Skip to main content Accessibility help
×
Home
Hostname: page-component-66d7dfc8f5-zf4m4 Total loading time: 4.412 Render date: 2023-02-09T01:17:35.278Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

3 - Epidemiology and etiology

from Part I - History and general issues

Published online by Cambridge University Press:  01 July 2010

Logan G. Spector
Affiliation:
Assistant Professor, Division of Pediatric Epidemiology & Clinical Research
Julie A. Ross
Affiliation:
Professor, Division of Pediatric Epidemiology & Clinical Research
Leslie L. Robison
Affiliation:
Professor, Division of Pediatric Epidemiology & Clinical Research
Smita Bhatia
Affiliation:
Director Epidemiology and Outcomes Research, Division of Pediatrics, City of Hope National Medical Center, Duarte, CA, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

The acute leukemias of childhood are a heterogeneous group of diseases. In reviewing the descriptive and analytic epidemiology of these malignancies, we have emphasized specific subgroups, as defined by morphology [the French-American-British (FAB) classification], cytogenetic features, or molecular markers. There is evidence that specific subtypes of leukemia may have distinct etiologies, and that molecular abnormalities associated with particular subtypes may be linked with specific causal mechanisms. Moreover, the mutations produced at the successive stages of leukemogenesis, from initiation through induction to promotion, may all involve separate etiologic processes.

It is also important to note that changes over time in diagnostic practice and precision may account in part for some reported epidemiologic trends. Moreover, changes in terminology and classification schemes for leukemia make it difficult to perform direct comparisons among studies, especially if risk factors differ for different subgroups. However, in assessing risk factors, studies of the childhood leukemias present several methodologic advantages. The interval between exposure to putative risk factors and the onset of leukemia may be shorter, recall of exposures is likely to be better, and intervening factors may be fewer than those associated with adult leukemias. These characteristics of childhood leukemia may facilitate identification of the most likely risk factors for each leukemia subtype. Furthermore, they lend themselves to an approach that includes both population studies and molecular epidemiologic techniques, permitting the design of research to assess genetic-environmental causal interactions.

Type
Chapter
Information
Childhood Leukemias , pp. 48 - 66
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gurney, J. G., Severson, R. K., Davis, S., et al.Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer, 1995; 75: 2186–95.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Linet, M. S. & Devesa, S. S.Descriptive epidemiology of childhood leukaemia. Br J Cancer, 1991; 63: 424–9.CrossRefGoogle ScholarPubMed
Glazer, E. R., Perkins, C. I., Young, J. L. Jr., et al.Cancer among Hispanic children in California, 1988–1994: comparison with non-Hispanic white children. Cancer, 1999; 86: 1070–9.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Douer, D., Preston-Martin, S., Chang, E., et al.High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood, 1996; 87: 308–13.Google ScholarPubMed
Ferlay, J., Bray, F., Pisani, P., & Parkin, D. M.GLOBOCAN 2000: Cancer Incidence, Mortality and Prevalence Worldwide. (Lyon, France: IARC Press, 2001).Google Scholar
Gurney, J. G., Davis, S., Severson, R. K., et al.Trends in cancer incidence among children in the U. S. Cancer, 1996; 78: 532–41.3.0.CO;2-Z>CrossRefGoogle Scholar
Blair, V. & Birch, J. M.Patterns and temporal trends in the incidence of malignant disease in children: I. Leukaemia and lymphoma. Eur J Cancer, 1994; 30A: 1490–8.CrossRefGoogle ScholarPubMed
McWhirter, W. R. & Petroeschevsky, A. L.Incidence trends in childhood cancer in Queensland, 1973–1988. Med J Aust, 1991; 154: 453–5.Google Scholar
Bunin, G. R., Feuer, E. J., Witman, P. A., & Meadows, A. T.Increasing incidence of childhood cancer: report of 20 years experience from the greater Delaware Valley Pediatric Tumor Registry. Paediatr Perinat Epidemiol, 1996; 10: 319–38.CrossRefGoogle ScholarPubMed
Kaatsch, P., Haaf, G., & Michaelis, J.Childhood malignancies in Germany – methods and results of a nationwide registry. Eur J Cancer, 1995; 31A: 993–9.CrossRefGoogle ScholarPubMed
Linet, M. S., Ries, L. A., Smith, M. A., Tarone, R. E., & Devesa, S. S.Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. J Natl Cancer Inst, 1999; 91: 1051–8.CrossRefGoogle ScholarPubMed
Taylor, G. M. & Birch, J. M. The hereditary basis of human leukemia. In Henderson, E. S., Lister, T. A., & Greaves, M. F., eds., Leukemia (Philadelphia, PA: W. B. Saunders, 1996), pp. 210–45.Google Scholar
Norppa, H.Cytogenetic markers of susceptibility: influence of polymorphic carcinogen-metabolizing enzymes. Environ Health Perspect, 1997; 105(Suppl. 4): 829–35.CrossRefGoogle ScholarPubMed
Spector, L. G., Xie, Y., Robison, L. L., et al.Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children's oncology group. Cancer Epidemiol Biomarkers Prev, 2005; 14: 651–5.CrossRefGoogle ScholarPubMed
Puchkova, G. P., Prigogina, E. L., Fleischmann, E. W., Drosdova, T. S., & Mayakwa, S. A.Chromosome abnormalities in chronic myeloid leukemia in children. Hum Genet, 1983; 64: 257–62.CrossRefGoogle ScholarPubMed
Woods, W. G., Nesbit, M. E., Buckley, J., et al.Correlation of chromosome abnormalities with patient characteristics, histologic subtype, and induction success in children with acute nonlymphocytic leukemia. J Clin Oncol, 1985; 3: 3–11.CrossRefGoogle ScholarPubMed
Cimino, G., Lo Coco, F., Biondi, A., et al.ALL-1 gene at chromosome 11q23 is consistently altered in acute leukemia of early infancy. Blood, 1993; 82: 544–6.Google ScholarPubMed
Pui, C. H., Raimondi, S. C., Murphy, S. B., et al.An analysis of leukemic cell chromosomal features in infants. Blood, 1987; 69: 1289–93.Google ScholarPubMed
