Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T23:27:03.478Z Has data issue: false hasContentIssue false

29 - Transfusion and Iron Chelation Therapy in Thalassemia and Sickle Cell Disease

from SECTION EIGHT - NEW APPROACHES TO THE TREATMENT OF HEMOGLOBINOPATHIES AND THALASSEMIA

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

TRANSFUSION

Thalassemia Major (Cooley Anemia)

Eighty years ago, Dr. Thomas Cooley and his colleagues at the Children's Hospital of Michigan administered blood transfusions to children with a newly recognized clinical entity whose features included severe anemia, splenomegaly, and peculiar facies. Five years later, Cooley's name had become indelibly associated with the disease, and transfusions were administered along with ferrous carbonate, ultraviolet rays, and extract of pituitary gland. Not surprisingly, given the state of crossmatching at the time, the response to transfusion was poor. Another 30 years elapsed before improvements in blood banking and recognition of the benefits of a higher hemoglobin level came together to initiate the era of modern transfusion therapy for thalassemia major.

Transfusion Programs

In 1963, the results of an evaluation of 35 children with thalassemia major, aged 12 years or younger, whose pretransfusion hemoglobin levels fell into three categories – 4.0–5.9 g/dL, 6.0–7.9 g/dL, or 8.0–9.9 g/dL – were described. Children in the highest hemoglobin group had better linear growth, less enlargement of the liver and spleen, less facial and skull bony abnormalities, fewer fractures, and less cardiomegaly than children in the two lowest hemoglobin groups. Two patients who received regular red cell transfusions to maintain their hemoglobin level above 10 g/dL at all times were also reported. More than 40 years later, this regimen – hypertransfusion – remains the standard of care for the treatment of thalassemia major. General guidelines for hypertransfusion therapy are presented in Tables 29.1 and 2.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 689 - 744
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cooley, T, Witwer, E, Lee, P. Anemia in children with splenomegaly and peculiar changes in the bones. Am J Dis Child. 1927;34:347–363.CrossRefGoogle Scholar
Whipple, GH, Bradford, WL. Racial or familial anemia of children. Am J Dis Child. 1932;44:336–365.CrossRefGoogle Scholar
Wolman, IJ. Transfusion therapy in Cooley's anemia: growth and health as related to long-range hemoglobin levels. A progress report. Ann NY Acad Sci. 1964;119:736–747.CrossRefGoogle Scholar
Schorr, JB, Radel, E. Transfusion therapy and its complications in patients with Cooley's anemia. Ann NY Acad Sci. 1964;119:703–708.CrossRefGoogle ScholarPubMed
Beard, MEJ, Necheles, TF, Allen, DM. Clinical experience with intensive transfusion therapy in Cooley's anemia. Ann NY Acad Sci. 1969;165:415–422.CrossRefGoogle ScholarPubMed
Piomelli, S, Danoff, SJ, Becker, MH, Lipera, MJ, Travis, SF. Prevention of bone malformations and cardiomegaly in Cooley's anemia by early hypertransfusion regimens. Ann NY Acad Sci. 1969;165:427–436.CrossRefGoogle Scholar
Wolman, IJ, Ortolani, M. Some clinical features of Cooley's anemia patients as related to transfusion schedules. Ann NY Acad Sci. 1969;165:407–414.CrossRefGoogle ScholarPubMed
Cavill, I, Ricketts, C, Jacobs, A, Letsky, E. Erythropoiesis and the effect of transfusion in homozygous ß-thalassemia. N Engl J Med. 1978;298(14):776–778.CrossRefGoogle Scholar
Cazzola, M, Stefano, P, Ponchio, L, et al. Relationship between transfusion regimen and suppression of erythropoiesis in beta-thalassaemia major. Br J Haematol. 1995;89(3):473–478.CrossRefGoogle ScholarPubMed
Propper, RD, Button, LN, Nathan, DG. New approaches to the transfusion management of thalassemia. Blood. 1980;55(1):55–60.Google ScholarPubMed
Pootrakul, P, Hungsprenges, S, Fucharoen, S, et al. Relation between erythropoiesis and bone metabolism in thalassemia. N Engl J Med. 1981;304:1470–1473.CrossRefGoogle ScholarPubMed
Gabutti, V, Piga, A, Fortina, P, Miniero, R, Nicola, P. Correlation between transfusion requirement, blood volume and haemoglobin level in homozygous beta-thalassaemia. Acta Haematol. 1980;64(2):103–108.CrossRefGoogle ScholarPubMed
Gabutti, V, Piga, A, Nicola, P, et al. Haemoglobin levels and blood requirement in thalassaemia. Arch Dis Child. 1982;57(2):156–158.CrossRefGoogle ScholarPubMed
Propper, RD, Button, LN, Nathan, DG. New approaches to the transfusion management of thalassemia. Blood. 1980;55(1):55–60.Google ScholarPubMed
Brunengo, MA, Girot, R[Transfusion requirements and mean annual hemoglobin level in thalassemia major]. Nouv Rev Fr Hematol 1986;28(5):309–313.Google Scholar
Rebulla, P, Modell, B. Transfusion requirements and effects in patients with thalassaemia major. Cooleycare Programme. Lancet. 1991;337(8736):277–280.CrossRefGoogle ScholarPubMed
Cazzola, M, Borgna-Pignatti, C, Locatelli, F, Ponchio, L, Beguin, Y, Stefano, P. A moderate transfusion regimen may reduce iron loading in beta-thalassemia major without producing excessive expansion of erythropoiesis. Transfusion. 1997;37(2):135–140.CrossRefGoogle ScholarPubMed
Sprogoe-Jakobsen, U, Saetre, AM, Georgsen, J. Preparation of white cell-reduced red cells by filtration: comparison of a beside filter and two blood bank filter systems. Transfusion. 1995;35:421–426.CrossRefGoogle Scholar
Buchholz, DH, AuBuchon, JP, Snyder, EL, et al. Removal of yersinia enterocolitica from AS-1 red cells. Transfusion. 1992;32:667–672.CrossRefGoogle ScholarPubMed
Gregori, L, McCombie, N, Palmer, D, et al. Effectiveness of leucoreduction for removal of infectivity of transmissible spongiform encephalopathies from blood. Lancet. 2004;364(9433):529–531.CrossRefGoogle ScholarPubMed
Hogman, CF. Preparation and preservation of red cells. Vox Sanguinis. 1998;74 (Suppl 2):177–187.CrossRefGoogle ScholarPubMed
Mollison, PL, Engelfriet, CP, Contreras, M. Blood Transfusion in Clinical Medicine, 10th ed. Oxford: Blackwell Science; 1997.Google Scholar
