. Res. Lett., 40, 15, doi:10.1002/2013GL057763.Google Scholar
Banfield, D., Conrath, B. J., Pearl, J. C., et al. (2000) Thermal tides and stationary waves on Mars as revealed by Mars Global Surveyor Thermal Emission Spectrometer, J. Geophys. Res., 105, 95219537.Google Scholar
Banfield, D., Conrath, B. J., Smith, M. D., et al. (2003) Forced waves in the Martian atmosphere from MGS TES nadir data, Icarus, 161, 319345.Google Scholar
Barker, E. S. (1972) Detection of molecular oxygen in the Martian atmosphere, Nature, 238, 447448.Google Scholar
Barth, C. A. (1974) The atmosphere of Mars, Annu. Rev. Earth Plan. Sci., 2, 333367.Google Scholar
Barth, C. A., and Hord, C. W. (1971) Mariner ultraviolet spectrometer: topography and polar cap, Science, 173, 193201.CrossRefGoogle ScholarPubMed
Barth, C. A., Hord, C. W., Stewart, A. I., and Lane, A. L. (1972) Mariner 9 ultraviolet spectrometer experiment: initial results, Science, 175, 309312.Google Scholar
Barth, C. A., Hord, C. W., Stewart, A. I., et al. (1973) Mariner 9 ultraviolet spectrometer experiment: seasonal variation of ozone on Mars, Science, 179, 795796.CrossRefGoogle ScholarPubMed
Barth, C. A., Stewart, A. I. F., Bougher, S. W., et al. (1992) Aeronomy of the current Martian atmosphere, in Mars (Kieffer, H. H., Jakosky, B. M., Snyder, C. W., Matthews, M. S., Eds.), University of Arizona Press, Tucson.Google Scholar
Beer, R., Norton, R. H., and Martonchik, J. V. (1971) Astronomical infrared spectroscopy with a Connes-type interferometer: II-Mars, 2500–3500 cm−1, Icarus, 15, 110.Google Scholar
Bertaux, J.-L., Korablev, O., Perrier, S., et al. (2006) SPICAM on Mars Express: observing modes and overview of UV spectrometer data and scientific results, J. Geophys. Res., 111, E10S90, doi:10.1029/2006JE002690.Google Scholar
Biemann, K., Lafleur, A. L., Owen, T., et al. (1976) The atmosphere of Mars near the surface – isotope ratios and upper limits on noble gases, Science, 194, 7678.Google Scholar
Billebaud, F., Maillard, J.-P., Lellouch, E., and Encrenaz, T. (1992) The spectrum of Mars in the (1–0) band of CO, Astron. Astrophys., 261, 647657.Google Scholar
Billebaud, F., Rosenqvist, J., Lellouch, E., et al. (1998) Observations of CO in the atmosphere of Mars in the (2–0) vibrational band at 2.35 microns, Astron. Astrophys., 333, 10921099.Google Scholar
Billebaud, F., Brillet, J., Lellouch, E., et al. (2009) Observations of CO in the atmosphere of Mars with PFS onboard Mars Express, Planet. Space Sci., 57, 14461457.Google Scholar
Bjoraker, G. L., Mumma, M. J., and Larson, H. P. (1989) Isotopic abundance ratios for hydrogen and oxygen in the Martian atmosphere, Bull. Amer. Astron. Soc., 21, 991.Google Scholar
Bogard, D. D., Clayton, R. N., Marti, K., et al. (2001) Martian volatiles: isotopic composition, origin and evolution, Space Sci. Rev., 96, 425458.Google Scholar
Bougher, S. W., and Keating, G. M. (2006) Mars Reconnaissance Orbiter: aerobraking science analysis, Bull. Amer. Astron. Soc., 38, 605.Google Scholar
Bougher, S. W., Hunten, D. M., and Roble, R. G. (1994) CO2 Cooling in terrestrial planet thermospheres, J. Geophys. Res., 99, 1460914622.Google Scholar
Bougher, S. W., Engel, S., Roble, R. G., and Foster, B. (1999) Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox, J. Geophys. Res., 104, 1659116611, doi:10.1029/1998JE001019.CrossRefGoogle Scholar
Bougher, S. W., Engel, S., Roble, R. G., and Foster, B. (2000) Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices, J. Geophys. Res., 105, 1766917689, doi:10.1029/1999JE001232.Google Scholar
Bougher, S. W., Hinson, D. P., Forbes, J. M., and Engel, S. (2001) MGS Radio Science electron density profiles and implications for the neutral atmosphere, Geophys. Res. Lett., 28, 30913094.Google Scholar
Bougher, S. W., Engel, S., Hinson, D. P., and Murphy, J. R. (2004) MGS Radio Science electron density profiles: interannual variability and implications for the neutral atmosphere, J. Geophys. Res., 109, E03010, doi:10.1029/2003JE002154.Google Scholar
Bougher, S. W., McDunn, T., Murphy, J., et al. (2011) Coupling of Mars lower and upper atmosphere revisited: impacts of gravity wave momentum deposition on upper atmosphere structure, in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observation, Paris, France.Google Scholar
Brinkman, R. T. (1971) Has nitrogen escaped? Science, 174, 944945.Google Scholar
Carleton, N. P., and Traub, W. A. (1972) Detection of molecular oxygen on Mars, Science, 177, 988992.Google Scholar
Carr, R. H., Grady, M. M., Wright, I. P., and Pillinger, C. T. (1985) Martian meteorite carbon dioxide and weathering products in SNC meteorites, Nature, 314, 248250.Google Scholar
Cavalié, T., Billebaud, F., Encrenaz, T., et al. (2008) Vertical temperature profiles and mesospheric wind retrieval from millimeter observations. Comparison with general circulation predictions, Astron. Astrophys., 89, 795809.Google Scholar
Christensen, P. R., and Zurek, R. W. (1984) Martian north polar hazes and surface ice: results from the Viking survey/completion mission, J. Geophys. Res., 89, 45874596.Google Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al. (2001) Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res., 106, 2382323871.Google Scholar
