Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T00:35:12.290Z Has data issue: false hasContentIssue false

IV.B.8 - Other Trace Elements

from IV.B - Minerals

Published online by Cambridge University Press:  28 March 2008

Kenneth F. Kiple
Affiliation:
Bowling Green State University, Ohio
Get access

Summary

Beginning early in the twentieth century, scientists were able to qualitatively detect small amounts of several elements in living organisms. In reports, these elements were often described as being present in “traces” or “trace amounts,” and within a short time, they became known as the trace elements. Today, trace elements are understood to be those elements of the periodic table that occur in the body in micrograms per gram (μg/g) of body weight or less. They may be essential – that is, they may be indispensable for growth, health, and completion of the life cycle – or they may be nonessential: fortuitous reminders of our geochemical origins or indicators of environmental exposure. Some of the nonessential trace elements can be beneficial to health through pharmacologic action, but all are toxic when consumed in excess.

An essential element is defined by many in the scientific community as an element whose dietary deficiency consistently results in a suboptimal function that is preventable or reversible by physiological amounts of the element. However, other experts accept an element as essential only if it has a defined biochemical function. Thus, there is no universally accepted list of trace elements that are considered essential.

The essential trace elements are usually required by humans in amounts indicated by milligrams per day (mg/d). In 1980, the term “ultratrace element” began to appear in the literature; this was defined as an element with a daily dietary requirement of some 50 nanograms per gram (ng/g) for animals (Nielsen 1980). For humans, however, the term often is used to indicate elements with an established, estimated, or suspected requirement of less than 1.0 mg/d (generally indicated as micrograms per day, or mg/d) (Nielsen 1994b).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abumrad, N. N., Schneider, A. J., Steel, D., and Rogers, L. S.. 1981. Amino acid intolerance during prolonged total parenteral nutrition reversed by molybdate therapy. American Journal of Clinical Nutrition 34.CrossRefGoogle ScholarPubMed
Al-Rashid, R. A., and Spangler, J.. 1971. Neonatal copper deficiency. New England Journal of Medicine 285.CrossRefGoogle ScholarPubMed
Anderson, R. A. 1988. Chromium. In Trace minerals in foods, ed. Smith, K. T.. New York.Google Scholar
Anderson, R. A., Cheng, N., Bryden, N., et al. 1997. Elevated intakes of supplemental chromium improve glucose and insulin variables with type II diabetes. Diabetes 46.CrossRefGoogle Scholar
Anke, M. 1986. Arsenic. In Trace elements in human and animal nutrition, Vol. 2, ed. Mertz, W.. Orlando, Fla.Google Scholar
Anke, M., Groppel, B., Gruhn, K., et al. 1989. The essentiality of vanadium for animals. In 6th International Trace Element Symposium, ed. Anke, M., Baumann, W., Bräunlich, H., et al.. Jena, Germany.Google Scholar
Arnon, D. I., and Stout, P. R.. 1939. Molybdenum as an essential element for higher plants. Plant Physiology 14.CrossRefGoogle ScholarPubMed
Ashkenazi, A., Levin, S., Djaldetti, M., et al. 1973. The syndrome of neonatal copper deficiency. Pediatrics 52.Google ScholarPubMed
Becker, C.-H., Matthias, D., Wossmann, H., et al. 1983. Investigations on a possible medical importance of silicon. In 4. Spurenelement Symposium Jena, ed. Anke, M., Baumann, W., Bräunlich, H., and Brückner, C.. Jena, Germany.Google Scholar
Beedham, C. 1985. Molybdenum hydroxylases as drug-metabolizing enzymes. Drug Metabolism Reviews 16.CrossRefGoogle ScholarPubMed
Bennetts, H. W., and Chapman, F. E.. 1937. Copper deficiency in sheep in Western Australia: A preliminary account of the etiology of enzoötic ataxia of lambs and an anemia of ewes. Australian Veterinary Journal 13.CrossRefGoogle Scholar
Berg, R. 1925. Das Vorkommen seltener Elemente in den Nahrungsmitteln und menschlichen Ausscheidungen. Biochemische Zeitschrift 165.Google Scholar