Levin, TL, Sheth, SS, Hurlet, A, et al. MR marrow signs of iron overload in transfusion-dependent patients with sickle cell disease. Pediatr Radiol. 1995;25(8):614–619.CrossRefGoogle ScholarPubMed
Rebulla, P, Modell, B. Transfusion requirements and effects in patients with thalassaemia major. Lancet. 1991;337:277–280.CrossRefGoogle ScholarPubMed
Kumar, RM, Khuranna, A. Pregnancy outcome in women with beta-thalassemia major and HIV infection. Eur J Obstet Gynecol Reprod Biol. 1998;77(2):163–169.CrossRefGoogle ScholarPubMed
Skordis, N, Christou, S, Koliou, M, Pavlides, N, Angastiniotis, M. Fertility in female patients with thalassemia. J Pediatr Endocrinol Metab. 1998;11 (Suppl 3):935–943.Google ScholarPubMed
Butensky, E, Pakbaz, Z, Foote, D, Walters, MC, Vichinsky, EP, Harmatz, P. Treatment of hepatitis C virus infection in thalassemia. Ann NY Acad Sci. 2005;1054:290–299.CrossRefGoogle ScholarPubMed
Telfer, PT, Garson, JA, Whitby, K, et al. Combination therapy with interferon alpha and ribavirin for chronic hepatitis C virus infection in thalassemic patients. Br J Haematol. 1997;98:850–855.CrossRefGoogle Scholar
Borgna-Pignatti, C, Cappellini, MD, Stefano, P, et al. Cardiac morbidity and mortality in deferoxamine- or deferiprone-treated patients with thalassemia major. Blood. 2006;107(9):3733–3737.CrossRefGoogle ScholarPubMed
Piomelli, S, Seaman, C, Reibman, J, et al. Separation of younger red cells with improved survival in vivo: an approach to chronic transfusion therapy. Proc Natl Acad Sci USA. 1978;75(7):3474–3478.CrossRefGoogle ScholarPubMed
Bracey, AW, Klein, HG, Chambers, S, Corash, L. Ex vivo selective isolation of young red blood cells using the IBM-2991 cell washer. Blood. 1983;61(6):1068–1071.Google ScholarPubMed
Corash, L, Klein, H, Deisseroth, A, et al. Selective isolation of young erythrocytes for transfusion support of thalassemia major patients. Blood. 1981;57(3):599–606.Google ScholarPubMed
Graziano, JH, Piomelli, S, Seaman, C, et al. A simple technique for preparation of young red cells for transfusion from ordinary blood units. Blood. 1982;59:865–868.Google ScholarPubMed
Klein, HG. Transfusions with young erythrocytes (neocytes) in sickle cell anemia. Am J Pediatr Hematol Oncol. 1982;4(2):162–165.Google Scholar
Cohen, AR, Schmidt, JM, Martin, MB, Barnsley, W, Schwartz, E. Clinical trial of young red cell transfusions. J Pediatr. 1984;104(6):865–868.CrossRefGoogle ScholarPubMed
Collins, AF, Goncalves-Dias, C, Haddad, S, et al. Comparison of a transfusion preparation of newly formed red cells and standard washed red cell transfusions in patients with homozygous beta-thalassemia. Transfusion. 1994;34(6):517–520.CrossRefGoogle ScholarPubMed
Marcus, RE, Wonke, B, Bantock, HM, et al. A prospective trial of young red cells in 48 patients with transfusion-dependent thalassaemia. Br J Haematol. 1985;60:153–159.CrossRefGoogle ScholarPubMed
Spanos, T, Ladis, V, Palamidou, F, et al. The impact of neocyte transfusion in the management of thalassaemia. Vox Sang. 1996;70(4):217–233.CrossRefGoogle ScholarPubMed
Berdoukas, VA, Kwan, YL, Sansotta, ML. A study on the value of red cell exchange transfusion in transfusion dependent anaemias. Clin Lab Haematol. 1986;8:209–20.CrossRefGoogle ScholarPubMed
Berdoukas, VA, Moore, R. Automated red cell exchange transfusions in transfusion dependent anemias. In: 5th Annual Meeting of the Cooleycare Group, Athens, Greece; 1990.
Friedman, DF, Jawad, AF, Martin, MB, Horiuchi, K, Mitchell, CF, Cohen, AR. Erythrocytapheresis to reduce iron loading in thalassemia. Blood. 2003;102(11):121a.Google Scholar
Castilho, L, Rios, M, Bianco, C, et al. DNA-based typing of blood groups for the management of multiply-transfused sickle cell disease patients. Transfusion. 2002;42(2):232–238.CrossRefGoogle ScholarPubMed
Afenyi-Annan, A, Willis, MS, Konrad, TR, Lottenberg, R. Blood bank management of sickle cell patients at comprehensive sickle cell centers. Transfusion. 2007;47(11):2089–2097.CrossRefGoogle ScholarPubMed
Osby, M, Shulman, IA. Phenotype matching of donor red blood cell units for nonalloimmunized sickle cell disease patients: a survey of 1182 North American laboratories. Arch Pathol Lab Med. 2005;129(2):190–193.Google ScholarPubMed
Castro, O, Sandler, SG, Houston-Yu, P, Rana, S. Predicting the effect of transfusing only phenotype-matched RBCs to patients with sickle cell disease: theoretical and practical implications. Transfusion. 2002;42(6):684–690.CrossRefGoogle ScholarPubMed
Vichinsky, EP, Luban, NL, Wright, E, et al. Prospective RBC phenotype matching in a stroke-prevention trial in sickle cell anemia: a multicenter transfusion trial. Transfusion. 2001;41(9):1086–1092.CrossRefGoogle Scholar
Cox, JV, Steane, E, Cunningham, G, Frenkel, EP. Risk of alloimmunization and delayed hemolytic transfusion reactions in patients with sickle cell disease. Arch Intern Med. 1988;148(11):2485–2489.CrossRefGoogle ScholarPubMed
Orlina, AR, Unger, PJ, Koshy, M. Post-transfusion alloimmunization in patients with sickle cell disease. Am J Hematol. 1978;5:101–106.CrossRefGoogle ScholarPubMed
Vichinsky, EP, Earles, A, Johnson, RA, Hoag, MS, Williams, A, Lubin, B. Alloimmunization in sickle cell anemia and transfusion of racially unmatched blood. N Engl J Med. 1990;322(23):1617–1621.CrossRefGoogle ScholarPubMed
Ambruso, DR, Githens, JH, Alcorn, R, et al. Experience with donors matched for minor blood group antigens in patients with sickle cell anemia who are receiving chronic transfusion therapy. Transfusion. 1987;27:94–98.CrossRefGoogle ScholarPubMed
Luban, NL. Variability in rates of alloimmunization in different groups of children with sickle cell disease: effect of ethnic background. Am J Pediatr Hematol Oncol. 1989;11(3):314–319.Google ScholarPubMed
Orlina, AR, Sosler, SD, Koshy, M. Problems of chronic transfusion in sickle cell disease. J Clin Apheresis. 1991;6:234–240.CrossRefGoogle ScholarPubMed
Sosler, SD, Jilly, BJ, Saporito, C, Koshy, M. A simple, practical model for reducing alloimmunization in patients with sickle cell disease. Am J Hematol. 1993;43:103–106.CrossRefGoogle ScholarPubMed