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al. (2004) The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev., 110, 85130.Google Scholar
Clancy, R. T., Muhleman, D. O., and Jakosky, B. M. (1983) Variability of carbon monoxide in the Mars atmosphere, Icarus, 55, 282301.Google Scholar
Clancy, R. T., Muhlman, D. O., and Berge, G. L. (1990) Global changes in the 0–70 km thermal structure of the Mars atmosphere derived from 1975 to 1989 microwave CO spectra, J. Geophys. Res., 95, 1454314554.Google Scholar
Clancy, R. T., Sandor, B. J., and Moriarty-Schieven, G. H. (2004) Measurement of the 362 GHz absorption line of Mars atmospheric H2O2, Icarus, 168, 116121.Google Scholar
Clancy, R. T., Wolff, M. J., Malin, M. C., and Cantor, B. A. (2010) MARs Color Imager (MARCI) daily global ozone column mapping from the Mars Reconnaissance Orbiter (MRO): a survey of 2006–2010 results, American Geophysical Union, Fall Meeting 2010.Google Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J., et al. (2012) Extensive MRO CRISM observations of 1.27 µm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations, J. Geophys. Res., 117, E00J10, doi:10.1029/2011JE004018.Google Scholar
Clayton, R. N. and Mayeda, T. K. (1988) Isotopic composition of carbonate in EETA 79001 and its relation to parent body volatiles, Geochim. Cosmochim. Acta, 52, 925927.Google Scholar
Colaprete, A., Barnes, J. R., Haberle, R. M., and Montmessin, F. (2008) CO2 clouds, CAPE and convection on Mars: observations and general circulation modeling, Planet. Space Sci., 56, 150180.Google Scholar
Conrath, B. J. (1975) Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971, Icarus, 24, 3646.Google Scholar
Conrath, B. J. (1976) Influence of planetary-scale topography on the diurnal thermal tide during the 1971 Martian dust storm, J. Atmos. Sci., 33, 24302439.Google Scholar
Conrath, B. J., Pearl, J. C., Smith, M. D., et al. (2000) Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: atmospheric temperatures during aerobraking and science phasing, J. Geophys. Res., 105, 95099519.Google Scholar
Davy, R., Davis, J. A., Taylor, P. A., et al. (2010) Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes, J. Geophys. Res., 115, E00E13, doi:10.1029/2009JE003444.Google Scholar
Economou, T. E. (2008) Mars atmosphere argon density measurements on MER mission in The Third International Workshop on the Mars Atmosphere: Modelling and Observations, Williamsburg, Virginia.Google Scholar
Economou, T. E., and Pierrehumbert, R. T. (2010) Mars atmosphere argon density measurements on MER missions in 41st Lunar and Planetary Sci. Conf.Google Scholar
Economou, T. E., Pierrehumbert, R., Banfield, D., and Landis, G. A. (2007) Mars atmosphere argon density measurement with the Alpha Particle X-Ray Spectrometer on MER missions in Seventh International Conference on Mars, Lunar and Plan. Inst., Houston, Texas.Google Scholar
Encrenaz, T. (2001) The atmosphere of Mars as constrained by remote sensing, Space Sci. Rev., 96, 411424.Google Scholar
Encrenaz, T., Lellouch, E., Rosenqvist, J., et al. (1991) The atmospheric composition of Mars: ISM and ground-based observational data, Ann. Geophys., 9, 797803.Google Scholar
Encrenaz, T., Lellouch, E., Paubert, G., and Gulkis, S. (1999) Mars, IAU Circular # 7168.Google Scholar
Encrenaz, T., Lellouch, E., Paubert, G., and Gulkis, S. (2001) The water vapor vertical distribution on Mars from millimeter transitions of H2O and H218O, Planet. Space Sci., 49, 731741.Google Scholar
Encrenaz, T., Bézard, B., Greathouse, T. K. et al. (2004) Hydrogen peroxide on Mars: evidence for spatial and seasonal variations, Icarus, 170, 424429.Google Scholar
Encrenaz, T., Bézard, B., Owen, T., et al. (2005) Infrared imaging spectroscopy of Mars: H2O mapping and determination of CO2 isotopic ratios, Icarus, 179, 4354.Google Scholar
Encrenaz, T., Fouchet, T., Melchiorri, R., et al. (2006) Seasonal variations of the Martian CO over Hellas as observed by OMEGA/Mars Express, Astron. Astrophys., 459, 265270.Google Scholar
Encrenaz, T., Greathouse, T. K., Richter, M. J., et al. (2011) A stringent upper limit to SO2 in the Martian atmosphere. Astron. Astrophys., 530, A37, doi:10.1051/0004-6361/201116820.Google Scholar
England, C., and Hrubes, J. D. (2004) Molecular oxygen mixing ratio and its seasonal variability in the Martian atmosphere in Workshop on Oxygen in the Terrestrial Planets, Santa Fe, New Mexico.Google Scholar
Espenak, F., Mumma, M. J., Kostiuk, T., and Zipoy, D. (1991) Ground-based infrared measurements of the global distribution of ozone in the atmosphere of Mars, Icarus, 92, 252262.Google Scholar
Farquhar, J., Thiemens, M. H., and Jackson, T. (1998) Atmosphere-surface interactions on Mars: delta17O measurements of carbonate from ALH 84001, Science, 280, 15801582.Google Scholar
Fast, K. E., Kostiuk, T., Hewagama, T., et al. (2006) Ozone abundance on Mars from infrared heterodyne spectra. I. Acquisition, retrieval, and anticorrelation with water vapor, Icarus, 181, 419431.Google Scholar
Fast, K. E., Kostiuk, T., Lefèvre, F., et al. (2009) Comparison of HIPWAC and Mars Express SPICAM observations of ozone on Mars 2006–2008 and variations from 1993 IRHS observations, Icarus, 203, 2027.Google Scholar