Bertrand, D. 1950. Survey of contemporary knowledge of biogeochemistry. 2. The biogeochemistry of vanadium. Bulletin of the American Museum of National History 94.Google Scholar
Bertrand, G., and Mâcheboeuf, M.. 1925. Sur la présence du nickel et du cobalt chez les animaux. Comptes Rendus de l'Académie des Sciences 180.Google Scholar
Bertrand, G., and Nakamura, H.. 1936. Recherches sur l'importance physiologique du nickel et du cobalt. Bulletin de la Société Scientifique d'Hygiène Alimentaire et d'Alimentation Rationnelle 24.Google Scholar
Bodansky, M. 1921. The zinc and copper content of the human brain. Journal of Biological Chemistry 48.Google Scholar
Bortels, H. 1930. Molybdenum as a catalyst in the biological fixation of nitrogen. Archiv für Mikrobiologie 1.Google Scholar
Brown, R. O., Forloines-Lynn, S., Cross, R. E., and Heizer, W. D.. 1986. Chromium deficiency after long-term total parenteral nutrition. Digestive Diseases and Sciences 31.CrossRefGoogle ScholarPubMed
Carlisle, E. M. 1972. Silicon: An essential element for the chick. Science 178.CrossRefGoogle ScholarPubMed
Carlisle, E. M. 1984. Silicon. In Biochemistry of the essential ultratrace elements, ed. Frieden, E., New York.Google Scholar
Carlisle, E. M., Berger, J. W., and Alpenfels, W. F.. 1981. A silicon requirement for prolylhydroxylase activity. Federation Proceedings 40.Google Scholar
Carlisle, E. M., and Curran, M. J.. 1987. Effect of dietary silicon and aluminum on silicon and aluminum levels in rat brain. Alzheimer Disease and Associated Disorders 1.CrossRefGoogle ScholarPubMed
Carlisle, E. M., Curran, M. J., and Duong, T.. 1991. The effect of interrelationships between silicon, aluminum and the thyroid on zinc content in the brain. In Trace elements in man and animals – 7, ed. Momčilovič, B.. oZagreb, Croatia.Google Scholar
Church, A. H. 1869. Researches on turacin, an animal pigment containing copper. Philosophical Transactions of the Royal Society of London 159.CrossRefGoogle Scholar
Clark, L. C., Combs, G. F. Jr., Turnbull, B. W., et al. 1996. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: A randomized controlled trial. Journal of the American Medical Association 276.Google ScholarPubMed
Combs, G. F. Jr., and Combs, S. B.. 1984. The nutritional biochemistry of selenium. Annual Review of Nutrition 4.CrossRefGoogle ScholarPubMed
Cordano, A., Baertl, J. M., and Graham, G. G.. 1964. Copper deficiency in infancy. Pediatrics 34.Google ScholarPubMed
Curran, G. L. 1954. Effect of certain transition group elements on hepatic synthesis of cholesterol in the rat. Journal of Biological Chemistry 210.Google ScholarPubMed
Danks, D. M., Campbell, P. E., Stevens, B. J., et al. 1972a. Menkes' kinky hair syndrome. An inherited defect in copper absorption with widespread effects. Pediatrics 50.Google Scholar
Danks, D. M., Stevens, B. J., Campbell, P. E., et al. 1972b. Menkes' kinky-hair syndrome. Lancet 1.Google Scholar
De Renzo, E. C., Kaleita, E., Heytler, P. G., et al. 1953. Identification of the xanthine oxidase factor as molybdenum. Archives of Biochemistry and Biophysics 45.CrossRefGoogle ScholarPubMed
Dixon, N. E., Gazzola, C., Blakeley, R. L., and Zerner, B.. 1975. Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? Journal of the American Chemical Society 97.CrossRefGoogle ScholarPubMed
Doisy, E. A. Jr. 1972. Micronutrient controls on biosynthesis of clotting proteins and cholesterol. In Trace substances in environmental health, ed. Hemphill, D. D.. Columbia, Mo.Google Scholar
Ferguson, W. S., Lewis, A. H., and Watson, S. J.. 1938. Action of molybdenum in nutrition of milking cattle. Nature 141.CrossRefGoogle Scholar
Finley, J. W., and Johnson, P. E.. 1996. Manganese deficiency and excess in rodents. In Trace elements in laboratory rodents, ed. Watson, R. R.. Boca Raton, Fla.Google Scholar
Fleurent, E., and Lévi, L.. 1920. Sur la présence du cuivre dans l'organisme végétal et animal. Bulletin de la Société Chimique France 27.Google Scholar
Follis, R. H. Jr. 1947. The effect of adding boron to a potassium-deficient diet in the rat. American Journal of Physiology 150.Google ScholarPubMed