Sesok-Pizzini, DA, Friedman, DF, Smith-Whitley, K, Nance, SJ. Transfusion support of patients with sickle cell disease at the Children's Hospital of Philadelphia. Immunohematology. 2006;22(3):121–125.Google ScholarPubMed
Isaak, EJ, LeChien, B, Lindsey, T, Debaun, MR. The Charles Drew program in Missouri: a description of a partnership among a blood center and several hospitals to address the care of patients with sickle cell disease. Immunohematology. 2006;22(3):112–116.Google ScholarPubMed
Jan, K, Usami, S, Smith, JA. Effects of transfusion on rheological properties of blood in sickle cell anemia. Transfusion. 1982;22:17–20.CrossRefGoogle ScholarPubMed
Schmalzer, EA, Lee, JO, Brown, AK, Usami, S, Chien, S. Viscosity of mixtures of sickle and normal red cells at varying hematocrit levels. Implications for transfusion. Transfusion. 1987;27:228–233.CrossRefGoogle ScholarPubMed
Adams, DM, Ware, RE, Schultz, WH, Ross, AK, Oldham, KT, Kinney, TR. Successful surgical outcome in children with sickle hemoglobinopathies: the Duke University experience. J Pediatr Surg. 1998;33(3):428–432.CrossRefGoogle ScholarPubMed
Pegelow, CH, Adams, RJ, McKie, V, et al. Risk of recurrent stroke in patients with sickle cell disease treated with erythrocyte transfusions. J Pediatr. 1995;126:896–899.CrossRefGoogle ScholarPubMed
Cohen, AR, Martin, MB, Silber, JH, Kim, HC, Ohene-Frempong, K, Schwartz, E. A modified transfusion program for prevention of stroke in sickle cell disease. Blood. 1992;79(7):1657–1661.Google ScholarPubMed
Janes, SL, Pocock, M, Bishop, E, Bevan, DH. Automated red cell exchange in sickle cell disease. Br J Haematol. 1997;97:256–258.CrossRefGoogle ScholarPubMed
Klein, HG, Garner, RJ, Miller, DM, Rosen, SL, Statham, NJ, Winslow, RM. Automated partial exchange transfusion in sickle cell anemia. Transfusion. 1980;20:578–584.CrossRefGoogle ScholarPubMed
Adams, DM, Schultz, WH, Ware, RE, Kinney, TR. Erythrocytapheresis can reduce iron overload and reduce the need for chelation therapy in chronically transfused pediatric patients. J Pediatr Hematol Oncol. 1996;18:46–50.CrossRefGoogle ScholarPubMed
Hilliard, LM, Williams, BF, Lounsbury, AE, Howard, TH. Erythrocytapheresis limits iron accumulation in chronically transfused sickle cell patients. Am J Hematol. 1998;59:28–35.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Kim, HC, Dugan, NP, Silber, JH, et al. Erythrocytapheresis therapy to reduce iron overload in chronically transfused patients with sickle cell disease. Blood. 1994;83:1136–1142.Google ScholarPubMed
Smith-Whitley, K, Zhao, H, Hodinka, RL, et al. Epidemiology of human parvovirus B19 in children with sickle cell disease. Blood. 2004;103(2):422–427.CrossRefGoogle ScholarPubMed
Wierenga, KJ, Serjeant, BE, Serjeant, GR. Cerebrovascular complications and parvovirus infection in homozygous sickle cell disease. J Pediatr. 2001;139(3):438–442.CrossRefGoogle ScholarPubMed
Hulbert, ML, Scothorn, DJ, Panepinto, JA, et al. Exchange blood transfusion compared with simple transfusion for first overt stroke is associated with a lower risk of subsequent stroke: a retrospective cohort study of 137 children with sickle cell anemia. J Pediatr. 2006;149(5):710–712.CrossRefGoogle ScholarPubMed
Vichinsky, EP, Neumayr, LD, Earles, AN, et al. Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group. N Engl J Med. 2000;342(25):1855–1865.CrossRefGoogle ScholarPubMed
Davies, SC, Luce, PJ, Win, AA, Riordan, JF, Brozovic, M. Acute chest syndrome in sickle-cell disease. Lancet. 1984;1(8367):36–38.CrossRefGoogle ScholarPubMed
Emre, U, Miller, ST, Gutierez, M, Steiner, P, Rao, SP, Rao, M. Effect of transfusion in acute chest syndrome of sickle cell disease. J Pediatr. 1995;127(6):901–904.CrossRefGoogle ScholarPubMed
Kleinman, S, Thompson-Breton, R, Breen, D, Hurvitz, C, Goldfinger, D. Exchange red blood cell pheresis in a pediatric patient with severe complications of sickle cell anemia. Transfusion. 1981;21(4):443–446.CrossRefGoogle Scholar
Mallouh, AA, Asha, A. Beneficial effect of blood transfusion in children with sickle cell chest syndrome. Am J Dis Child. 1988;142(2):178–182.Google ScholarPubMed
Wayne, AS, Kevy, SV, Nathan, DG. Transfusion management of sickle cell disease. Blood. 1993;81(5):1109–1123.Google ScholarPubMed
Styles, , Aarsman, AJ, Vichinsky, EP, Kuypers, FA. Secretory phospholipase A(2) predicts impending acute chest syndrome in sickle cell disease. Blood. 2000;96(9):3276–3278.Google ScholarPubMed
Styles, , Abboud, M, Larkin, S, Lo, M, Kuypers, FA. Transfusion prevents acute chest syndrome predicted by elevated secretory phospholipase A2. Br J Haematol. 2007;136(2):343–344.CrossRefGoogle ScholarPubMed
Bhattacharyya, N, Wayne, AS, Kevy, SV, Shamberger, RC. Perioperative management for cholecystectomy in sickle cell disease. J Pediatr Surg. 1993;28:72–75.CrossRefGoogle ScholarPubMed
Bischoff, RJ, Williamson, A, Dalali, MJ, Rice, JC, Kerstein, MD. Assessment of the use of transfusion therapy perioperatively in patients with sickle cell hemoglobinopathies. Ann Surg. 1988;207:434–438.CrossRefGoogle ScholarPubMed
Coker, NJ, Milner, PF. Elective surgery in patients with sickle cell anemia. Arch Otolaryngol. 1982;108:574–576.CrossRefGoogle ScholarPubMed
Derkay, CS, Bray, G, Milmoe, GJ, Grundfast, KM. Adenotonsillectomy in children with sickle cell disease. South Med J. 1991;84:205–208.CrossRefGoogle ScholarPubMed
Fullerton, MW, Philippart, AI, Lusher, JM. Preoperative exchange transfusion in sickle cell disease. J Pediatr Surg. 1981;16:297–300.CrossRefGoogle Scholar
Griffin, TC, Buchanan, GR. Elective surgery in children with sickle cell disease without preoperative blood transfusion. J Pediatr Surg. 1993;28:681–685.CrossRefGoogle ScholarPubMed
Halvorson, DJ, McKie, V, McKie, K, Ashmore, PE, Porubsky, ES. Sickle cell disease and tonsillectomy. Preoperative management and postoperative complications. Arch Otolaryngol Head Neck Surg. 1997;123(7):689–692.CrossRefGoogle ScholarPubMed
Holzmann, L, Finn, H, Lichtman, HC, Harmel, MH. Anesthesia in patients with sickle cell disease: A review of 112 cases. Anesth Analg. 1969;48:566–572.CrossRefGoogle ScholarPubMed