Fisher, D. A. (2007) Mars’ water isotope (D/H) history in the strata of the north pole cap: inferences about the water cycle, Icarus, 187, 430441.Google Scholar
Forbes, J. M. (2004) Tides in the middle and upper atmospheres of Mars and Venus, Adv. Space Res., 33, 125131.Google Scholar
Forbes, J. M. and Hagan, M. E. (2000) Diurnal Kelvin wave in the atmosphere of Mars: towards an understanding of “stationary” density structures observed by the MGS accelerometer, Geophys. Res. Lett., 27, 35633566.Google Scholar
Forbes, J. M., Bridger, A. C., Hagan, M. E., et al. (2002) Non-migrating tides in the thermosphere of Mars, J. Geophys. Res., 107, 5113, doi:10.1029/2001JE001582.Google Scholar
Forget, F., Hourdin, F., and Talagrand, O. (1998) CO2 snowfall on Mars: simulation with a general circulation model, Icarus, 131, 302316.Google Scholar
Forget, F., Hourdin, F., Fournier, R., et al. (1999) Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., 104, 2415524176.Google Scholar
Forget, F., Montabone, L., and Lebonnois, S. (2006a) Modelling the non-condensible gas enrichment in the polar night in The Second International Workshop on the Mars Atmosphere: Modelling and Observations, Granada, Spain.Google Scholar
Forget, F., Millour, E., Lebonnois, S., et al. (2006b) The new Mars climate database in The Second International Workshop on the Mars Atmosphere: Modelling and Observations, Granada, Spain.Google Scholar
Forget, F., Spiga, A., Dolla, B., et al. (2007) Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method, J. Geophys. Res., 112, E08S15, doi:10.1029/2006JE002871.Google Scholar
Forget, F., Millour, E., Montabone, L., and Lefèvre, F. (2008) Non condensable gas enrichment and depletion in the Martian polar regions in The Third International Workshop on the Mars Atmosphere: Modelling and Observations, Williamsburg, Virginia.Google Scholar
Forget, F., Montmessin, F., Bertaux, J.-L., et al. (2009) Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Expresss SPICAM, J. Geophys. Res., 114, E01004, doi:10.1029/2008JE003086.Google Scholar
Formisano, V., Atreya, S., Encrenaz, T., et al. (2004) Detection of methane in the atmosphere of Mars, Science, 306, 17581761.Google Scholar
Formisano, V., Fonti, S., Giuranna, M., et al. (2005) The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express Mission, Planet. Space Sci., 53, 963974.Google Scholar
Fouchet, T., and Lellouch, E. (2000) Vapor pressure isotope fractionation effects in planetary atmospheres: application to deuterium, Icarus, 144, 114123.Google Scholar
Geminale, A. and Formisano, V. (2009) Study of the oxygen dayglow in Martian atmosphere with the Planetary Fourier Spectrometer on board Mars Express in European Geophysical Union General Assembly, Vienna.Google Scholar
Giuranna, M., Grassi, D., Formisano, V., et al. (2008) PFS/MEX observations of the condensing CO2 south polar cap of Mars, Icarus, 197, 386402.Google Scholar
González-Galindo, F., López-Valverde, M. A., Angelats i Coll, M., and Forget, F. (2005) Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models, J. Geophys. Res., 110, E09008, doi:10.1029/2004JE002312.Google Scholar
González-Galindo, F., Forget, F., López-Valverde, M. A., et al. (2009) A Ground-to-Exosphere Martian General Circulation Model. 1. Seasonal, Diurnal and Solar Cycle Variation of Thermospheric Temperatures, J. Geophys. Res., 114, E04001, doi:10.1029/2008JE003246.Google Scholar
Good, J. C. and Schloerb, F. P. (1981) Martian CO abundance from the J = 1 → 0 rotational transition: evidence for temporal variations, Icarus, 47, 166172.Google Scholar
Grassi, D., Fiorenza, C., Zasova, L. V., et al. (2005) The Martian atmosphere above great volcanoes: early planetary Fourier spectrometer observations, Planet. Space Sci., 53, 10171034.Google Scholar
Grassi, D., Formisano, V., Forget, F. et al. (2007) The Martian atmosphere in the region of Hellas Basin as observed by the Planetary Fourier Spectrometer (PFS–MEX), Planet. Space Sci., 55, 13461357.Google Scholar
Greenwood, J. P., Itoh, S., Sakamoto, N., et al. (2008) Hydrogen isotope evidence for loss of water from Mars through time, Geophys. Res. Lett., 35, L05203, doi:10.1029/2007GL032721.Google Scholar
Guo, X., Richardson, M. I., and Newman, C. E. (2007) Non-condensible gas in a Mars general circulation model in The Seventh International Conference on Mars, Pasadena, CA.Google Scholar
Guzewich, S. D., Talaat, E. R., and Waugh, D. W. (2012), Observations of planetary waves and nonmigrating tides by the Mars Climate Sounder, J. Geophys. Res., 117, E03010, doi:10.1029/2011JE003924.Google Scholar
Haberle, R. M., Pollack, J. B., Barnes, J. R., et al. (1993) Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model 1. The zonal-mean circulation, J. Geophys. Res., 98, 30933123.Google Scholar
Haberle, R. M., Joshi, M. M., Murphy, J. R., et al. (1999) General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res., 104, 89578974.Google Scholar
Haberle, R. M., Murphy, J. R., and Schaeffer, J. (2003) Orbital change experiments with a Mars general circulation model, Icarus, 161, 6689Google Scholar