Franke, K. W., and Painter, E. P.. 1935. Selenium in proteins from toxic foodstuffs. IV. The effect of feeding toxic proteins, toxic protein hydrolysates, and toxic protein hydrolysates from which the selenium has been removed. Journal of Nutrition 10.Google Scholar
Fredericq, L. 1878. Recherches sur la physiologie du poulpe commun (Octopus vulgaris). Archives de Zoologie Expérimentale et Générale 7.Google Scholar
Freeland-Graves, J., and Llanes, C.. 1994. Models to study manganese deficiency. In Manganese in health and disease, ed. Klimis-Tavantzis, D. J.. Boca Raton, Fla.Google Scholar
Freeland-Graves, J. H., and Turnlund, J. R.. 1996. Deliberations and evaluations of the approaches, endpoints and paradigms for manganese and molybdenum dietary recommendations. Journal of Nutrition 126.CrossRefGoogle ScholarPubMed
Freund, H., Atamian, S., and Fischer, J. E.. 1979. Chromium deficiency during total parenteral nutrition. Journal of the American Medical Association 241.Google ScholarPubMed
Friedman, B. J., Freeland-Graves, J., Bales, C., et al. 1987. Manganese balance and clinical observations in young men fed a manganese-deficient diet. Journal of Nutrition 117.CrossRefGoogle ScholarPubMed
Gordon, V., ed. 1987. The case of the toxic life-preserver. Borax Review 2.Google Scholar
Graham, G. G., and Cordano, A.. 1969. Copper depletion and deficiency in the malnourished infant. Johns Hopkins Medical Journal 124.Google ScholarPubMed
Guérithault, B., and Maquenne, M. L.. 1920. Sur la présence du cuivre dans les plantes et particulièrement dans les matières alimentaires d'origine végétal. Comptes Rendus des Sciences Société de Biologie et de ses Filiales et Associées 171.Google Scholar
Harless, E. 1847. Über das blaue Blut einiger wirbellosen Thiere und dessen Kupfergehalt. Müller’s Archiv für Anatomie und Physiologie.Google Scholar
Hart, E. B., Steenbock, H., Waddell, J., and Elvehjem, C. A.. 1928. Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. Journal of Biological Chemistry 77.Google Scholar
Henze, M. 1911. Untersuchungen über das Blut der Ascidien. I. Mitteilung. Die Vanadiumverbindung der Blutkörperchen. Hoppe-Seyler’s Zeitschrift Physiological Chemistry 72.CrossRefGoogle Scholar
Henze, M. 1912. Untersuchungen über das Blut der Ascidien. Hoppe-Seyler’s Zeitschrift Physiological Chemistry 79.CrossRefGoogle Scholar
Higgins, E. S., Richert, D. A., and Westerfeld, W. W.. 1956. Molybdenum deficiency and tungstate inhibition studies. Journal of Nutrition 59.CrossRefGoogle ScholarPubMed
Hopkins, L. L. Jr., and Mohr, H. E.. 1974. Vanadium as an essential nutrient. Federation Proceedings 33.Google ScholarPubMed
Hove, E., Elvehjem, C. A., and Hart, E. B.. 1938. Arsenic in the nutrition of the rat. American Journal of Physiology 124.Google Scholar
Hove, E., Elvehjem, C. A., and Hart, E. B.. 1939. Boron in animal nutrition. American Journal of Physiology 127.Google Scholar
Hunt, C. D. 1994. The biochemical effects of physiologic amounts of dietary boron in animal nutrition models. Environmental Health Perspectives 102 (Supplement 7).CrossRefGoogle ScholarPubMed
Hunt, C. D., and Nielsen, F. H.. 1981. Interaction between boron and cholecalciferol in the chick. In Trace elements in man and animals (TEMA-4), ed. Howell, J. McC., Gawthorne, J. M., and White, C. L.. Canberra, Australia.Google Scholar
Jackson, D. E. 1912. The pharmacological action of vanadium. Journal de Pharmacologie 3.Google Scholar
Jeejeebhoy, K. N., Chu, R. C., Marliss, E. B., et al. 1977. Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. American Journal of Clinical Nutrition 30.CrossRefGoogle Scholar
Jovanovic-Peterson, L., Gutierrez, M., and Peterson, C. M.. 1996. Chromium supplementation for gestational diabetic women (GDM) improves glucose tolerance and decreases hyperinsulinemia. Diabetes 45: Abs.Google Scholar
Kemmerer, A. R., Elvehjem, C. A., and Hart, E. B.. 1931. Studies on the relation of manganese to the nutrition of the mouse. Journal of Biological Chemistry 92.Google Scholar
,Keshan Disease Research Group. 1979. Observation on the effect of sodium selenite in prevention of Keshan disease. Chinese Medical Journal 92.