Homi, J. General anaesthesia in sickle-cell disease. Br Med J. 1979;2(6192):739.CrossRefGoogle ScholarPubMed
Janik, J, Seeler, RA. Perioperative management of children with sickle hemoglobinopaty. J Pediatr Surg. 1980;15:117–120.CrossRefGoogle Scholar
Lanzkowsky, P, Shende, A, Karayalcin, G, Kim, YJ, Aballi, AJ. Partial exchange transfusion in sickle cell anemia. Use in children with serious complications. Am J Dis Child. 1978;32(12):1206–1208.CrossRefGoogle Scholar
Morrison, JC, Whybrew, WD, Bucovaz, ET. Use of partial exchange transfusion perioperatively in patients with sickle hemoglobinopathies. Am J Obstet Gynecol. 1978;132:59–63.CrossRefGoogle Scholar
Fu, T, Corrigan, NJ, Quinn, CT, Rogers, ZR, Buchanan, GR. Minor elective surgical procedures using general anesthesia in children with sickle cell anemia without pre-operative blood transfusion. Pediatr Blood Cancer. 2005;45(1):43–47.CrossRefGoogle ScholarPubMed
Oduro, A, Searle, JF. Anaesthesia in sickle cell states: a please for simplicity. Br J Med. 1972;4:596–598.CrossRefGoogle Scholar
Serjeant, GR. Chronic transfusion programmes in sickle cell disease: problem or panacea?Br J Haematol. 1997;97:253–255.CrossRefGoogle ScholarPubMed
Leff, DR, Kaura, T, Agarwal, T, Davies, SC, Howard, J, Chang, AC. A nontransfusional perioperative management regimen for patients with sickle cell disease undergoing laparoscopic cholecystectomy. Surg Endosc. 2007;21(7):1117–1121.CrossRefGoogle ScholarPubMed
Vichinsky, EP, Haberkern, CM, Neumayr, L, et al. A comparison of conservative and aggressive transfusion regimens in the perioperative management of sickle cell disease. The Preoperative Transfusion in Sickle Cell Disease Study Group. N Engl J Med. 1995;333(4):206–213.CrossRefGoogle ScholarPubMed
Haberkern, CM, Neumayr, LD, Orringer, EP, et al. Cholecystectomy in sickle cell anemia patients: Perioperative outcome of 364 cases from the National Preoperative Transfusion Study. Blood. 1997;89(5):1533–1542.Google ScholarPubMed
Koshy, M, Weiner, SJ, Miller, ST, et al. Surgery and anesthesia in sickle cell disease. Cooperative study of sickle cell diseases. Blood. 1995;86(10):3676–3684.Google ScholarPubMed
Neumayr, L, Koshy, M, Haberkern, C, et al. Surgery in patients with hemoglobin SC disease. Preoperative Transfusion in Sickle Cell Disease Study Group. Am J Hematol. 1998;57(2):101–108.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Buck, J, Casbard, A, Llewelyn, C, Johnson, T, Davies, S, Williamson, L. Preoperative transfusion in sickle cell disease: a survey of practice in England. Eur J Haematol. 2005;75(1):14–21.CrossRefGoogle ScholarPubMed
Brody, JI, Goldsmith, MH, Park, SK, Soltys, HD. Symptomatic crises of sickle cell anemia treated by limited exchange transfusion. Ann Intern Med. 1970;72:327–330.CrossRefGoogle ScholarPubMed
Hassell, KL, Eckman JR, Lane, PA. Acute multi-organ failure syndrome: a potentially catastrophic complication of severe sickle cell pain episodes. Am J Med. 1994;96:155–162.CrossRefGoogle ScholarPubMed
Baron, M, Leiter, E. The management of priapism in sickle cell anemia. J Urol. 1978;119:610–611.CrossRefGoogle ScholarPubMed
Hamre, MR, Harmaon, EP, Kirkpatrick, DV. Priapism as a complication of sickle cell disease. J Urol. 1991;145:1–5.CrossRefGoogle ScholarPubMed
Kinney, TR, Harris, MB, Russell, MO. Priapism in association with sickle hemoglobinopathies in children. J Pediatr. 1975;86:241–242.CrossRefGoogle ScholarPubMed
McCarthy, LJ, Vattuone, J, Weidner, J, et al. Do automated red cell exchanges relieve priapism in patients with sickle cell anemia? Ther Apher 2000;4(3):256–258.CrossRef
Miller, ST, Rao, SP, Dunn, EK, Glassberg, KI. Priapism in children with sickle cell disease. J Urol. 1995;154:844–847.CrossRefGoogle ScholarPubMed
Noe, HN, Wilimas, J, Jerkins, GR. Surgical management of priapism in children with sickle cell anemia. J Urol. 1981;126:770–771.CrossRefGoogle ScholarPubMed
Rifkind, S, Waisman, J, Thompson, R, Goldfinger, D. RBC exchange pheresis for priapism in sickle cell disease. JAMA. 1979;242:2317–2318.CrossRefGoogle ScholarPubMed
Seeler, RA. Intensive transfusion therapy for priapism in boys with sickle cell anemia. J Urol. 1973;110:360–361.CrossRefGoogle ScholarPubMed
Tarry, WF, Duckett, JW, Snyder, HM. Urological complications of sickle cell disease in a pediatric population. J Urol. 1987;138:592–594.CrossRefGoogle Scholar
Adeyoju, AB, Olujohungbe, AB, Morris, J, et al. Priapism in sickle-cell disease; incidence, risk factors and complications – an international multicentre study. Br J Urol Int. 2002;90(9):898–902.CrossRefGoogle ScholarPubMed
Rackoff, WR, Ohene-Frempong, K, Month, S. Neurological events after partial exchange transfusion for priapism in sickle cell disease. J Pediatr. 1992;120:882–885.CrossRefGoogle Scholar
Royal, JE, Seeler, RA. Hypertension, convulsions, and cerebral haemorrhage in sickle-cell anaemia patients after blood transfusions. Lancet. 1978;2:1207.Google ScholarPubMed
Siegel, JF, Rich, MA, Brock, WA. Association of sickle cell disease, priapism, exchange transfusion and neurological events: ASPEN syndrome. J Urol. 1993;150:1480–1482.CrossRefGoogle ScholarPubMed
Lusher, JM, Haghighat, H, Khalifa, AS. A prophylactic transfusion program for children with sickle cell anemia complicated by CNS infarction. Am J Hematol. 1976;1(2):265–273.CrossRefGoogle ScholarPubMed
Russell, MO, Goldberg, HI, Reis, L, et al. Transfusion therapy for cerebrovascular abnormalities in sickle cell disease. J Pediatr. 1976;88(3):382–387.CrossRefGoogle ScholarPubMed
Sarnaik, S, Soorya, D, Kim, J, Ravindranath, Y, Lusher, J. Periodic transfusions for sickle cell anemia and CNS infarction. Am J Dis Child. 1979;133(12):1254–1257.Google ScholarPubMed
Scothorn, DJ, Price, C, Schwartz, D, et al. Risk of recurrent stroke in children with sickle cell disease receiving blood transfusion therapy for at least five years after initial stroke. J Pediatr. 2002;140(3):348–354.CrossRefGoogle ScholarPubMed
Powars, D, Wilson, B, Imbus, C, Pegelow, C, Allen, J. The natural history of stroke in sickle cell disease. Am J Med. 1978;65:461–471.CrossRefGoogle ScholarPubMed