Haberle, R. M., Montmessin, F., Kahre, M. A., et al. (2011) Radiative effects of water ice clouds on the Martian seasonal water cycle in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observations, Paris, France.Google Scholar
Haberle, R. M., Gómez-Elvira, J., de la Torre Juárez, M., et al. (2014) Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission, J. Geophys. Res., 119, 440453.Google Scholar
Hanel, R. A., Conrath, B. J., Hovis, W. A., et al. (1970) The Infrared Spectroscopy Experiment for Mariner Mars 1971, Icarus, 12, 4862.Google Scholar
Hanel, R. A., Schlachman, B., Breihan, E., et al. (1972a) Mariner 9 Michelson interferometer, Applied Optics, 11, 26252634.Google Scholar
Hanel, R. A., Conrath, B. J., Hovis, W. A., et al. (1972b) Infrared Spectroscopy Experiment on the Mariner 9 mission: preliminary results, Science, 175, 305308.Google Scholar
Hanel, R. A., Conrath, B. J., Hovis, W. A., et al. (1972c) Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus, 17, 423442.Google Scholar
Hartogh, P., Jarchow, C., Lellouch, E., et al. (2010) Herschel/HIFI observations of Mars: first detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2, Astron. Astrophys. 521, 49.Google Scholar
Heavens, N. G., Benson, J. L., Kass, D. M., et al. (2010) Water ice clouds over the Martian tropics during northern summer, Geophys. Res. Lett., 37, L18202, doi:10.1029/2010GL044610.Google Scholar
Heavens, N. G., McCleese, D. J., Richardson, M. I., et al. (2011) Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation, J. Geophys. Res., 116, E01010, doi:10.1029/2010JE003713.Google Scholar
Hess, S. L., Henry, R. M., Leovy, C. B., et al. (1977) Meteorological results from the surface of Mars: Viking 1 and 2, J. Geophys. Res., 82, 45594574.Google Scholar
Hinson, D. P. and Wilson, R. J. (2004) Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J. Geophys. Res., 109, E01002, doi:10.1029/2003JE002129.Google Scholar
Hinson, D. P., Simpson, R. A., Twicken, J. D., et al. (1999) Initial results from radio occultation measurements with Mars Global Surveyor, J. Geophys. Res., 104, 2699727012.Google Scholar
Hinson, D. P., Smith, M. D., and Conrath, B. J. (2004) Comparison of atmospheric temperatures obtained through infrared sounding and radio occultation by Mars Global Surveyor, J. Geophys. Res., 109, E12002, doi:10.1029/2004JE002344.Google Scholar
Jakosky, B. M., Pepin, R. O., Johnson, R. E., and Fox, J. L. (1994) Mars atmospheric loss and isotopic fractionation by solar-wind induced sputtering and photochemical escape, Icarus, 111, 271281.Google Scholar
Justh, H. L., Justus, C. G., and Ramey, H. S. (2011) Mars-GRAM 2010: improving the precision of Mars-GRAM in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observations, Paris, France.Google Scholar
Justus, C. G., Duvall, A., and Keller, V. W. (2005) Mars aerocapture and validation of Mars- GRAM with TES data in 53rd JANNAF Propulsion Meeting.Google Scholar
Kakar, R. K., Water, J. W., and Wilson, W. J. (1977) Mars: microwave detection of carbon monoxide, Science, 196, 10901091.Google Scholar
Kaplan, L. D., Münch, G., and Spinrad, H. (1964) An analysis of the spectrum of Mars, Astophys. J., 139, 115.CrossRefGoogle Scholar
Kaplan, L. D., Connes, J., and Connes, P. (1969) Carbon monoxide in the Martian atmosphere, Astrophys. J., 157, L187–L192.Google Scholar
Karlsson, H. R., Clayton, R. N., Gibson, Jr., E. K., and Mayeda, T. K. (1992) Water in SNC meteorites: evidence for a Martian hydrosphere, Science, 255, 14091411.Google Scholar
Keating, G. M., Bougher, S. W., Zurek, R. W., et al. (1998) The structure of the upper atmosphere of Mars: in situ accelerometer measurements from Mars Global Surveyor, Science, 279, 16721676.Google Scholar
Keating, G. M., TheriotJr., M., Tolson, R., et al. (2003) Global measurements of the Mars upper atmosphere: in situ accelerometer measurements from Mars Odyssey 2001 and Mars Global Surveyor, in 34th Annual Lunar and Planetary Science Conference, League City, Texas.Google Scholar
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al. (1977) Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 82, 42494292.Google Scholar
Kleinböhl, A., Schofield, J. T., Kass, D. M., et al. (2009) Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, dust and water ice opacity, J. Geophys. Res., 114, E10006, doi:10.1029/2009JE003358.Google Scholar
Kleinböhl, A., Schofield, J. T., Abdou, W. A., et al. (2011) A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere, J. Quant. Spectrosc. Rad. Transfer, 112, 15681580.Google Scholar
Kleinböhl, A., Wilson, R. J., Kass, D., et al. (2013), The semidiurnal tide in the middle atmosphere of Mars, Geophys. Res. Lett., 40, 19521959, doi:10.1002/grl.50497.Google Scholar
Kliore, A. J., Cain, D. L., Levy, G. S., et al. (1965) Occultation experiment: results of the first direct measurement of Mars’s atmosphere and ionosphere, Science, 149, 12431248.Google Scholar
Kliore, A. J., Fjeldbo, G., Seidel, B. L., et al. (1973) S band radio occultation measurements of the atmosphere and topography of Mars with Mariner 9: extended mission coverage of polar and intermediate latitudes, J. Geophys. Res., 78, 43314351.Google Scholar