Stone, R. M. & Mayer, R. J., The unique aspects of acute promyelocytic leukemia. J Clin Oncol, 1990; 8: 1913–21.CrossRefGoogle ScholarPubMed
Secker-Walker, L. M., Berger, R., Fenaux, P., et al.Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. Leukemia, 1992; 6: 363–9.Google Scholar
Crist, W., Carroll, A., Shuster, J., et al.Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. Blood, 1990; 76: 489–94.Google ScholarPubMed
Shurtleff, S. A., Buijs, A., Behm, F. G., et al.TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia, 1995; 9: 1985–9.Google Scholar
Robison, L. L. & Neglia, J. P.Epidemiology of Down syndrome and childhood acute leukemia. Prog Clin Biol Res, 1987; 246: 19–32.Google ScholarPubMed
Fong, C. T. & Brodeur, G. M.Down's syndrome and leukemia: epidemiology, genetics, cytogenetics, and the mechanisms of leukemogenesis. Cancer Genet Cytogenet, 1987; 28: 55–76.CrossRefGoogle ScholarPubMed
Zipursky, A., Thorner, P., De Harven, E., Christensen, H., & Doyle, J.Myelodysplasia and acute megakaryoblastic leukemia in Down's syndrome. Leuk Res, 1994; 18: 163–71.CrossRefGoogle ScholarPubMed
Sacchi, N.Down syndrome and chromosome 21 abnormalities in leukaemia. Baillieres Clin Haematol, 1992; 5: 815–31.CrossRefGoogle ScholarPubMed
Mullvihill, J. J. Congenital and genetic diseases. In Fraumeni, J. F. Jr., ed., Persons at High Risk of Cancer (San Diego, CA: Academic Press, 1975), pp. 3–31.Google Scholar
Bader, J. L. & Miller, R. W.Neurofibromatosis and childhood leukemia. J Pediatr, 1978; 92: 925–9.CrossRefGoogle ScholarPubMed
German, J., Bloom, D., & Passarge, E.Bloom's syndrome. Ⅶ. Progress report for 1978. Clin Genet, 1979; 15: 361–7.CrossRefGoogle ScholarPubMed
Woods, W. G., Roloff, J. S., Lukens, J. N., & Krivit, W.The occurrence of leukemia in patients with the Shwachman syndrome. J Pediatr, 1981; 99: 425–8.CrossRefGoogle ScholarPubMed
Hecht, F. & Hecht, B. K.Cancer in ataxia-telangiectasia patients. Cancer Genet Cytogenet, 1990; 46: 9–19.CrossRefGoogle ScholarPubMed
Linet, M. The Leukemias: Epidemiological Aspects (New York: Oxford University Press, 1985).
Bloomfield, C. D. & Brunning, R. D.Acute leukemia as a terminal event in nonleukemic hematopoietic disorders. Semin Oncol, 1976; 3: 297–317.Google ScholarPubMed
Zeidler, C., Reiter, A., Yakisan, E., et al.Long-term treatment with recombinant human granulocyte colony stimulating factor in patients with severe congenital neutropenia. Klin Padiatr, 1993; 205: 264–71.CrossRefGoogle ScholarPubMed
Shannon, K. M., Turhan, A. G., Rogers, P. C., & Kan, Y. W.Evidence implicating heterozygous deletion of chromosome 7 in the pathogenesis of ftreatial leukemia associated with monosomy 7. Genomics, 1992; 14: 121–5.CrossRefGoogle ScholarPubMed
Narod, S. A., Stiller, C., & Lenoir, G. M.An estimate of the heritable fraction of childhood cancer. Br J Cancer, 1991; 63: 993–9.CrossRefGoogle ScholarPubMed
Robison, L. L., Nesbit, M. E. Jr., Sather, H. N., et al.Down syndrome and acute leukemia in children: a 10-year retrospective survey from Children's Cancer Study Group. J Pediatr, 1984; 105: 235–42.CrossRefGoogle Scholar
Watson, M. S., Carroll, A. J., Shuster, J. J., et al.Trisomy 21 in childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study (8602). Blood, 1993; 82: 3098–102.Google Scholar
Mertens, A. C., Wen, W., Davies, S. M., et al.Congenital abnormalities in children with acute leukemia: a report from the Children's Cancer Group. J Pediatr, 1998; 133: 617–23.CrossRefGoogle ScholarPubMed
Narod, S. A., Hawkins, M. M., Robertson, C. M., & Stiller, C. A.Congenital anomalies and childhood cancer in Great Britain. Am J Hum Genet, 1997; 60: 474–85.Google ScholarPubMed
Anderson, R.Familial leukemia. Am J Dis Child, 1951; 81: 313–322.Google ScholarPubMed
Maklin, M.Inheritance of cancer of the stomach and large intestine in man. J Natl Cancer Inst, 1960; 24: 551–571.CrossRefGoogle Scholar
Gunz, F. W., Gunz, J. P., Vincent, P. C., et al.Thirteen cases of leukemia in a family. J Natl Cancer Inst, 1978; 60: 1243–50.CrossRefGoogle ScholarPubMed
Farwell, J. & Flannery, J. T.Cancer in relatives of children with central-nervous-system neoplasms. N Engl J Med, 1984; 311: 749–53.CrossRefGoogle ScholarPubMed
MacMahon, B. & Levy, M. A.Prenatal origin of leukemia: evidence from twins. N Engl J Med, 1964; 270: 1082–1085.CrossRefGoogle ScholarPubMed
Keith, L., Brown, E. R., Ames, B., Stotsky, M., & Keith, D. M.Leukemia in twins: antenatal and postnatal factors. Acta Genet Med Gemellol, 1976; 25: 336–41.CrossRefGoogle ScholarPubMed
Chaganti, R. S., Miller, D. R., Meyers, P. A., & German, J.Cytogenetic evidence of the intrauterine origin of acute leukemia in monozygotic twins. N Engl J Med, 1979; 300: 1032–4.CrossRefGoogle ScholarPubMed
Hartley, S. E. & Sainsbury, C.Acute leukaemia and the same chromosome abnormality in monozygotic twins. Hum Genet, 1981; 58: 408–10.CrossRefGoogle ScholarPubMed
Strong, L. C. Genetics, etiology, and epidemiology of childhood cancer. In , W. W. Sutow, , T. J. Vietti & , D. J. Ferrbach, eds., Clinical Pediatric Oncology (St. Louis, MO: Mosby, 1984), pp. 14–41.Google Scholar
Elwood, P. C.Possible explanation of the high concordance for acute leukemia in monozygotic twins. Lancet, 1971; 1: 699.Google Scholar
Buckley, J. D., Buckley, C. M., Breslow, N. E., et al.Concordance for childhood cancer in twins. Med Pediatr Oncol, 1996; 26: 223–9.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Ford, A. M., Ridge, S. A., Cabrera, M. E., et al.In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature, 1993; 363: 358–60.CrossRefGoogle ScholarPubMed
Maia, A. T., Ford, A. M., Jalali, G. R., et al.Molecular tracking of leukemogenesis in a triplet pregnancy. Blood, 2001; 98: 478–82.CrossRefGoogle Scholar
Ford, A. M., Pombo-de-Oliveira, M. S., McCarthy, K. P., et al.Monoclonal origin of concordant T-cell malignancy in identical twins. Blood, 1997; 89: 281–5.Google ScholarPubMed
Ford, A. M., Bennett, C. A., Price, C. M., et al.Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci U S A, 1998; 95: 4584–8.CrossRefGoogle ScholarPubMed