Wilimas, J, Goff, JR, Anderson, HR, Jr., Langston JW, Thompson E. Efficacy of transfusion therapy for one to two years in patients with sickle cell disease and cerebrovascular accidents. J Pediatr. 1980;96(2):205–208.CrossRefGoogle ScholarPubMed
Montalembert, M, Beauvais, P, Bacir, D, Galacgteros, F, Girot, R. Cerebrovascular accidents in sickle cell disease. Risk factors and blood transfusion influence. Eur J Pediatr. 1993;152:201–204.CrossRefGoogle ScholarPubMed
Wang, W, Kovnar, EH, Tonkin, IL, et al. High risk of recurrent stroke after discontinuance of five to twelve years of transfusion therapy in patients with sickle cell disease. J Pediatr. 1991;118:377–382.CrossRefGoogle ScholarPubMed
Rana, S, Houston, PE, Surana, N, Shalaby-Rana, EI, Castro, OL. Discontinuation of long-term transfusion therapy in patients with sickle cell disease and stroke. J Pediatr. 1997;131:757–760.CrossRefGoogle ScholarPubMed
Miller, ST, Jensen, D, Rao, SP. Less intensive long-term transfusion therapy for sickle cell anemia and cerebrovascular accident. J Pediatr. 1992;120:54–57.CrossRefGoogle ScholarPubMed
Adams, RJ, McKie, VC, Hsu, L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial doppler ultrasonography. N Engl J Med. 1998;339:5–11.CrossRefGoogle ScholarPubMed
Fullerton, HJ, Adams, RJ, Zhao, S, Johnston, SC. Declining stroke rates in Californian children with sickle cell disease. Blood. 2004;104(2):336–339.CrossRefGoogle ScholarPubMed
Adams, RJ, Brambilla, D. Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med. 2005;353(26):2769–2778.Google ScholarPubMed
Pegelow, CH, Macklin, EA, Moser, FG, et al. Longitudinal changes in brain magnetic resonance imaging findings in children with sickle cell disease. Blood. 2002;99:3014–3018.CrossRefGoogle ScholarPubMed
Steen, RG, Miles, MA, Helton, KJ, et al. Cognitive impairment in children with hemoglobin SS sickle cell disease: relationship to MR imaging findings and hematocrit. AJNR Am J Neuroradiol 2003;24(3):382–389.Google ScholarPubMed
Miller, ST, Macklin, EA, Pegelow, CH, et al. Silent infarction as a risk factor for overt stroke in children with sickle cell anemia: a report from the Cooperative Study of Sickle Cell Disease. J Pediatr. 2001;139(3):385–390.CrossRefGoogle ScholarPubMed
Berkelhammer, LD, Williamson, AL, Sanford, SD, et al. Neurocognitive sequelae of pediatric sickle cell disease: a review of the literature. Child Neuropsychol. 2007;13(2):120–131.CrossRefGoogle ScholarPubMed
Pegelow, CH, Wang, W, Granger, S, et al. Silent infarcts in children with sickle cell anemia and abnormal cerebral artery velocity. Arch Neurol. 2001;58(12):2017–2021.CrossRefGoogle ScholarPubMed
King, AA, Noetzel, M, White, DA, McKinstry, RC, Debaun, MR. Blood transfusion therapy is feasible in a clinical trial setting in children with sickle cell disease and silent cerebral infarcts. Pediatr Blood Cancer. 2008;50(3):599–602.CrossRefGoogle Scholar
Kirkham, FJ, Lerner, NB, Noetzel, M, et al. Trials in sickle cell disease. Pediatr Neurol. 2006;34(6):450–458.CrossRefGoogle ScholarPubMed
Koshy, M, Burd, L. Management of pregnancy in sickle cell syndromes. Hematol Oncol Clin North Am. 1991;5:585–596.CrossRefGoogle ScholarPubMed
Charache, S, Scott, J, Niebyl, J, Bonds, D. Management of sickle cell disease in pregnant patients. Obstet Gynecol. 1980;55:407–410.Google ScholarPubMed
Cunningham, FG, Pritchard, JA, Mason, R. Pregnancy and sickle cell hemoglobinopathies: results with and without prophylactic transfusions. Obstet Gynecol. 1983;62(4):419–424.Google ScholarPubMed
Howard, RJ, Tuck, SM, Pearson, TC. Pregnancy in sickle cell disease in the UK: Results of a multicentre survey of the effect of prophylactic blood transfusion on maternal and fetal outcome. Br J Obstet Gynaecol. 1995;102:947–951.CrossRefGoogle ScholarPubMed
Koshy, M, Burd, L, Wallace, D, Moawad, A, Baron, J. Prophylactic red-cell transfusions in pregnant patients with sickle cell disease. A randomized cooperative study. N Engl J Med. 1988;319:1447–1452.CrossRefGoogle ScholarPubMed
Morrison, JC, Morrison, FS, Floyd, RC. Use of continuous flow erythrocytapheresis in pregnant patients with sickle cell disease. J Clin Apheres. 1991;6:224–229.CrossRefGoogle ScholarPubMed
Morrison, JC, Schneider, JM, Whybrew, WD. Prophylactic transfusions in pregnant patients with sickle hemoglobinopathies: Benefit versus risk. Obstet Gynecol. 1980;56:274–280.Google ScholarPubMed
Morrison, JC, Wiser, WL. The use of prophylactic partial exchange transfusion in pregnancies associated with sickle cell hemoglobinopathies. Obstet Gynecol. 1976a;48:516–520.Google ScholarPubMed
Tuck, SM, Studd, J. Sickle haemoglobin and pregnancy. Br Med J (Clin Res Ed). 1983;287(6399):1143–1144.CrossRefGoogle Scholar
Gilli, SC, Paula, EV, Biscaro, FP, Marques, JF, Costa, FF, Saad, ST. Third-trimester erythrocytapheresis in pregnant patients with sickle cell disease. Int J Gynaecol Obstet. 2007;96(1):8–11.CrossRefGoogle ScholarPubMed
Tuck, SM, James, CE, Brewster, EM. Prophylactic blood transfusion in maternal sickle cell syndromes. Br J Obstet Gynaecol. 1987;94:121–125.CrossRefGoogle ScholarPubMed
Collins, FS, Orringer, EP. Pulmonary hypertension and cor pulmonale in the sickle hemoglobinopathies. Am J Med. 1982;73(6):814–821.CrossRefGoogle ScholarPubMed
Powars, D, Weidman, JA, Odom-Maryon, T, Niland, JC, Johnson, C. Sickle cell chronic lung disease: prior morbidity and the risk of pulmonary failure. Medicine. 1988;67(1):66–76.CrossRefGoogle ScholarPubMed
Styles, , Vichinsky, E. Effects of a long-term transfusion regimen on sickle cell-related illnesses. J Pediatr. 1994;125:909–911.CrossRefGoogle ScholarPubMed
Hankins, J, Jeng, M, Harris, S, Li, CS, Liu, T, Wang, W. Chronic transfusion therapy for children with sickle cell disease and recurrent acute chest syndrome. J Pediatr Hematol Oncol. 2005;27(3):158–161.CrossRefGoogle ScholarPubMed
Castro, O, Gladwin, MT. Pulmonary hypertension in sickle cell disease: mechanisms, diagnosis, and management. Hematol Oncol Clin North Am 2005;19(5):881–896, vii.CrossRefGoogle ScholarPubMed