Klevay, L. M. 1990. Ischemic heart disease: Toward a unified theory. In Role of copper in lipid metabolism, ed. Lei, K. Y. and Carr, T. P.. Boca Raton, Fla.Google Scholar
Klevay, L. M., Buchet, J. P., Bunker, V. W., et al. 1993. Copper in the western diet (Belgium, Canada, U.K., and USA). In Trace elements in man and animals – TEMA-8, ed. Anke, M., Meissner, D., and Mills, C. F.. Gersdorf, Germany.Google Scholar
Klevay, L. M., and Medeiros, D. M.. 1996. Deliberations and evaluations of the approaches, endpoints and paradigms for dietary recommendations about copper. Journal of Nutrition 126.CrossRefGoogle ScholarPubMed
Lancaster, J. R. Jr., ed. 1988. The bioinorganic chemistry of nickel. New York.Google Scholar
Leach, R. M. Jr., and Muenster, A.-M.. 1962. Studies on the role of manganese in bone formation. I. Effect upon the mucopolysaccharide content of chick bone. Journal of Nutrition 78.CrossRefGoogle ScholarPubMed
Levander, O. A., and Burk, R. F.. 1994. Selenium. In Modern nutrition in health and disease. Eighth edition, Vol. 1, ed. Shils, M. E., Olson, J. A., and Shike, M.. Philadelphia, Pa.Google Scholar
Lyons, M., and Insko, W. M. Jr. 1937. Chondrodystrophy in the chick embryo produced by manganese deficiency in the diet of the hen. Kentucky Agricultural Experimental Station Bulletin 371.Google Scholar
Mayer, D. R., Kosmus, W., Pogglitsch, H., et al. 1993. Essential trace elements in humans. Serum arsenic concentrations in hemodialysis patients in comparison to healthy controls. Biological Trace Element Research 37.Google ScholarPubMed
McHargue, J. S. 1923. Effect of different concentrations of manganese sulfate on the growth of plants in acid and neutral soils and the necessity of manganese as a plant nutrient. Journal of Agricultural Research 24.Google Scholar
McHargue, J. S. 1925. The association of copper with substances containing the fat-soluble A vitamin. American Journal of Physiology 72.Google Scholar
McHargue, J. S. 1926. Further evidence that small quantities of copper, manganese and zinc are factors in the metabolism of animals. American Journal of Physiology 77.Google Scholar
Mertz, W. 1993. Chromium in human nutrition: A review. Journal of Nutrition 123.CrossRefGoogle ScholarPubMed
Messer, H. H. 1984. Fluorine. In Biochemistry of the essential ultratrace elements, ed. Frieden, E.. New York.Google Scholar
Mobley, H. L., Island, M. D., and Hausinger, R. P.. 1995. Molecular biology of microbiological ureases. Microbiological Reviews 59.Google Scholar
Moxon, A. L., and Rhian, M.. 1943. Se poisoning. Physiological Reviews 23.CrossRefGoogle Scholar
Muth, O. H., Oldfield, J. E., Remmert, L. F., and Schubert, J. R.. 1958. Effects of selenium and vitamin E on white muscle disease. Science 128.CrossRefGoogle ScholarPubMed
,National Research Council. 1980. Recommended dietary allowances. Ninth edition. Washington, D.C.
,National Research Council. 1989. Recommended dietary allowances. Tenth edition. Washington, D.C.