Hawkins, M. M., Draper, G. J., & Winter, D. L.Cancer in the offspring of survivors of childhood leukaemia and non-Hodgkin lymphomas. Br J Cancer, 1995; 71: 1335–9.CrossRefGoogle ScholarPubMed
Bajnoczky, K., Khezri, S., Kajtar, P., et al.No chromosomal instability in offspring of survivors of childhood malignancy. Cancer Genet Cytogenet, 1999; 109: 79–80.CrossRefGoogle ScholarPubMed
Perrillat, F., Clavel, J., Jaussent, I., et al.Family cancer history and risk of childhood acute leukemia (France). Cancer Causes Control, 2001; 12: 935–41.CrossRefGoogle Scholar
Grenwald, . Benzene and leukemia. Crit Rev Toxicol, 2002; 32: 155–210.Google Scholar
Stewart, A.A survey of childhood malignancies. Br Med J, 1958; 2: 1495–507.CrossRefGoogle Scholar
MacMahon, B. & Newill, V. A.Birth characteristics of children dying of malignant neoplasms. J Natl Cancer Inst, 1962; 28: 231–44.Google ScholarPubMed
Gibson, R. W., Bross, I. D. J., Graham, S., et al.Leukemia in children exposed to multiple risk factors. N Engl J Med, 1968; 279: 906–9.CrossRefGoogle ScholarPubMed
Stewart, A. & Kneale, G. W.Radiation dose effects in relation to obstetric x-rays and childhood cancers. Lancet, 1970; 1: 1185–8.CrossRefGoogle ScholarPubMed
Savitz, D. A., Wachtel, H., Barnes, F. A., John, E. M., & Tvrdik, J. G.Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol, 1988; 128: 21–38.CrossRefGoogle ScholarPubMed
London, S. J., Thomas, D. C., Bowman, J. D., et al.Exposure to residential electric and magnetic fields and risk of childhood leukemia. Am J Epidemiol, 1991; 134: 923–37.CrossRefGoogle ScholarPubMed
Linet, M. S., Hatch, E. E., Kleinerman, R. A., et al.Residential exposure to magnetic fields and acute lymphoblastic leukemia in children. N Engl J Med, 1997; 337: 1–7.CrossRefGoogle ScholarPubMed
Preston, D. L., Kusumi, S., Tomonaga, M., et al.Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res, 1994; 137(2 Suppl.): S68–97.CrossRefGoogle ScholarPubMed
Doll, R.Hazards of ionising radiation: 100 years of observations on man. Br J Cancer, 1995; 72: 1339–49.CrossRefGoogle ScholarPubMed
Harvey, E. B., Boice, J. D. Jr., Honeyman, M., & Flannery, J. T.Prenatal x-ray exposure and childhood cancer in twins. N Engl J Med, 1985; 312: 541–5.CrossRefGoogle ScholarPubMed
Rodvall, Y., Pershagen, G., Hrubec, Z., et al.Prenatal X-ray exposure and childhood cancer in Swedish twins. Int J Cancer, 1990; 46: 362–5.CrossRefGoogle ScholarPubMed
Mole, R. H.Childhood cancer after prenatal exposure to diagnostic X-ray examinations in Britain. Br J Cancer, 1990; 62: 152–68.CrossRefGoogle ScholarPubMed
Boice, J. D. & Inskip, P. D. Radiation-induced leukemia. In , E. S. Henderson, , T. A. Lister, & , M. F. Greaves, eds., Leukemia (Philadelphia, PA: W. B. Saunders, 1996), pp. 195–209.Google Scholar
Darby, S. C. & Weiss, H. A. Human studies in radiation leukemogenesis. In , J. H. Hendry & , B. I. Lord, eds., Radiation Toxicology: Bone Marrow and Leukemia (London: Taylor & Francis, 1995), pp. 337–53.Google Scholar
Doll, R. & Wakeford, R.Risk of childhood cancer from fetal irradiation. Br J Radiol, 1997; 70: 130–9.CrossRefGoogle ScholarPubMed
Simpson, C. I., Hempelmann, L. H., & Fuller, L. M.Neoplasms in children treated with x-rays in infancy for thymic enlargement. Radiology, 1955; 64: 840–55.CrossRefGoogle ScholarPubMed
Ron, E. & Modon, B. Thyroid and other neoplasms following childhood scalp irradiation. In , J. D. Boice & , J. F. Fraumeni, eds., Radiation Carcinogenesis, Epidemiology and Biological Significance (New York: Raven Press, 1984), pp. 139–51.Google Scholar
Tucker, M. A., Coleman, C. N., Cox, R. S., Varghese, A. & Rosenberg, S. A.Risk of second cancers after treatment for Hodgkin's disease. N Engl J Med, 1988; 318: 76–81.CrossRefGoogle ScholarPubMed
Egeler, R. M., Neglia, J. P., Arico, M., et al.Acute leukemia in association with Langerhans cell histiocytosis. Med Pediatr Oncol, 1994; 23: 81–5.CrossRefGoogle ScholarPubMed
Infante-Rivard, C., Mathonnet, G., & Sinnett, D.Risk of childhood leukemia associated with diagnostic irradiation and polymorphisms in DNA repair genes. Environ Health Perspect, 2000; 108: 495–8.CrossRefGoogle ScholarPubMed
Linos, A., Kyle, R. A., Elveback, L. R., & Kurland, L. T.Leukemia in Olmsted County, Minnesota, 1965–1974. Mayo Clin Proc, 1978; 53: 714–18.Google Scholar
Boice, J. D. Jr.The danger of X-rays – real or apparent ? N Engl J Med, 1986; 315: 828–30.CrossRefGoogle ScholarPubMed
Hjalmars, U., Kulldorff, M., & Gustafsson, G.Risk of acute childhood leukaemia in Sweden after the Chernobyl reactor accident. Swedish Child Leukaemia Group. BMJ, 1994; 309: 154–7.CrossRefGoogle ScholarPubMed
Auvinen, A., Hakama, M., Arvela, H., et al.Fallout from Chernobyl and incidence of childhood leukaemia in Finland, 1976–92. BMJ, 1994; 309: 151–4.CrossRefGoogle Scholar
Cartwright, R. A., McKinney, P. A., Alexander, F. E., & Ricketts, J.Leukemia in young children. Lancet, 1988; 2: 960.CrossRefGoogle ScholarPubMed
Gibson, B. E., Eden, O. B., Barrett, A., Stiller, C. A., & Draper, G. J.Leukaemia in young children in Scotland. Lancet, 1988; 2: 630.CrossRefGoogle ScholarPubMed
Michaelis, J., Kaletsch, U., Burkart, W., & Grosche, B.Infant leukaemia after the Chernobyl accident. Nature, 1997; 387: 246.CrossRefGoogle ScholarPubMed
Petridou, E., Proukakis, C., Tong, D., et al.Trends and geographical distribution of childhood leukemia in Greece in relation to the Chernobyl accident. Scand J Soc Med, 1994; 22: 127–31.CrossRefGoogle ScholarPubMed
Petridou, E., Trichopoulos, D., Dessypris, N., et al.Infant leukaemia after in utero exposure to radiation from Chernobyl. Nature, 1996; 382: 352–3.CrossRefGoogle ScholarPubMed
Parkin, D. M., Cardis, E., Masuyer, E., et al.Childhood leukemia following the Chernobyl accident: the European Childhood Leukemia-Lymphoma Incidence Study (ECLIS). Eur J Cancer, 1992; 29A: 87–95.Google Scholar
Ivanov, E. P., Tolochoko, G., Lazarev, V. S. & Shuvaeva, L.Child leukaemia after Chernobyl. Nature, 1993; 365: 702.CrossRefGoogle ScholarPubMed
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation. New York: United Nations, 1994.