Machado, RF, Gladwin, MT. Chronic sickle cell lung disease: new insights into the diagnosis, pathogenesis and treatment of pulmonary hypertension. Br J Haematol. 2005;129(4):449–464.CrossRefGoogle ScholarPubMed
Pearson, HA, Gallagher, D, Chilcote, R, et al. Developmental pattern of splenic dysfunction in sickle cell disorders. Pediatrics. 1985;76(3):392–397.Google ScholarPubMed
Wright, JG, Hambleton, IR, Thomas, PW, Duncan, ND, Venugopal, S, Serjeant, GR. Postsplenectomy course in homozygous sickle cell disease. J Pediatr. 1999;134(3):304–309.CrossRefGoogle ScholarPubMed
Kinney, TR, Ware, RE, Schultz, WH, Filston, HC. Long-term management of splenic sequestration in children with sickle cell disease. J Pediatr. 1990;117:194–199.CrossRefGoogle ScholarPubMed
Platt, OS, Thorington, BD, Brambilla, DJ, et al. Pain in sickle cell disease. N Engl J Med. 1991;325:11–16.CrossRefGoogle ScholarPubMed
Miller, ST, Rao, SP. Acute chest syndrome, transfusion, and neurologic events in children with sickle cell disease. Blood. 2003;102(4):1556.CrossRefGoogle ScholarPubMed
Ware, RE, Zimmerman, SA, Sylvestre, PB, et al. Prevention of secondary stroke and resolution of transfusional iron overload in children with sickle cell anemia using hydroxyurea and phlebotomy. J Pediatr. 2004;145(3):346–352.CrossRefGoogle ScholarPubMed
Larson, PJ, Freidman, DF, Reilly, MP, et al. The presurgical management with erythrocytapheresis of a patient with a high-oxygen-affinity, unstable Hb variant (Hb Bryn Mawr). Transfusion. 1997;37:703–707.CrossRefGoogle Scholar
Coles, SM, Klein, HG, Holland, PV. Alloimmunization in two multitransfused patient populations. Transfusion. 1981;21(4):462–466.CrossRefGoogle ScholarPubMed
Singer, ST, Wu, V, Mignacca, R, Kuypers, FA, Morel, P, Vichinsky, EP. Alloimmunization and erythrocyte autoimmunization in transfusion-dependent thalassemia patients of predominantly Asian descent. Blood. 2000;96(10):3369–3373.Google ScholarPubMed
Sirchia, G, Zanella, A, Parravicini, A, Morelati, F, Rebulla, P, Masera, G. Red cell alloantibodies in thalassemia major. Results of an Italian cooperative study. Transfusion. 1985;25(2):110–112.CrossRefGoogle ScholarPubMed
Spanos, T, Karageorga, M, Ladis, V, Peristeri, J, Hatziliami, A, Kattamis, C. Red cell alloantibodies in patients with thalassemia. Vox Sang. 1990;58(1):50–55.Google ScholarPubMed
Ameen, R, Al-Shemmari, S, Al-Humood, S, Chowdhury, RI, Al-Eyaadi, O, Al-Bashir, A. RBC alloimmunization and autoimmunization among transfusion-dependent Arab thalassemia patients. Transfusion. 2003;43(11):1604–1610.CrossRefGoogle ScholarPubMed
Bilwani, F, Kakepoto, GN, Adil, SN, Usman, M, Hassan, F, Khurshid, M. Frequency of irregular red cell alloantibodies in patients with thalassemia major: a bicenter study. J Pak Med Assoc. 2005;55(12):563–565.Google ScholarPubMed
Wang, LY, Liang, DC, Liu, HC, et al. Alloimmunization among patients with transfusion-dependent thalassemia in Taiwan. Transfusion Med. 2006;16(3):200–203.CrossRefGoogle ScholarPubMed
Michail-Merianou, V, Pamphili-Panousopoulou, L, Piperi-Lowes, L, Pelegrinis, E, Karaklis, A. Alloimmunization to red cell antigens in thalassemia: comparative study of usual versus better-match transfusion programmes. Vox Sang. 1987;52(1–2):95–98.CrossRefGoogle ScholarPubMed
Olujohungbe, A, Hambleton, I, Stephens, L, Serjeant, B, Serjeant, G. Red cell antibodies in patients with homozygous sickle cell disease: a comparison of patients in Jamaica and the United Kingdom. Br J Haematol. 2001;113:661–665.CrossRefGoogle ScholarPubMed
Patten, E, Patel, SN, Soto, B, Gayle, RA. Prevalence of certain clinically significant alloantibodies in sickle cell disease patients. Ann NY Acad Sci. 1989;565:443–445.CrossRefGoogle Scholar
Rosse, WF, Gallagher, D, Kinney, TR. Transfusion and alloimmunization in sickle cell disease. Blood. 1990;76:1431–1437.Google ScholarPubMed
Sarnaik, S, Schornack, J, Lusher, JM. The incidence of development of irregular red cell antibodies in patients with sickle cell anemia. Transfusion. 1986;26:249–252.CrossRefGoogle ScholarPubMed
Aygun, B, Padmanabhan, S, Paley, C, Chandrasekaran, V. Clinical significance of RBC alloantibodies and autoantibodies in sickle cell patients who received transfusions. Transfusion. 2002;42:37–43.CrossRefGoogle ScholarPubMed
Russo-Mancuso, G, Sciotto, A, Munda, SE, Romano, V, Schiliro, G. Alloimmunization and autoimmunity in caucasian patients with sickle cell disease. Intl J Pediatr Hematol Oncol. 1998;5(6):443–447.Google Scholar
Castellino, SM, Combs, MR, Zimmerman, SA, Issitt, PD, Ware, RE. Erythrocyte autoantibodies in paediatric patients with sickle cell disease receiving transfusion therapy: frequency, characteristics and significance. Br J Haematol. 1999;104:189–194.CrossRefGoogle ScholarPubMed
Chaplin, H, Zarkowsky, HS. Combined sickle cell disease and autoimmune hemolytic anemia. Arch Intern Med. 1981;141(8):1091–1093.CrossRefGoogle ScholarPubMed
King, KE, Shirey, RS, Lankiewicz, MW, Young-Ramsaran, J, Ness, PM. Delayed hemolytic transfusion reactions in sickle cell disease: simultaneous destruction of recipients' red cells. Transfusion. 1997;37:376–381.CrossRefGoogle ScholarPubMed
Petz, LD, Calhoun, L, Shulman, IA, Johnson, C, Herron, RM. The sickle cell hemolytic transfusion reaction syndrome. Transfusion. 1997;37:382–392.CrossRefGoogle ScholarPubMed
Syed, SK, Sears, DA, Werch, JB, Udden, MM, Milam, JD. Delayed hemolytic transfusion reaction in sickle cell disease. Am J Med Sci. 1996;312:175–181.CrossRefGoogle ScholarPubMed
Talano, JA, Hillery, CA, Gottschall, JL, Baylerian, DM, Scott, JP. Delayed hemolytic transfusion reaction/hyperhemolysis syndrome in children with sickle cell disease. Pediatrics. 2003;111(6 Pt 1):e661–665.CrossRefGoogle ScholarPubMed
Larson, PJ, Lukas, MB, Freidman, DF, Manno, CS. Delayed hemolytic transfusion reaction due to anti-Go(a), an antibody against the low-prevalence gonzales antigen. Am J Hematol. 1996;53(4):248–250.3.0.CO;2-Y>CrossRefGoogle Scholar
Diamond, WJ, Brown, FL, Bitterman, P, Klein, HG, Davey, RJ, Winslow, PM. Delayed hemolytic reaction presenting as sickle cell crisis. Ann Intern Med. 1980;93:231–233.CrossRefGoogle ScholarPubMed