Neal, W. M., Becker, R. B., and Shealy, A. L.. 1931. A natural copper deficiency in cattle rations. Science 74.CrossRefGoogle ScholarPubMed
Nielsen, F. H. 1980. Interactions between essential trace and ultratrace elements. Annals of the New York Academy of Sciences 355.CrossRefGoogle ScholarPubMed
Nielsen, F. H. 1984. Ultratrace elements in nutrition. Annual Review of Nutrition 4.CrossRefGoogle ScholarPubMed
Nielsen, F. H. 1985. The importance of diet composition in ultratrace element research. Journal of Nutrition 115.CrossRefGoogle ScholarPubMed
Nielsen, F. H. 1994a. Biochemical and physiologic consequences of boron deprivation in humans. Environmental Health Perspectives 102 (Supplement 7).CrossRefGoogle Scholar
Nielsen, F. H. 1994b. Ultratrace minerals. In Modern nutrition in health and disease. Eighth edition, ed. Shils, M. E., Olson, J. A., and Shike, M.. Philadelphia, Pa.Google Scholar
Nielsen, F. H. 1995. Individual functional roles of metal ions in vivo. Beneficial metal ions. Nickel. In Handbook of metalligand interactions in biological fluids. Bioinorganic medicine, Vol. 1. New York.Google Scholar
Nielsen, F. H. 1997. Boron in human and animal nutrition. Plant and Soil 193.CrossRefGoogle Scholar
Nielsen, F. H., Poellot, R. A., and Uthus, E. O.. 1997. Vanadium deprivation alters the changes in plasma thyroid hormone concentrations, pancreatic amylase activity, and serum lactate dehydrogenase activity in the BB rat caused by increasing dietary iodine. FASEB Journal 11.Google Scholar
Nielsen, F. H., and Sauberlich, H. E.. 1970. Evidence of a possible requirement for nickel by the chick. Proceedings of the Society for Experimental Biology and Medicine 134.Google ScholarPubMed
Nielsen, F. H., and Uthus, E. O.. 1984. Arsenic. In Biochemistry of the essential ultratrace elements, ed. Frieden, E.. New York.Google Scholar
Nielsen, F. H., Zimmerman, T. J., Shuler, T. R., et al. 1989. Evidence for a cooperative metabolic relationship between nickel and vitamin B12 in rats. Journal of Trace Elements in Experimental Medicine 2.Google Scholar
Norose, N. 1992. Manganese defiency in a child with very short bowel syndrome receiving long-term parenteral nutrition. Journal of Trace Elements in Experimental Medicine 5.Google Scholar
Nriagu, Jerome O. ed. 1980. Nickel in the environment.New York.Google Scholar
Orent, E. R., and McCollum, E. V.. 1931. Effects of deprivation of manganese in the rat. Journal of Biological Chemistry 92.Google Scholar
Orent-Keiles, E. 1941. The role of boron in the diet of the rat. Proceedings of the Society for Experimental Biology and Medicine 44.Google Scholar
Patterson, E. L., Milstrey, R., and Stokstad, E. L. R.. 1957. Effect of selenium in preventing exudative diathesis in chicks. Proceedings of the Society for Experimental Biology and Medicine 95.Google ScholarPubMed
Penland, J. G. 1994. Dietary boron, brain function, and cognitive performance. Environmental Health Perspectives 102 (Supplement 7).CrossRefGoogle ScholarPubMed
Priestley, J., and Gamgee, A.. 1876. On the physiological action of vanadium. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 166.Google Scholar
Proctor, J. F., Hogue, D. E., and Warner, R. G.. 1958. Selenium, vitamin E and linseed oil meal as preventatives of muscular dystrophy in lambs. Journal of Animal Science 17.Google Scholar
Rajagopalan, K. V. 1988. Molybdenum: An essential trace elementin human nutrition. Annual Review of Nutrition 8.CrossRefGoogle ScholarPubMed
Richert, D. A., and Westerfeld, W. W.. 1953. Isolation and identification of the xanthine oxidase factor as molybdenum. Journal of Biological Chemistry 203.Google ScholarPubMed
Rotruck, J. T., Pope, A. L., Ganther, H. E., et al. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science 179.CrossRefGoogle ScholarPubMed
Rygh, O. 1949. Recherches sur les oligo-éléments. II. De l'importance du thallium et du vanadium, du silicium et du fluor. Bulletin de la Société Chimie Biologique 31.Google Scholar
Schroeder, H. A., and Balassa, J. J.. 1966. Abnormal trace metals in men: Arsenic. Journal of Chronic Diseases 19.Google Scholar
Schroeder, H. A., Balassa, J. J., and Tipton, I. H.. 1963. Abnormal trace metals in man – vanadium. Journal of Chronic Diseases 16.Google ScholarPubMed