Stevens, W., Thomas, D. C., Lyon, J. L., et al.Leukemia in Utah and radioactive fallout from the Nevada test site. A case-control study. JAMA, 1990; 264: 585–91.CrossRefGoogle ScholarPubMed
Cook-Mozaffari, P. J., Darby, S. C., Doll, R., et al.Geographical variation in mortality from leukaemia and other cancers in England and Wales in relation to proximity to nuclear installations, 1969–78. Br J Cancer, 1989; 59: 476–85.CrossRefGoogle ScholarPubMed
Bithell, J. F., Dutton, S. J., Draper, G. J., & Neary, N. M.Distribution of childhood leukaemias and non-Hodgkin's lymphomas near nuclear installations in England and Wales. BMJ, 1994; 309: 501–5.CrossRefGoogle ScholarPubMed
Hill, C. & Laplanche, A.Overall mortality and cancer mortality around French nuclear sites. Nature, 1990; 347: 755–7.CrossRefGoogle ScholarPubMed
Jablon, S., Hrubec, Z. & Boice, J. D. Jr.Cancer in populations living near nuclear facilities. A survey of mortality nationwide and incidence in two states. JAMA, 1991; 265: 1403–8.CrossRefGoogle ScholarPubMed
Jablon, S., Hrubec, Z. & Boice, J. D. Jr.Cancer in Populations Living Near Nuclear Facilities. NIH Publication 90–874). (Bethesda, MD: Public Health Service, Department of Health and Human Services, 1990).Google Scholar
Michaelis, J., Keller, B., Haaf, G., & Kaatsch, P.Incidence of childhood malignancies in the vicinity of west German nuclear power plants. Cancer Causes Control, 1992; 3: 255–63.CrossRefGoogle ScholarPubMed
Clarke, E. A., McLaughlin, J., & Anderson, T. W.Childhood Leukaemia Around Canadian Nuclear Facilities: Phase II. Final Report. (Ottawa, Canada: Atomic Energy Control Board, 1991).Google Scholar
Committee of Medical Aspects of Radiation in the Environment (COMARE). The Incidence of Cancer and Leukaemia in Young People in the Vicinity of the Sellafield Site, West Cumbria: Further Studies and an Update of the Situation Since the Publication of the Report of the Black Advisory Group in 1984. (London: Her Majesty's Stationery Office, 1996).
Gardner, M. J.Father's occupational exposure to radiation and the raised level of childhood leukemia near the Sellafield nuclear plant. Environ Health Perspect, 1991; 94: 5–7.CrossRefGoogle ScholarPubMed
Shu, X. O., Reaman, G. H., Lampkin, B., et al.Association of paternal diagnostic X-ray exposure with risk of infant leukemia. Investigators of the Children's Cancer Group. Cancer Epidemiol Biomarkers Prev, 1994; 3: 645–53.Google Scholar
McLaughlin, J. R., Clarke, E. A., Nishri, E. D., & Anderson, T. W.Childhood leukemia in the vicinity of Canadian nuclear facilities. Cancer Causes Control, 1993; 4: 51–8.CrossRefGoogle ScholarPubMed
Parker, L., Craft, A. W., Smith, J., et al.Geographical distribution of preconceptional radiation doses to fathers employed at the Sellafield nuclear installation, West Cumbria. BMJ, 1993; 307: 966–71.CrossRefGoogle ScholarPubMed
Henshaw, D. L., Eatough, J. P., & Richardson, R. B.Radon as a causative factor in induction of myeloid leukaemia and other cancers. Lancet, 1990; 335: 1008–12.CrossRefGoogle ScholarPubMed
Alexander, F. E., McKinney, P. A., & Cartwright, R. A.Radon and leukaemia. Lancet, 1990; 335: 1336–7.Google Scholar
Lubin, J. H., Linet, M. S., Boice, J. D. Jr., et al.Case-control study of childhood acute lymphoblastic leukemia and residential radon exposure. J Natl Cancer Inst, 1998; 90: 294–300.CrossRefGoogle ScholarPubMed
Steinbuch, M., Weinberg, C. R., Buckley, J. D., Robison, L. L., & Sandler, D. P.Indoor residential radon exposure and risk of childhood acute myeloid leukaemia. Br J Cancer, 1999; 81: 900–6.CrossRefGoogle ScholarPubMed
Kaletsch, U., Kaatsch, P., Meinert, R., et al.Childhood cancer and residential radon exposure – results of a population-based case-control study in Lower Saxony (Germany). Radiat Environ Biophys, 1999; 38: 211–5.CrossRefGoogle Scholar
UK Childhood Cancer Study Investigators. The United Kingdom Childhood Cancer Study of exposure to domestic sources of ionising radiation: 1: radon gas. Br J Cancer, 2002; 86: 1721–6.CrossRef
Axelson, O., Fredrikson, M., Akerblom, G., & Hardell, L.Leukemia in childhood and adolescence and exposure to ionizing radiation in homes built from uranium-containing alum shale concrete. Epidemiology, 2002; 13: 146–50.CrossRefGoogle ScholarPubMed
Watts, G. Power to confuse. BMJ, 2005; 330: 1293.