Win, N, Doughty, H, Telfer, P, Wild, BJ, Pearson, TC. Hyperhemolytic transfusion reaction in sickle cell disease. Transfusion. 2001;41(3):323–328.CrossRefGoogle ScholarPubMed
Rebulla, P, Mozzi, F, Contino, G, Locatelli, E, Sirchia, G. Antibody to hepatitis C virus in 1,305 Italian multiply transfused thalassaemics: a comparison of first and second generation tests. Transfusion Med. 1992;2:69–70.CrossRefGoogle ScholarPubMed
Wonke, B, Hoffbrand, AV, Brown, D, Dusheiko, G. Antibody to hepatitis C virus in multiply transfused patients with thalassaemia major. J Clin Pathol. 1990;43:638–640.CrossRefGoogle ScholarPubMed
Cunningham, MJ, Macklin, EA, Neufeld, EJ, Cohen, AR. Complications of beta-thalassemia major in North America. Blood. 2004;104(1):34–39.CrossRefGoogle ScholarPubMed
DeVault, KR, Friedman, LS, Westerberg, S. Hepatitis C in sickle cell anemia. J Clin Gastroenterol. 1994;18:206–209.CrossRefGoogle ScholarPubMed
Hasan, MF, Marsh, F, Posner, G, et al. Chronic hepatitis C in patients with sickle cell disease. J Clin Gastroenterol. 1996;91(6):1204–1206.Google ScholarPubMed
Clemente, MG, Congia, M, Lai, ME, et al. Effect of iron overload on the response to recombinant interferon-alfa treatment in transfusion-dependent patients with thalassemia major and chronic hepatitis C. J Pediatr. 1994;125(1):123–128.CrossRefGoogle ScholarPubMed
Di Marco, V, Lo Iacono, O, Camma, C, et al. A randomized controlled trial of high-dose maintenance interferon therapy in chronic hepatitis C. J Med Virol. 1997;51(1):17–24.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Irshad, M, Peter, S. Spectrum of viral hepatitis in thalassemic children receiving multiple blood transfusions. Indian J Gastroenterol. 2002;21(5):183–184.Google ScholarPubMed
Mollah, AH, Siddiqui, MA, Anwar, KS, et al. Seroprevalence of common transfusion-transmitted infections among blood donors in Bangladesh. Public Health. 2004;118(4):299–302.CrossRefGoogle ScholarPubMed
Singh, NP, Mandal, SK, Thakur, A, et al. Efficacy of GM-CSF as an adjuvant to hepatitis B vaccination in patients with chronic renal failure–results of a prospective, randomized trial. Renal Fail. 2003;25(2):255–266.CrossRefGoogle ScholarPubMed
Robert-Guroff, M, Giardina, PJ, Robey, WG, et al. HTLV-III neutralizing antibody development in transfusion-dependent seropositive patients with beta-thalassemia. J Immunol. 1987;138(11):3731–3736.Google ScholarPubMed
Lefrere, JJ, Girot, R. HIV infection in polytransfused thalassemic patients. Lancet. 1987;2:686. (Letter)Google Scholar
Lefrere, JJ, Girot, R. Risk of HIV infection in polytransfused thalassemic patients. Lancet. 1989;2:813. (Letter)Google Scholar
Mozzi, F, Rebulla, P, Lillo, F, et al. HIV and HTLV infections in 1305 transfusion-dependent thalassemis in Italy. AIDS. 1992;6(5):505–508.CrossRefGoogle Scholar
Stramer, SL. Current risks of transfusion-transmitted agents: a review. Arch Pathol Lab Med. 2007;131(5):702–707.Google ScholarPubMed
Tshilolo, LM, Mukendi, RK, Wembonyama, SO. Blood transfusion rate in Congolese patients with sickle cell anemia. Indian J Pediatr. 2007;74(8):735–738.CrossRefGoogle ScholarPubMed
Salhi, Y, Costagliola, D, Rebulla, P, et al. Serum ferritin, desferrioxamine, and evolution of HIV-1 infection in thalassemic patients. J AIDS Hum Retrovirol. 1998;18(5):473–478.Google ScholarPubMed
Costagliola, DG, Montalembert, M, Lefrere, JJ, et al. Dose of desferrioxamine and evolution of HIV-1 infection in thalassaemic patients. Br J Haematol. 1994;87(4):849–852.CrossRefGoogle ScholarPubMed
Georgiou, NA, Bruggen, T, Oudshoorn, M, Nottet, HS, Marx, JJ, Asbeck, BS. Inhibition of human immunodeficiency virus type 1 replication in human mononuclear blood cells by the iron chelators deferoxamine, deferiprone, and bleomycin. J Infect Dis. 2000;181(2):484–490.CrossRefGoogle ScholarPubMed
Georgiou, NA, Bruggen, T, Oudshoorn, M, Hider, RC, Marx, JJ, Asbeck, BS. Human immunodeficiency virus type 1 replication inhibition by the bidentate iron chelators CP502 and CP511 is caused by proliferation inhibition and the onset of apoptosis. Eur J Clin Invest 2002;32 (Suppl 1):91–96.CrossRefGoogle Scholar
Menitove, JE. Transfusion-transmitted infections: update. Semin Hematol. 1996;33:290–301.Google ScholarPubMed
Cohen, A, Markenson, AL, Schwartz, E. Transfusion requirements and splenectomy in thalassemia major. J Pediatr. 1980;97(1):100–102.CrossRefGoogle ScholarPubMed
Campbell, PJ, Olatunji, PO, Ryan, KE, Davies, SC. Splenic regrowth in sickle cell anaemia following hypertransfusion. Br J Haematol. 1997;96:77–79.CrossRefGoogle ScholarPubMed
Cohen, AR, Buchanan, GR, Martin, M, Ohene-Frempong, K. Increased blood requirements during long-term transfusion therapy for sickle cell disease. J Pediatr. 1991;118(3):405–407.CrossRefGoogle ScholarPubMed
Wasi, P, Na-Nakorn, S, Pootrakul, P, Sonakul, D, Piankijagum, A, Pacharee, P. A syndrome of hypertension, convulsion, and cerebral haemorrhage in thalassaemic patients after multiple blood-transfusions. Lancet. 1978;2(8090):602–604.CrossRefGoogle ScholarPubMed
Yetgin, S, Hicsonmez, G. Hypertension, convulsions and purpuric skin lesions after blood-transfusions. Lancet. 1979;1:610. (Letter)Google Scholar
Warth, JA. Hypertension and a seizure following transfusion in an adult with sickle cell anemia. Arch Intern Med. 1984;144:607–608.CrossRefGoogle Scholar
Sonakul, D, Fucharoen, S. Brain pathology in 6 fatal cases of post-transfusion hypertension, convulsion and cerebral hemorrhage syndrome. SE Asian J Trop Med Public Health. 1992;23(Supplement 2):116–119.Google ScholarPubMed
Henderson, JN, Noetzel, MJ, McKinstry, RC, White, DA, Armstrong, M, DeBaun, MR. Reversible posterior leukoencephalopathy syndrome and silent cerebral infarcts are associated with severe acute chest syndrome in children with sickle cell disease. Blood. 2003;101(2):415–419.CrossRefGoogle ScholarPubMed
Jacobs, A. The pathology of iron overload. Iron in Biochemistry and Medicine. London: Academic Press; 1974.Google Scholar
Bothwell, T, Charlton, RW, Cook, JD, Finch, CA. Iron Metabolism in Man. Oxford: Blackwell; 1979.