Korablev, O. I., Acherman, M., Krasnopolsky, V. A., et al. (1993) Tentative detection of formaldehyde in the Martian atmosphere, Planet. Space Sci., 41, 441451.Google Scholar
Krasnopolsky, V. A. (1986) Photochemistry of the atmospheres of Mars and Venus. Springer.Google Scholar
Krasnopolsky, V. A. (2003a) Spectroscopic mapping of Mars CO mixing ratio: detection of north–south asymmetry, J. Geophys. Res., 108, 5010, doi:10.1029/2002JE001926.Google Scholar
Krasnopolsky, V. A. (2003b) Mapping of Mars O2 1.27 mm dayglow at four seasonal points, Icarus, 165, 315325.Google Scholar
Krasnopolsky, V. A. (2005) A sensitive search for SO2 in the Martian atmosphere: implications for seepage and origin of methane, Icarus, 178, 487492.Google Scholar
Krasnopolsky, V. A. and Feldman, P. D. (2001) Detection of molecular hydrogen in the atmosphere of Mars. Science, 294, 19141917.Google Scholar
Krasnopolsky, V. A., Mumma, M. J., Bjoraker, G. L., and Jennings, D. E. (1996) Oxygen and carbon isotope ratios in Martian carbon dioxide: measurements and implications for atmospheric evolution, Icarus, 124, 553568.Google Scholar
Krasnopolsky, V. A., Bjoraker, G. L., Mumma, M. J., and Jennings, D. E. (1997) High-resolution spectroscopy of Mars at 3.7 and 8 mm: a sensitive search for H2O2, H2CO, HCl and CH4, and detection of HDO, J. Geophys. Res., 102, 65256534.Google Scholar
Krasnopolsky, V. A., Mumma, M. J., and Gladstone, G. R. (1998) Detection of atomic deuterium in the upper atmosphere of Mars, Science, 280, 15761580.Google Scholar
Krasnopolsky, V. A., Maillard, J. P., and Owen, T. C. (2004) Detection of methane in the Martian atmosphere: evidence for life?, Icarus, 172, 537547.Google Scholar
Ksanfomality, L. V., Moroz, V. I., Bibring, J.-P., et al. (1989) Spatial variations in thermal and albedo properties of the surface of Phobos, Nature, 341, 588591.Google Scholar
Lebonnois, S., Quémerais, E., Montmessin, F., et al. (2006) Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations, J. Geophys. Res., 111, E09S05, doi:10.1029/2005JE002643.Google Scholar
Lee, C., Lawson, W. G., Richardson, M. I., et al. (2009) Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder, J. Geophys. Res., 114, E03005, doi:10.1029/2008JE003285.Google Scholar
Lefèvre, F. and Forget, F. (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics, Nature, 460, 720723.Google Scholar
Lefèvre, F., Lebonnois, S., Montmessin, F., and Forget, F. (2004) Three-dimensional modeling of ozone on Mars, J. Geophys. Res., 109, E07004, doi:10.1029/2004JE002268.Google Scholar
Lefèvre, F., Bertaux, J.-L., Clancy, R. T., et al. (2008) Heterogeneous chemistry on Mars, Nature, 454, 971975.Google Scholar
Lellouch, E., Paubert, G., and Encrenaz, T. (1991) Mapping of CO millimeter-wave lines in Mars atmosphere: the spatial distribution of carbon monoxide on Mars, Planet. Space Sci., 39, 219224.Google Scholar
Leovy, C. B. (1979) Martian meteorology, Annu. Rev. Astron. Astrophys., 17, 387413.Google Scholar
Leovy, C. B. and Zurek, R. W. (1979) Thermal tides and Martian dust storms: direct evidence for coupling, J. Geophys. Res., 84, 29562968.Google Scholar
Lewis, S. R., Collins, M., Read, P. L., et al. (1999) A climate database for Mars, J. Geophys. Res., 104, 2417724194.Google Scholar
Lian, Y., Richardson, M. I., Newman, C. E., et al. (2012) The Ashima/MIT Mars GCM and argon in the Martian atmosphere, Icarus, 218, 10431070.Google Scholar
Lindal, G. F., Hotz, H. B., Sweetnam, D. N., et al. (1979) Viking radio occultation measurements of the atmosphere and topography of Mars – data acquired during 1 Martian year of tracking, J. Geophys. Res., 84, 84438456.Google Scholar
Lindzen, R. S. (1970) The application and applicability of terrestrial atmospheric tidal theory to Venus and Mars, J. Atmos. Sci., 27, 536549.Google Scholar
Liu, J., Richardson, M. I., and Wilson, R. J. (2003) An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared, J. Geophys. Res., 108, 5089, doi:10.1029/2002JE001921.Google Scholar
Madeleine, J.-B., Forget, F., Millour, E., et al. (2012) The influence of radiatively active water ice clouds on the Martian climate, Geophys. Res. Lett., 39, L23202, doi:10.1029/2012GL053564.Google Scholar
Magalhães, J. A., Schofield, J. T., and Seiff, A. (1999) Results of the Mars Pathfinder atmospheric structure investigation, J. Geophys. Res., 104, 89438956.Google Scholar
Maguire, W. C. (1977) Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data, Icarus, 32, 8597.Google Scholar
Mahaffy, P. R., Webster, C. R., Atreya, S. K., et al. (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity Rover, Science, 341, 263266.Google Scholar
Martin, T. Z. (1981) Mean thermal and albedo behavior of the Mars surface and atmosphere over a Martian year, Icarus, 45, 427446.Google Scholar
Martin, T. Z. and Kieffer, H. H. (1979) Thermal infrared properties of the Martian atmosphere: 2. The 15 µm-band measurements, J. Geophys. Res., 84, 28432852.Google Scholar
Martin, T. Z. and Murphy, J. R. (2003) Atmospheric wave structure derived from Mars Global Surveyor horizon sensor data, International Workshop: Mars Atmosphere Modeling and Observations, Grenada, Spain.Google Scholar