McBride, M. L., Gallagher, R. P., Theirault, G., et al.Power-frequency electric and magnetic fields and risk of childhood leukemia in Canada. Am J Epidemiol, 1999; 149: 831–42.CrossRefGoogle Scholar
Anonymous. Exposure to power-frequency magnetic fields and the risk of childhood cancer. UK Childhood Cancer Study Investigators. Lancet, 1999; 354: 1925–31.CrossRef
Soderberg, K. C., Naumburg, E., Anger, G., et al.Childhood leukemia and magnetic fields in infant incubators. Epidemiology, 2002; 13: 45–9.CrossRefGoogle ScholarPubMed
Ahlbom, A., Day, N., Feychting, M., et al.A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer, 2000; 83: 692–8.CrossRefGoogle ScholarPubMed
Greenland, S., Sheppard, A. R., Kaune, W. T., Poole, C., & Kelsh, M. A.A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology, 2000; 11: 624–34.CrossRefGoogle ScholarPubMed
Lowengart, R. A., Peters, J. M., Cicioni, C., et al.Childhood leukemia and parents' occupational and home exposures. J Natl Cancer Inst, 1987; 79: 39–46.Google ScholarPubMed
Shu, X. O., Gao, Y. T., Brinton, L. A., et al.A population-based case-control study of childhood leukemia in Shanghai. Cancer, 1988; 62: 635–44.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Buckley, J. D., Robison, L. L., Swotinsky, R., et al.Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Children's Cancer Study Group. Cancer Res, 1989; 49: 4030–7.Google Scholar
Leiss, J. K. & Savitz, D. A.Home pesticide use and childhood cancer: a case-control study. Am J Public Health, 1995; 85: 249–52.CrossRefGoogle ScholarPubMed
Zahm, S. H.Childhood leukemia and pesticides. Epidemiology, 1999; 10: 473–5.Google ScholarPubMed
Daniels, J. L., Olshan, A. F., & Savitz, D. A.Pesticides and childhood cancers. Environ Health Perspect, 1997; 105: 1068–77.CrossRefGoogle ScholarPubMed
Shu, X. O., Stewart, P., Wen, W. Q., et al.Parental occupational exposure to hydrocarbons and risk of acute lymphocytic leukemia in offspring. Cancer Epidemiol Biomarkers Prev, 1999; 8: 783–91.Google ScholarPubMed
Steensel-Moll, H. A., Valkenburg, H. A., Vandenbroucke, J. P., & Zanen, G. E. van.Are maternal fertility problems related to childhood leukaemia ?Int J Epidemiol, 1985; 14: 555–9.CrossRefGoogle ScholarPubMed
Gold, E. B., Diener, M. D., & Szklo, M.Parental occupations and cancer in children – a case-control study and review of the methodologic issues. J Occup Med, 1982; 24: 578–84.CrossRefGoogle ScholarPubMed
McKinney, P. A., Roberts, B. E., O'Brien, C., et al.Chronic myeloid leukaemia in Yorkshire: a case control study. Acta Haematol, 1990; 83: 35–8.CrossRefGoogle ScholarPubMed
Shaw, G., Lavey, R., Jackson, R., & Austin, D.Association of childhood leukemia with maternal age, birth order, and paternal occupation. A case-control study. Am J Epidemiol, 1984; 119: 788–95.CrossRefGoogle ScholarPubMed
Infante-Rivard, C., Mur, P., Armstrong, B., Alvarez-Dardet, C., & Boulmar, F.Acute lymphoblastic leukaemia among Spanish children and mothers' occupation: a case-control study. J Epidemiol Community Health, 1991; 45: 11–5.CrossRefGoogle ScholarPubMed
Schuz, J., Kaletsch, U., Meinert, R., Kaatsch, P., & Michaelis, J.Risk of childhood leukemia and parental self-reported occupational exposure to chemicals, dusts, and fumes: results from pooled analyses of German population-based case-control studies. Cancer Epidemiol Biomarkers Prev, 2000; 9: 835–8.Google ScholarPubMed
Lyons, R. A., Monaghen, S. P., Heaven, M., et al.Incidence of leukaemia and lymphoma in young people in the vicinity of the petrochemical plant at Baglan Bay, South Wales, 1974 to 1991. Occup Environ Med, 1995; 52: 225–8.CrossRefGoogle ScholarPubMed
Sans, S., Elliott, P., Kleinschmidt, I., et al.Cancer incidence and mortality near the Baglan Bay petrochemical works, South Wales. Occup Environ Med, 1995; 52: 217–24.CrossRefGoogle ScholarPubMed
Freedman, D. M., Stewart, P., Kleinerman, R. A., et al.Household solvent exposures and childhood acute lymphoblastic leukemia. Am J Public Health, 2001; 91: 564–7.Google ScholarPubMed
Pearson, R. L., Wachtel, H., & Ebi, K. L.Distance-weighted traffic density in proximity to a home is a risk factor for leukemia and other childhood cancers. J Air Waste Manag Assoc, 2000; 50: 175–80.CrossRefGoogle ScholarPubMed
Reynolds, P., Elkin, E., Scalf, R., Von Behren, J., & Neutra, R. R.A case-control pilot study of traffic exposures and early childhood leukemia using a geographic information system. Bioelectromagnetics, 2001; Suppl. 5: S58–68.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Reynolds, P., Von Behren, J., Gunier, R. B., et al.Traffic patterns and childhood cancer incidence rates in California, United States. Cancer Causes Control, 2002; 13: 665–73.CrossRefGoogle ScholarPubMed
Alexander, F., Cartwright, R., McKinney, P. A., & Ricketts, T. J.Investigation of spacial clustering of rare diseases: childhood malignancies in North Humberside. J Epidemiol Community Health, 1990; 44: 39–46.CrossRefGoogle ScholarPubMed
Wulff, M., Hogberg, U., & Sandstrom, A.Cancer incidence for children born in a smelting community. Acta Oncol, 1996; 35: 179–83.CrossRefGoogle Scholar
Feychting, M., Plato, N., Nise, G., & Ahlbom, A.Paternal occupational exposures and childhood cancer. Environ Health Perspect, 2001; 109: 193–6.CrossRefGoogle ScholarPubMed
Robison, L. L., Buckley, J. D., Daigle, A. E., et al.Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring. An epidemiologic investigation implicating marijuana (a report from the Children's Cancer Study Group). Cancer, 1989; 63: 1904–11.Google Scholar