Schwarz, K., Bieri, J. G., Briggs, G. M., and Scott, M. L.. 1957. Prevention of exudative diathesis in chicks by factor 3 and selenium. Proceedings of the Society for Experimental Biology and Medicine 95.Google ScholarPubMed
Schwarz, K., and Foltz, C. M.. 1957. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society 79.CrossRefGoogle Scholar
Schwarz, K., and Mertz, W.. 1959. Chromium (III) and the glucose tolerance factor. Archives of Biochemistry and Biophysics 85.CrossRefGoogle ScholarPubMed
Seaborn, C. D., and Nielsen, F. H.. 1993. Silicon: A nutritional beneficence for bones, brains and blood vessels? Nutrition Today 28.CrossRefGoogle Scholar
Seaborn, C. D., and Nielsen, F. H.. 1996. Dietary silicon affects some collagen synthesizing enzymes in rats. FASEB Journal 10.Google Scholar
Sjollema, B. 1933. Kupfermangel als Ursache von Krankheiten bei Pflanzen und Tieren. Biochemische Zeitschrift 267.Google Scholar
Skinner, J. T., and McHargue, J. S.. 1945. Response of rats to boron supplements when fed rations low in potassium. American Journal of Physiology 143.Google Scholar
Skinner, J. T., and McHargue, J. S.. 1946. Supplementary effects of arsenic and manganese on copper in the synthesis of hemoglobin. American Journal of Physiology 145.Google ScholarPubMed
Sommer, A. L., and Lipman, C. B.. 1926. Evidence of the indispensable nature of zinc and boron for higher green plants. Plant Physiology 1.CrossRefGoogle ScholarPubMed
ter Meulen, H. 1932. Distribution of molybdenum. Nature 130.CrossRefGoogle Scholar
Teresi, J. D., Elvehjem, C. A., and Hart, E. B.. 1942. Molybdenum in the nutrition of the rat. American Journal of Physiology 137.Google Scholar
Teresi, J. D., Hove, E., Elvehjem, C. A., and Hart, E. B.. 1944. Further study of boron in the nutrition of rats. American Journal of Physiology 140.Google Scholar
Trelease, S. F., and Beath, O. A.. [1892]1949. Selenium. Its geological occurrence and its biological effects in relation to botany, chemistry, agriculture, nutrition, and medicine by Sam F. Trelease and Orville A. Beath. New York and Laramie, Wyo.Google Scholar
Turnlund, J. R., Keyes, W. R., Peiffer, G. L., and Chiang, G.. 1995. Molybdenum absorption, excretion and retention studied with stable isotopes in young men during depletion and repletion. American Journal of Clinical Nutrition 61.CrossRefGoogle ScholarPubMed
Uthus, E. O. 1994. Arsenic essentiality and factors affecting its importance. In Arsenic. Exposure and health, ed. Chappell, W. R., Abernathy, C. O., and Cothern, C. R.. Northwood, England.Google Scholar
Uthus, E. O., and Nielsen, F. H.. 1990. Effect of vanadium, iodine and their interaction on growth, blood variables, liver trace elements and thyroid status indices in rats. Magnesium and Trace Elements 9.Google ScholarPubMed
Uthus, E. O., and Poellot, R. A.. 1996. Dietary folate affects the response of rats to nickel deprivation. Biological Trace Element Research 52.CrossRefGoogle ScholarPubMed
Vilter, H. 1995. Vanadium-dependent haloperoxidases. In Metal ions in biological systems, Vol. 31: Vanadium and its role in life, ed. Sigel, H. and Sigel, A.. New York.Google Scholar
Waddell, J., Steenbock, H., and Hart, E. B.. 1931. Growth and reproduction on milk diets. Journal of Nutrition 4.CrossRefGoogle Scholar
Warington, K. 1923. The effect of boric acid and borax on the broad bean and certain other plants. Annals of Botany 37.Google Scholar
Whitford, G. M. 1990. The physiological and toxicological characteristics of fluoride. Journal of Dental Research 69.CrossRefGoogle ScholarPubMed
Wiley, H. W. 1904. Influence of food preservatives and artificial colors on digestion and health. I. Boric acid and borax. U.S. Department of Agriculture Bulletin No. 84. Washington, D.C.Google Scholar
Wilgus, H. S. Jr., Norris, L. C., and Heuser, G. F.. 1936. The role of certain inorganic elements in the cause and prevention of perosis. Science 84.CrossRefGoogle ScholarPubMed
Wilgus, H. S. Jr., Norris, L. C., and Heuser, G. F.. 1937. The role of manganese and certain other trace elements in the prevention of perosis. Journal of Nutrition 14.CrossRefGoogle Scholar
Willsky, G. R. 1990. Vanadium in the biosphere. In Vanadium in biological systems. Physiology and biochemistry, ed. Chasteen, N. D.. Dordrecht, the Netherlands.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×