McCleese, D. J., Schofield, J. T., Taylor, F. W., et al. (2007) Mars Climate Sounder: an investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions, J. Geophys. Res., 112, E05S06, doi:10.1029/2006JE002790.Google Scholar
McCleese, D. J., Schofield, J. T., Taylor, F. W., et al. (2008) Intense polar temperature inversion in the middle atmosphere of Mars, Nature Geosci., 1, 745749, doi:10.1038ngeo332.Google Scholar
McCleese, D. J., Heavens, N. G., Schofield, J. T., et al. (2010) Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosol, J. Geophys. Res., 115, E12016, doi:10.1029/2010JE003677.Google Scholar
McDunn, T., Bougher, S. W., Murphy, J., et al. (2010) Simulating the density and thermal structure of the middle atmosphere (~80–130 km) of Mars using the MGCMMTGCM: a comparison with MEX-SPICAM observations, Icarus, 206, 517.Google Scholar
McDunn, T., Bougher, S. W., Murphy, J., et al. (2013) Characterization of middle-atmosphere polar warming at Mars, J. Geophys. Res., 118, 161178, doi:10.1002/jgre.20016.Google Scholar
McElroy, M. B. (1972) Mars: an evolving atmosphere, Science, 175, 443445.CrossRefGoogle ScholarPubMed
McElroy, M. B. and Donahue, T. M. (1972) Stability of the Martian atmosphere, Science, 177, 986988.Google Scholar
McElroy, M. B., Yung, Y. L., and Nier, A. O. (1976) Isotopic composition of nitrogen: implications for the past history of Mars’ atmosphere, Science, 194, 7072.Google Scholar
Medvedev, A., Yigit, E., and Hartogh, P. (2011) Effects of gravity wave drag in the Martian atmosphere: simulations with a GCM in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observations, Paris, France.Google Scholar
Melosh, H. J. and Vickery, A. M. (1989) Impact erosion of the primordial atmosphere of Mars, Nature, 338, 487489.Google Scholar
Millour, E., Forget, F., Spiga, A., et al. (2011) An improved Mars climate database in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observations, Paris, France.Google Scholar
Montmessin, F., Forget, F., Rannou, P., et al. (2004) The origin and role of water ice clouds in the Martian water cycle as inferred from a General Circulation Model, J. Geophys. Res., 109, E10004, doi:10.1029/2004JE002284.Google Scholar
Montmessin, F., Fouchet, T., and Forget, F. (2005) Modeling the annual cycle of HDO in the Martian atmosphere, J. Geophys. Res., 110, E03006, doi:10.1029/2004JE002357.Google Scholar
Montmessin, F., Bertaux, J.-L., Quémerais, E., et al. (2006) Sub-visible CO2 ice clouds detected in the mesosphere of Mars, Icarus, 183, 403410.Google Scholar
Moreno, R., Lellouch, E., Forget, F., et al. (2009) Wind measurements in Mars’ middle atmosphere: IRAM Plateau de Bure interferometric CO observations, Icarus, 201, 549563.Google Scholar
Mumma, M. J., Novak, R. E., DiSanti, M. A., et al. (2003) Seasonal mapping of HDO and H2O in the Martian atmosphere in Sixth International Conference on Mars, Houston, Texas.Google Scholar
Mumma, M. J., Novak, R. E., DiSanti, M. A., et al. (2004) Detection and mapping of methane and water on Mars, Bull. Amer. Astron. Soc., 36, 1127.Google Scholar
Mumma, M. J., Villanueva, G. L., Novak, R. E., et al. (2009) Strong release of methane on Mars in Northern Summer 2003, Science, 323, 10411045.Google Scholar
Nelli, S. M., Murphy, J. R., Sprague, A. L., et al. (2007) Dissecting the polar dichotomy of the noncondensable gas enhancement on Mars using the NASA Ames Mars General Circulation Model, J. Geophys. Res., 112, E08S91, doi:10.1029/2006JE002849.Google Scholar
Nier, A. O. and McElroy, M. B. (1977) Composition and structure of Mars’ upper atmosphere : results from the neutral mass spectrometers of Viking 1 and 2, J. Geophys. Res., 82, 43414349.Google Scholar
Nier, A. O., Hanson, W. B., Seiff, A., et al. (1976) Composition and structure of the Martian atmosphere: preliminary results from Viking 1, Science, 193, 786788.Google Scholar
Novak, R. E., Mumma, M. J., Villanueva, G., et al. (2007) Seasonal mapping of HDO/H2O in the Martian atmosphere, Bull. Amer. Astron. Soc., 39, 45.Google Scholar
Noxon, J. F., Traub, W. A., Carleton, N. P., and Connes, P. (1976) Detection of O2 dayglow emission from Mars and the Martian ozone abundance, Astrophys. J., 207, 10251035.Google Scholar
Owen, T. (1992) The composition and early history of the atmosphere of Mars, in Mars (Kieffer, H. H., Jakosky, B. M., Snyder, C. W., Matthews, M. S., Eds.), University of Arizona Press, Tucson.Google Scholar
Owen, T. and Biemann, K. (1976) Composition of the atmosphere at the surface of Mars – detection of argon-36 and preliminary analysis, Science, 193, 801803.Google Scholar
Owen, T. and Kuiper, G. P. (1964) A determination of the composition and surface pressure of the Martian atmosphere, Commun. Lunar and Planetary Lab, 2, 113132.Google Scholar
Owen, T. and Sagan, S. (1972) Minor constituents in planetary atmospheres: ultraviolet spectroscopy from the Orbiting Astronomical Observatory, Icarus, 16, 557568.Google Scholar
Owen, T., Biemann, K., Rushneck, D. R., et al. (1977) The composition of the atmosphere at the surface of Mars, J. Geophys. Res., 82, 46354639.Google Scholar
Owen, T., Maillard, J.-P., de Bergh, C., and Lutz, B. L. (1988) Deuterium on Mars: the abundance of HDO and the value of D/H, Science, 240, 17671770.Google Scholar