Sarasua, S. & Savitz, D. A.Cured and broiled meat consumption in relation to childhood cancer: Denver, Colorado (United States). Cancer Causes Control, 1994; 5: 141–8.CrossRefGoogle Scholar
Thompson, J. R., Gerald, P. F., Willoughby, M. L., & Armstrong, B. K.Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet, 2001; 358: 1935–40.CrossRefGoogle ScholarPubMed
Peters, J. M., Preston-Martin, S., London, S. J., et al.Processed meats and risk of childhood leukemia (California, USA). Cancer Causes Control, 1994; 5: 195–202.CrossRefGoogle Scholar
Buckley, J. D., Buckley, C. M., Ruccione, K., et al.Epidemiological characteristics of childhood acute lymphocytic leukemia. Analysis by immunophenotype. The Children's Cancer Group. Leukemia, 1994; 8: 856–64.Google Scholar
Severson, R. K., Buckley, J. D., Woods, W. G., Benjamin, D., & Robison, L. L.Cigarette smoking and alcohol consumption by parents of children with acute myeloid leukemia: an analysis within morphological subgroups – a report from the Children's Cancer Group. Cancer Epidemiol Biomarkers Prev, 1993; 2: 433–9.Google Scholar
Duijn, C. M., Steensel-Moll, H. A., Coebergh, J. W., & Zanen, G. E. van.Risk factors for childhood acute non-lymphocytic leukemia: an association with maternal alcohol consumption during pregnancy ?Cancer Epidemiol Biomarkers Prev, 1994; 3: 457–60.Google ScholarPubMed
Shu, X. O., Ross, J. A., Pendergrass, T. W., et al.Parental alcohol consumption, cigarette smoking, and risk of infant leukemia: a Children's Cancer Group study. J Natl Cancer Inst, 1996; 88: 24–31.CrossRefGoogle Scholar
Sorahan, T., Lancashire, R., Prior, P., Peck, I., & Stewart, A.Childhood cancer and parental use of alcohol and tobacco. Ann Epidemiol, 1995; 5: 354–9.CrossRefGoogle ScholarPubMed
Stjernfeldt, M., Berglund, K., Lindsten, J., & Ludvigsson, J.Maternal smoking and irradiation during pregnancy as risk factors for child leukemia. Cancer Detect Prev, 1992; 16: 129–35.Google ScholarPubMed
Mucci, L. A., Granath, F., & Cnattingius, S.Maternal smoking and childhood leukemia and lymphoma risk among 1,440,542 Swedish children. Cancer Epidemiol Biomarkers Prev, 2004; 13: 1528–33.Google ScholarPubMed
John, E. M., Savitz, D. A., & Sandler, D. P.Prenatal exposure to parents' smoking and childhood cancer. Am J Epidemiol, 1991; 133: 123–32.CrossRefGoogle ScholarPubMed
Buckley, J. D., Hobbie, W. L., Ruccione, K., et al.Maternal smoking during pregnancy and the risk of childhood cancer [letter]. Lancet, 1986; 2: 519–20.Google Scholar
Pershagen, G., Ericson, A., & Otterblad-Olausson, P.Maternal smoking in pregnancy: does it increase the risk of childhood cancer ?Int J Epidemiol, 1992; 21: 1–5.CrossRefGoogle ScholarPubMed
McKinney, P. A. & Stiller, C.Maternal smoking during pregnancy and the risk of childhood leukaemia. Lancet, 1986; 2: 519.CrossRefGoogle Scholar
Li, F. P.Maternal smoking during pregnancy and the risk of childhood cancer. Lancet, 1986; 2: 520.Google Scholar
Ji, B. T., Shu, X. O., Linet, M. S., et al.Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J Natl Cancer Inst, 1997; 89: 238–44.CrossRefGoogle ScholarPubMed
Sorahan, T., Lancashire, R. J., Hulten, M. A., Peck, I., & Stewart, A. M.Childhood cancer and parental use of tobacco: deaths from 1953 to 1955. Br J Cancer, 1997; 75: 134–8.CrossRefGoogle ScholarPubMed
Brondum, J., Shu, X. O., Steinbuch, M., et al.Parental cigarette smoking and the risk of acute leukemia in children. Cancer, 1999; 85: 1380–8.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Sandler, D. P., Wilcox, A. J., & Everson, R. B.Cumulative effects of lifetime passive smoking on cancer risk. Lancet, 1985; 1: 312–5.CrossRefGoogle ScholarPubMed
Kaye, S. A., Robison, L. L., Smithson, W. A., et al.Maternal reproductive history and birth characteristics in childhood acute lymphoblastic leukemia. Cancer, 1991; 68: 1351–5.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Yeazel, M. W., Buckley, J. D., Woods, W. G., Ruccione, K., & Robison, L. L.History of maternal fetal loss and increased risk of childhood acute leukemia at an early age. A report from the Children's Cancer Group. Cancer, 1995; 75: 1718–27.3.0.CO;2-G>CrossRefGoogle Scholar
Gibson, R. W., Bross, I. D. J., & Graham, S.Leukemia in children exposed to multiple risk factors. N Engl J Med, 1968; 279: 906–9.CrossRefGoogle ScholarPubMed
Ross, J. A., Potter, J. D., Shu, X. O., et al.Evaluating the relationships among maternal reproductive history, birth characteristics, and infant leukemia: a report from the Children's Cancer Group. Ann Epidemiol, 1997; 7: 172–9.CrossRefGoogle ScholarPubMed
Westergaard, T., Andersen, P. K., Pedersen, J. B., et al.Birth characteristics, sibling patterns, and acute leukemia risk in childhood: a population-based cohort study. J Natl Cancer Inst, 1997; 89: 939–47.CrossRefGoogle ScholarPubMed
Hemminki, K., Kyyronen, P., & Vaittinen, P.Parental age as a risk factor of childhood leukemia and brain cancer in offspring. Epidemiology, 1999; 10: 271–5.CrossRefGoogle ScholarPubMed
Dockerty, J. D., Draper, G., Vincent, T., Rowan, S. D., & Bunch, K. J.Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int J Epidemiol, 2001; 30: 1428–37.CrossRefGoogle ScholarPubMed
Zack, M., Adami, H. O., & Ericson, A.Maternal and perinatal risk factors for childhood leukemia. Cancer Res, 1991; 51: 3696–701.Google ScholarPubMed
Hjalgrim, L. L., Rostgaard, K., Hjalgrim, H., et al.Birth weight and risk for childhood leukemia in Denmark, Sweden, Norway, and Iceland. J Natl Cancer Inst, 2004; 96: 1549–56CrossRefGoogle ScholarPubMed
Petridou, E., Skalkidou, A., Dessypris, N., et al.Endogenous risk factors for childhood leukemia in relation to the IGF system (Greece). The Childhood Haematologists-Oncologists Group. Cancer Causes Control, 2000; 11: 765–71.CrossRefGoogle ScholarPubMed
Lei, U., Wohlfahrt, J., Hjalgrim, H., et al.Neonatal level of thyroid-stimulating hormone and acute childhood leukemia. Int J Cancer, 2000; 88: 486–8.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Gale, K. B., Ford, A. M., Repp, R., et al.Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A, 1997; 94: 13 950–4.CrossRefGoogle ScholarPubMed
Pui, C. H., Ribeiro, R. C., Hancock, M. L., et al.Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med, 1991; 325: 1682–7.CrossRefGoogle ScholarPubMed
Broeker, P. L., Super, H. G., Thirman, M. J., et al.Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood, 1996; 87: 1912–22.Google ScholarPubMed
Wang, J. C.DNA topoisomerases. Annu Rev Biochem, 1996; 65: 635–92.CrossRefGoogle ScholarPubMed
Ross, J. A., Potter, J. D., Reaman, G. H., Pendergrass, T. W., & Robison, L. L.Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children's Cancer Group. Cancer Causes Control, 1996; 7: 581–90.CrossRefGoogle ScholarPubMed
Ross, J. A.Maternal diet and infant leukemia: a role for DNA topoisomerase II inhibitors ?Int J Cancer Suppl, 1998; 11: 26–8.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Strick, R., Strissel, P. L., Borgers, S., Smith, S. L., & Rowley, J. D.Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci U S A, 2000; 97: 4790–5.CrossRefGoogle ScholarPubMed
Alexander, F. E., Patheal, S. L., Biondi, A., et al.Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res, 2001; 61: 2542–6.Google ScholarPubMed
Ross, J. A., Potter, J. D., & Robison, L. L.Infant leukemia, topoisomerase II inhibitors, and the MLL gene. J Natl Cancer Inst, 1994; 86: 1678–80.CrossRefGoogle ScholarPubMed
Greave, M. F.Infant leukaemia biology, aetiology and treatment. Leukemia, 1996; 10: 372–7.Google Scholar
Kinlen, L. J.Epidemiological evidence for an infective basis in childhood leukaemia. Br J Cancer, 1995; 71: 1–5.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M.Immunisation and herd immunity. Lancet, 1990; 335: 641–5.CrossRefGoogle ScholarPubMed
Boutou, O., Guizard, A. V., Slama, R., Pottier, D., & Spira, A.Population mixing and leukaemia in young people around the La Hague nuclear waste reprocessing plant. Br J Cancer, 2002; 87: 740–5.CrossRefGoogle ScholarPubMed
Langford, I.Childhood leukaemia mortality and population change in England and Wales 1969–73. Soc Sci Med, 1991; 33: 435–40.CrossRefGoogle ScholarPubMed
Stiller, C. A. & Boyle, P. J.Effect of population mixing and socioeconomic status in England and Wales, 1979–85, on lymphoblastic leukaemia in children. BMJ, 1996; 313: 1297–300.CrossRefGoogle ScholarPubMed
Dickinson, H. O. & Parker, L.Quantifying the effect of population mixing on childhood leukaemia risk: the Seascale cluster. Br J Cancer, 1999; 81: 144–51.CrossRefGoogle ScholarPubMed
Koushik, A., King, W. D., & McLaughlin, J. R.An ecologic study of childhood leukemia and population mixing in Ontario, Canada. Cancer Causes Control, 2001; 12: 483–90.CrossRefGoogle ScholarPubMed
Dickinson, H. O., Hammal, D. M., Bithell, J. F., & Parker, L.Population mixing and childhood leukaemia and non-Hodgkin's lymphoma in census wards in England and Wales, 1966–87. Br J Cancer, 2002; 86: 1411–3.CrossRefGoogle ScholarPubMed
Parslow, R. C., Law, G. R., Feltbower, R., Kinsey, S. E., & McKinney, P. A.Population mixing, childhood leukaemia, CNS tumours and other childhood cancers in Yorkshire. Eur J Cancer, 2002; 38: 2033–40.CrossRefGoogle ScholarPubMed
Baccate, E. M.Social patterns of antibody to poliovirus. Lancet, 1983; 1: 778–83.Google Scholar
Dworsky, M., Yow, M., Stagno, S., Pass, R. F., & Alford, C.Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics, 1983; 72: 295–9.Google ScholarPubMed
Parker, L.Breast-feeding and cancer prevention. Eur J Cancer, 2001; 37: 155–8.CrossRefGoogle ScholarPubMed
Ma, X., Buffler, P. A., Selvin, S., et al.Daycare attendance and risk of childhood acute lymphoblastic leukaemia. Br J Cancer, 2002; 86: 1419–24.CrossRefGoogle ScholarPubMed
Perrillat, F., Clavel, J., Auclerc, M. F., et al.Day-care, early common infections and childhood acute leukaemia: a multicentre French case-control study. Br J Cancer, 2002; 86: 1064–9.CrossRefGoogle ScholarPubMed
Gilham, C., Peto, J., Simpson, J.et at.Day care in infancy and risk of childhood acute lymphoblastic leukaemia: findings from UK case-contol study. BMJ, 2005; 330: 1294.CrossRefGoogle Scholar
Rosenbaum, P. F., Buck, G. M., & Brecher, M. L.Early child-care and preschool experiences and the risk of childhood acute lymphoblastic leukemia. Am J Epidemiol, 2000; 152: 1136–44.CrossRefGoogle ScholarPubMed
Neglia, J. P., Linet, M. S., Shu, X. O., et al.Patterns of infection and day care utilization and risk of childhood acute lymphoblastic leukaemia. Br J Cancer, 2000; 82: 234–40.CrossRefGoogle ScholarPubMed
Gahrton, G., Wahren, B., Killander, D., & Foley, G. E.Epstein–Barr and other herpes virus antibodies in children with acute leukemia. Int J Cancer, 1971; 8: 242–9.CrossRefGoogle ScholarPubMed