Oyama, V. I. and Berdahl, B. J. (1977) The Viking gas exchange experiment results from Chryse and Utopia surface samples, J. Geophys. Res., 82, 46694676.Google Scholar
Paige, D. A. and Wood, S. E. (1992) Modeling the Martian seasonal CO2 cycle, Icarus, 99, 1527.Google Scholar
Parkinson, T. D. and Hunten, D. M. (1972) Spectroscopy and aeronomy of O2 on Mars, J. Atmos. Sci., 29, 13801390.Google Scholar
Pätzold, M., Tellmann, S., Peter, K., et al. (2009) The structure of the lower Mars ionosphere, European Planetary Science Congress, Potsdam, Germany.Google Scholar
Pearl, J. C., Smith, M. D., Conrath, B. J., et al. (2001) Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: the first Martian year, J. Geophys. Res., 106, 1232512338.Google Scholar
Perrier, S., Bertaux, J.-L., Lefèvre, F., et al. (2006) Global distribution of total ozone on Mars from SPICAM/Mars Express UV measurements, J. Geophys. Res., 111, E09S06, doi:10.1029/2006JE002681.Google Scholar
Rondanelli, R., Thayalan, V., Lindzen, R. S., and Zuber, M. T. (2006) Atmospheric contribution to the dissipation of the gravitational tide of Phobos on Mars, Geophys. Res. Lett., 33, L15201, doi:10.1029/2006GL026222.Google Scholar
Schofield, J. T., Barnes, J. R., Crisp, D., et al. (1997) The Mars Pathfinder Atmospheric Structure Investigation/Meteorology, Science, 278, 17521757.Google Scholar
Seiff, A. (1982) Post-Viking models for the structure of the summer atmosphere of Mars, Adv. Space Res., 2, 317.Google Scholar
Seiff, A. and Kirk, D. B. (1977) Structure of the atmosphere of Mars in summer at mid-latitudes, J. Geophys. Res., 82, 43644378.Google Scholar
Smith, M. D. (2004) Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167, 148165.Google Scholar
Smith, M. D. (2008) Spacecraft observations of the Martian atmosphere, Annu. Rev. Earth Planet. Sci., 36, 191219.Google Scholar
Smith, M. D. (2009) THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202, 444452.Google Scholar
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R. (2001a) Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution, J. Geophys. Res., 106, 2392923945, 2001.Google Scholar
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R. (2001b) One Martian year of atmospheric observations by the Thermal Emission Spectrometer, Geophys. Res. Let., 28, 42634266.Google Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (2001c) Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars, J. Geophys. Res., 106, 2368923722.Google Scholar
Smith, M. D., Conrath, B. J., Pearl, J. C., and Christensen, P. R. (2002) Thermal Emission Spectrometer observations of Martian planet-encircling dust storm 2001A, Icarus, 157, 259263.Google Scholar
Smith, M. D., Wolff, M. J., Lemmon, M. T., et al. (2004) First atmospheric science results from the Mars Exploration Rovers Mini-TES, Science, 306, 17501753.Google Scholar
Smith, M. D., Wolff, M. J., Spanovich, N., et al. (2006) One Martian year of atmospheric observations using MER Mini-TES, J. Geophys. Res., 111, E12S13, doi:10.1029/2006JE002770.Google Scholar
Smith, M. D., Wolff, M. J., Clancy, R. T., and Murchie, S. L. (2009) Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide, J. Geophys. Res., 114, E00D03, doi:10.1029/2008JE003288.Google Scholar
Snyder, C. W. (1977) The missions of the Viking Orbiters, J. Geophys. Res., 82, 39713983.Google Scholar
Snyder, C. W. (1979) The extended mission of Viking, J. Geophys. Res., 84, 79177933.Google Scholar
Spanovich, N., Smith, M. D., Smith, P. H., et al. (2006) Surface and near-surface atmospheric temperatures from the Mars Exploration Rover landing sites, Icarus, 180, 314320.Google Scholar
Sprague, A. L., Boynton, W. V., Kerry, K. E., et al. (2004) Mars’ south polar Ar enhancement: a tracer for south polar seasonal meridional mixing, Science, 306, 13641367.Google Scholar
Sprague, A. L., Boynton, W. V., Kerry, K. E., et al. (2007) Mars’ atmospheric argon: tracer for understanding Martian atmospheric circulation and dynamics, J. Geophys. Res., 112, E03S02, doi:10.1029/2005JE002597.Google Scholar
Striepe, S. A., Way, D. W., Dwyer, A. M., and Balaram, J. (2002) Mars smart lander simulations for entry, descent, and landing in AIAA Atmospheric Flight Mechanics Conference and Exhibit.Google Scholar
Sutton, J. L., Leovy, C. B., and Tillman, J. E. (1978) Diurnal variation of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites, J. Atmos. Sci., 35, 23462355.Google Scholar
Taylor, P. A., Kahanpää, H., Weng, W., et al. (2010) On pressure measurement and seasonal pressure variations during the Phoenix mission, J. Geophys. Res., 115, E00E15, doi:10.1029/2009JE003422.Google Scholar
Theriot, M., Keating, G., Blanchard, R., et al. (2006) Inter-annual comparison of temporal and spatial structure in the Martian thermosphere from atmospheric accelerometer measurements of MRO during aerobraking and stellar occultation measurements from SPICAM ultraviolet and infrared atmospheric spectrometer of Mars Express (MEX). American Astronomical Society, DPS meeting #38, Abstract #73.02.Google Scholar
Tillman, J. E. (1988) Mars global atmospheric oscillations: annually synchronized, transient normal mode oscillations and the triggering of global dust storms, J. Geophys. Res., 93, 94339451.Google Scholar