Groves, F. D., Sinha, D., Kayhty, H., Goedert, J. J., & Levine, P. H.Haemophilus influenzae type b serology in childhood leukaemia: a case-control study. Br J Cancer, 2001; 85: 337–40.CrossRefGoogle ScholarPubMed
Heegaard, E. D., Jensen, L., Hornsleth, A., & Schmiegelow, K.The role of parvovirus B19 infection in childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol, 1999; 16: 329–34.CrossRefGoogle ScholarPubMed
MacKenzie, J., Gallagher, A., Clayton, R. A., et al.Screening for herpesvirus genomes in common acute lymphoblastic leukemia. Leukemia, 2001; 15: 415–21.CrossRefGoogle ScholarPubMed
MacKenzie, J., Perry, J., Ford, A. M., Jarrett, R. F., & Greaves, M.JC and BK virus sequences are not detectable in leukaemic samples from children with common acute lymphoblastic leukaemia. Br J Cancer, 1999; 81: 898–9.CrossRefGoogle Scholar
Salonen, M. J., Siimes, M. A., Salonen, E. M., Vaheri, A., & Koskiniemi, M.Antibody status to HHV-6 in children with leukaemia. Leukemia, 2002; 16: 716–9.CrossRefGoogle ScholarPubMed
Dockerty, J. D., Skegg, D. C., Elwood, J. M., et al.Infections, vaccinations, and the risk of childhood leukaemia. Br J Cancer, 1999; 80: 1483–9.CrossRefGoogle ScholarPubMed
McKinney, P. A., Juszczak, E., Findlay, E., Smith, K., & Thomson, C. S.Pre- and perinatal risk factors for childhood leukaemia and other malignancies: a Scottish case control study. Br J Cancer, 1999; 80: 1844–51.CrossRefGoogle ScholarPubMed
Schuz, J., Kaatsch, P., Kaletsch, U., Meinert, R., & Michaelis, J.Association of childhood cancer with factors related to pregnancy and birth. Int J Epidemiol, 1999; 28: 631–9.CrossRefGoogle ScholarPubMed
McKinney, P. A., Cartwright, R. A., Saiu, J. M., et al.The inter-regional epidemiological study of childhood cancer (IRESCC): a case control study of aetiological factors in leukaemia and lymphoma. Arch Dis Child, 1987; 62: 279–87.CrossRefGoogle ScholarPubMed
Naumburg, E., Bellocco, R., Cnattingius, S., Jonzon, A., & Ekbom, A.Perinatal exposure to infection and risk of childhood leukemia. Med Pediatr Oncol, 2002; 38: 391–7.CrossRefGoogle ScholarPubMed
Chan, L. C., Lam, T. H., Li, C. K., et al.Is the timing of exposure to infection a major determinant of acute lymphoblastic leukaemia in Hong Kong ?Paediatr Perinat Epidemiol, 2002; 16: 154–65.CrossRefGoogle Scholar
Greaves, M. F. & Alexander, F. E.An infectious etiology for common acute lymphoblastic leukemia in childhood ?Leukemia, 1993; 7: 349–60.Google ScholarPubMed
Taylor, G. M. & Birch, J. M. The hereditary basis of human leukemia. In , E. S. Henderson, , T. A. Lister, & , M. F. Greaves, eds., Leukemia (Philadelphia, PA: W. B. Saunders, 1996), pp. 210–45.Google Scholar
Petridou, E., Kassimos, D., Kalmanti, M., et al.Age of exposure to infections and risk of childhood leukaemia. BMJ, 1993; 307: 774.CrossRefGoogle ScholarPubMed
Tasaka, T., Lee, S., Spira, S., et al.Microsatellite instability during the progression of acute myelocytic leukaemia. Br J Haematol, 1997; 98: 219–21.CrossRefGoogle ScholarPubMed
Takeuchi, S., Seriu, T., Tasaka, T., et al.Microsatellite instability and other molecular abnormalities in childhood acute lymphoblastic leukaemia. Br J Haematol, 1997; 98: 134–9.CrossRefGoogle ScholarPubMed
Baccichet, A., Benachenhou, N., Couture, F., Leclerc, J. M., & Sinnett, D.Microsatellite instability in childhood T cell acute lymphoblastic leukemia. Leukemia, 1997; 11: 797–802.CrossRefGoogle ScholarPubMed
Finette, B. A., Poseno, T., & Albertini, R. J.V(D)J recombinase-mediated HPRT mutations in peripheral blood lymphocytes of normal children. Cancer Res, 1996; 56: 1405–12.Google Scholar
Dorak, M. T., Lawson, T., Machulla, H. K., et al.Unravelling an HLA-DR association in childhood acute lymphoblastic leukemia. Blood, 1999; 94: 694–700.Google ScholarPubMed
Taylor, G. M., Robinson, M. D., Binchy, A., et al.Preliminary evidence of an association between HLA-DPB1*0201 and childhood common acute lymphoblastic leukaemia supports an infectious aetiology. Leukemia, 1995; 9: 440–3.Google ScholarPubMed
Rothman, N., Wacholder, S., Caporaso, N. E., et al.The use of common genetic polymorphisms to enhance the epidemiologic study of environmental carcinogens. Biochim Biophys Acta, 2001; 1471: C1–10.Google ScholarPubMed
Nakachi, K., Imai, K., Hayashi, S., & Kawajiri, K.Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res, 1993; 53: 2994–9.Google Scholar
Hirvonen, A., Nylund, L., Kociba, P., Husgafvel-Pursiainen, K., & Vainio, H.Modulation of urinary mutagenicity by genetically determined carcinogen metabolism in smokers. Carcinogenesis, 1994; 15: 813–5.CrossRefGoogle ScholarPubMed
Chen, H., Sandler, D. P., Taylor, J. A., et al.Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet, 1996; 347: 295–7.CrossRefGoogle ScholarPubMed
Davies, S. M., Robison, L. L., Buckley, J. D., et al.Glutathione S-transferase polymorphisms in children with myeloid leukemia: a Children's Cancer Group study. Cancer Epidemiol Biomarkers Prev, 2000; 9: 563–6.Google ScholarPubMed
Chen, C. L., Liu, O., Pui, C. H., et al.Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood, 1997; 89: 1701–7.Google ScholarPubMed
Davies, S. M., Bhatia, S., Ross, J. A., et al.Glutathione S-transferase genotypes, genetic susceptibility, and outcome of therapy in childhood acute lymphoblastic leukemia. Blood, 2002; 100: 67–71.CrossRefGoogle ScholarPubMed
Blumer, J. L., Dunn, R., Esterhay, M. D., Yamashita, T. S., & Gross, S.Lymphocyte aromatic hydrocarbon responsiveness in acute leukemia of childhood. Blood, 1981; 58: 1081–8.Google ScholarPubMed
9
Cited by