Tillman, J. E., Johnson, N. C., Guttorp, P., and Percival, D. B. (1993) The Martian annual atmospheric pressure cycle – years without great dust storms, J. Geophys. Res., 104, 89879008.Google Scholar
Toigo, A. D., Smith, M. D., Seelos, F. P., and Murchie, S. L. (2013) High spatial and temporal resolution sampling of Martian gas abundances from CRISM spectra, J. Geophys. Res., 118, 89104, doi:10.1029/2012JE004147.Google Scholar
Tolson, R. H., Keating, G. M., Zurek, R. W., et al. (2007) Application of accelerometer data to atmospheric modeling during Mars aerobraking operations, J. Spacecraft and Rockets, 44, 11721179.Google Scholar
Traub, W. A., Carleton, N. P., Connes, P., and Noxon, J. F. (1979) The latitude variation of O2 dayglow and O3 abundances on Mars, Astrophys. J., 229, 846850.Google Scholar
Trauger, J. T. and Lunine, J. I. (1983) Spectroscopy of molecular oxygen in the atmospheres of Venus and Mars, Icarus, 55, 272281.Google Scholar
Turcotte, D. L. and Schubert, G. (1988) Tectonic implications of radiogenic gases in planetary atmospheres, Icarus, 74, 3646.Google Scholar
Villanueva, G. L., Mumma, M. J., Novak, R. E., et al. (2013) A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy, Icarus, 223, 1127.Google Scholar
Webster, C. R., Mahaffy, P. R., Flesch, G. J., et al. (2013a) Isotope ratios of H, C, and O in CO2 and H2O in the Martian atmosphere, Science, 341, 260263.Google Scholar
Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al. (2013b) Low upper limit to methane abundance on Mars, Science, doi:10.1126/science.1242902.Google Scholar
Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al. (2015) Mars methane detection and variability at Gale Crater, Science, 347, 415417.Google Scholar
Wilson, R. J. (1997) A general circulation model simulation of the Martian polar warming, Geophys. Res. Lett., 24, 123127.Google Scholar
Wilson, R. J. (2000) Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data, Geophys. Res. Lett., 27, 38893892.Google Scholar
Wilson, R. J. (2002) Evidence for non-migrating thermal tides in the Mars upper atmosphere from the Mars Global Surveyor Accelerometer Experiment, Geophys. Res. Lett., 29, 1120, doi:10.1029/2001GL013975.Google Scholar
Wilson, R. J. (2011) Water ice clouds and thermal structure in the Martian tropics as revealed by Mars Climate Sounder in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observations, Paris, France.Google Scholar
Wilson, R. J. and Hamilton, K. P. (1996) Comprehensive model simulation of thermal tides in the Martian atmosphere, J. Atmos. Sci. 53, 12901326.Google Scholar
Wilson, R. J. and Richardson, M. I. (2000) The Martian atmosphere during the Viking mission, I – Infrared measurements of atmospheric temperatures revisited, Icarus, 145, 555579.Google Scholar
Wilson, R. J., and Smith, M. D. (2006) The effects of atmospheric dust on the seasonal variation of Martian surface temperature in The Second International Workshop on the Mars Atmosphere: Modelling and Observations, Granada, Spain.Google Scholar
Wilson, R. J., Neumann, G. A., and Smith, M. D. (2007) Diurnal variation and radiative influence of Martian water ice clouds, Geophys. Res. Lett., 34, L02710, doi:10.1029/2006GL027976.Google Scholar
Withers, P. and Catling, D. C. (2010) Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry, Geophys. Res. Lett., 37, L24204, doi:10.1029/2010GL045382.Google Scholar
Withers, P. and Smith, M. D. (2006) Atmospheric entry profiles from the Mars Exploration Rovers Spirit and Opportunity, Icarus, 185, 133142.Google Scholar
Withers, P., Bougher, S. W., and Keating, G. M. (2003) The effects of topography-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer, Icarus, 164, 1432.Google Scholar
Wolkenberg, P., Formisano, V., Rinaldi, G., and Geminale, A. (2010) The atmospheric temperatures over Olympus Mons on Mars: an atmospheric hot ring, Icarus, 207, 110123.Google Scholar
Wright, I. P., Grady, M. M., and Pillinger, C. T. (1988) Carbon, oxygen and nitrogen isotopic compositions of possible Martian weathering products in EETA 79001, Geochim. Cosmochim. Acta., 52, 917924.Google Scholar
Young, L. D. G. and Young, A. T. (1977) Interpretation of high-resolution spectra of Mars IV. New calculations of the CO abundance, Icarus, 30, 7579.Google Scholar
Zahnle, K., Freedman, R. S., and Catling, D. C. (2011) Is there methane on Mars? Icarus, 212, 493503.Google Scholar
Zurek, R. W. (1976) Diurnal tide in the Martian atmosphere, J. Atmos. Sci., 33, 321337.Google Scholar
Zurek, R. W. (1981) Inference of dust opacities for the 1977 Martian great dust storms from Viking Lander 1 pressure data, Icarus, 45, 202215.Google Scholar
Zurek, R. W. (1992) Comparative aspects of the climate of Mars: an introduction to the current atmosphere, in Mars (Kieffer, H. H., Jakosky, B. M., Snyder, C. W., Matthews, M. S., Eds.), University of Arizona Press, Tucson.Google Scholar
Zurek, R. W., Barnes, J. R., Haberle, R. M., et al. (1992) Dynamics of the atmosphere of Mars, in Mars (Kieffer, H. H., Jakosky, B. M., Snyder, C. W., Matthews, M. S., Eds.), University of Arizona Press, Tucson.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×