Modell, B. Total management of thalassaemia major. Arch Dis Childhood. 1977;52:485–500.CrossRefGoogle ScholarPubMed
Cohen, AR, Glimm, E, Porter, JB. Effect of transfusional iron intake on response to chelation therapy in β-thalassemia major. Blood. 2008;111(2):583–587.CrossRefGoogle ScholarPubMed
Porter, J, Galanello, R, Saglio, G, et al. Relative response of patients with myelodysplastic syndromes and other transfusion-dependent anaemias to deferasirox (ICL670): a 1-yr prospective study. Eur J Haematol. 2008;80(2):168–176.Google ScholarPubMed
Graziano, JH, Piomelli, S, Hilgartner, M, et al. Chelation therapy in beta-thalassemia major. III. The role of splenectomy in achieving iron balance. J Pediatr. 1981;99(5):695–699.CrossRefGoogle ScholarPubMed
O'Brien, RT, Pearson, HA, Spencer, RP. Transfusion-induced decrease in spleen size in thalassemia major: documentation by radioisotopic scan. J Pediatr. 1972;81(1):105–107.CrossRefGoogle ScholarPubMed
Pippard, M, Weatherall, D. Iron absorption in iron-loading anaemias. Haematologica. 1984;17:407–414.Google ScholarPubMed
Pippard, MJ, Callender, ST, Warner, GT, Weatherall, DJ. Iron absorption and loading in beta-thalassaemia intermedia. Lancet. 1979;2(8147):819–821.CrossRefGoogle ScholarPubMed
Pootrakul, P, Kitcharoen, K, Yansukon, P, et al. The effect of erythroid hyperplasia on iron balance. Blood. 1988;71(4):1124–1129.Google ScholarPubMed
Gordeuk, VR, Bacon, BR, Brittenham, GM. Iron overload: causes and consequences. Annu Rev Nutr. 1987;7:485–508.CrossRefGoogle ScholarPubMed
O'Brien, RT. Iron burden in sickle cell anemia. J Pediatr. 1978;92(4):579–588.CrossRefGoogle ScholarPubMed
Vichinsky, E, Kleman, K, Embury, S, Lubin, B. The diagnosis of iron deficiency anemia in sickle cell disease. Blood. 1981;58(5):963–968.Google Scholar
Davies, S, Hentroth, JS, Brozovic, M. Effect of blood transfusion on iron status in sickle cell anaemia. Clin Lab Haematol. 1984;6:17–22.CrossRefGoogle ScholarPubMed
Rao, KRP, Ashok, RP, McGinnis, P, Patel, MK. Iron stores in adults with sickle cell anemia. J Lab Clin Med. 1984;103:792–797.Google ScholarPubMed
Porter, JB, Huehns, ER. Transfusion and exchange transfusion in sickle cell anaemias, with particular reference to iron metabolism. Acta Haematol. 1987;78(2–3):198–205.CrossRefGoogle ScholarPubMed
Vichinsky, E, Onyekwere, O, Porter, J, et al. A randomised comparison of deferasirox versus deferoxamine for the treatment of transfusional iron overload in sickle cell disease. Br J Haematol. 2007;136(3):501–508.CrossRefGoogle ScholarPubMed
Cavill, I. Internal regulation of iron absorption. Nature. 1975;256:328–329.CrossRefGoogle ScholarPubMed
Pippard, MJ, Weatherall, DJ. Iron absorption in non-transfused iron loading anaemias: prediction of risk for iron loading, and response to iron chelation treatment, in beta thalassaemia intermedia and congenital sideroblastic anaemias. Haematologia. 1984;17(1):17–24.Google ScholarPubMed
Zanella, A, Berzuini, A, Colombo, MB, et al. Iron status in red cell pyruvate kinase deficiency: study of Italian cases. Br J Haematol. 1993;83(3):485–490.CrossRefGoogle ScholarPubMed
Modell, B, Mathews, R. Thalassaemia in Britain and Australia. Birth Defects Orgin Art Series. 1976;12:13–29.Google ScholarPubMed
Risdon, RA, Barry, M, Flynn, DM. Transfusional iron overload: the relationship between tissue iron concentration and hepatic fibrosis in thalassaemia. J Pathol. 1975;116(2):83–95.CrossRefGoogle ScholarPubMed
Oudit, GY, Sun, H, Trivieri, MG, et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med. 2003;9(9):1187–1194.CrossRefGoogle Scholar
Nemeth, E, Tuttle, MS, Powelson, J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–2093.CrossRefGoogle ScholarPubMed
Lin, L, Valore, EV, Nemeth, E, Goodnough, JB, Gabayan, V, Ganz, T. Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4. Blood. 2007;110(6):2182–2189.CrossRefGoogle ScholarPubMed
Origa, R, Galanello, R, Ganz, T, et al. Liver iron concentrations and urinary hepcidin in beta-thalassemia. Haematologica. 2007;92(5):583–588.CrossRefGoogle ScholarPubMed
Kattamis, A, Papassotiriou, I, Palaiologou, D, et al. The effects of erythropoetic activity and iron burden on hepcidin expression in patients with thalassemia major. Haematologica. 2006;91(6):809–812.Google ScholarPubMed
Tanno, T, Bhanu, NV, Oneal, PA, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007;13(9):1096–1101.CrossRefGoogle ScholarPubMed
Shah, FT. The relationship between non transferrin bound iron and iron overload in thalassaemia and sickle syndromes. MD Thesis, University of London, 2008.
Jensen, PD, Jensen, FT, Christensen, T, Nielsen, JL, Ellegaard, J. Relationship between hepatocellular injury and transfusional iron overload prior to and during iron chelation with desferrioxamine: a study in adult patients with acquired anemias. Blood. 2003;101(1):91–96.CrossRefGoogle ScholarPubMed
Angelucci, E, Muretto, P, Nicolucci, A, et al. Effects of iron overload and hepatitis C virus positivity in determining progression of liver fibrosis in thalassemia following bone marrow transplantation. Blood. 2002;100(1):17–21.CrossRefGoogle ScholarPubMed
Buja, LM, Roberts, WC. Iron in the heart. Etiology and clinical significance. Am J Med. 1971;51(2):209–221.CrossRefGoogle ScholarPubMed
Jensen, PD, Jensen, FT, Christensen, T, Eiskjaer, H, Baandrup, U, Nielsen, JL. Evaluation of myocardial iron by magnetic resonance imaging during iron chelation therapy with deferrioxamine: indication of close relation between myocardial iron content and chelatable iron pool. Blood. 2003;101(11):4632–4639.CrossRefGoogle ScholarPubMed
Fitchett, DH, Coltart, DJ, Littler, WA, et al. Cardiac involvement in secondary haemochromatosis: a catheter biopsy study and analysis of myocardium. Cardiovasc Res. 1980;14(12):719–724.CrossRefGoogle ScholarPubMed
Barosi, G, Arbustini, E, Gavazzi, A, Grasso, M, Pucci, A. Myocardial iron grading by endomyocardial biopsy. A clinico-pathologic study on iron overloaded patients. Eur J Haematol. 1989;42(4):382–388.CrossRefGoogle ScholarPubMed
Anderson, LJ, Holden, S, Davis, B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22(23):2171–2179.CrossRefGoogle ScholarPubMed
Anderson, LJ, Westwood, MA, Holden, S, et al. Myocardial iron clearance during reversal of siderotic cardiomyopathy with intravenous desferrioxamine: a prospective study using T2* cardiovascular magnetic resonance. Br J Haematol. 2004;127(3):348–355.CrossRefGoogle ScholarPubMed
Porter, JB. Concepts and goals in the management of transfusional iron overload. Am J Hematol. 2007;82(12 Suppl):1136–1139.CrossRefGoogle ScholarPubMed
Wood, JC, Tyszka, JM, Carson, S, Nelson, MD, Coates, TD. Myocardial iron loading in transfusion-dependent thalassemia and sickle cell disease. Blood. 2004;103(5):1934–1936.CrossRefGoogle ScholarPubMed
Shah, F, Westwood, MA, Evans, PJ, Porter, JB. Discordance in MRI assessment of iron distribution and plasma NTBI between transfusionally iron loaded adults with sickle cell and thalassaemia syndromes. Blood. 2002;100:468a.Google Scholar
Hershko, C, Graham, G, Bates, G, Rachmilewitz, E. Non-specific serum iron in thalassaemia; an abnormal serum fraction of potential toxicity. Br J Haematol. 1978;40:255–263.CrossRefGoogle ScholarPubMed
Breuer, W, Epsztejn, S, Cabantchik, ZI. Iron acquired from transferrin by k562 cells is delivered into a cytoplasmic pool of chelatable iron (II). J Biol Chem. 1995;270:24209–24215.CrossRefGoogle Scholar
Grootveld, M, Bell, JD, Halliwell, B, Aruoma, OI, Bomford, A, Sadler, PJ. Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. J Biol Chem. 1989;264(8):4417–4422.Google ScholarPubMed
Evans, RW, Rafique, R, Zarea, A, et al. Nature of non-transferrin-bound iron: studies on iron citrate complexes and thalassemic sera. J Biol Inorg Chem. 2008;13(1):57–74.CrossRefGoogle ScholarPubMed
Brissot, P, Wright, TL, Ma, WL, Weisiger, RA. Efficient clearance of non-transferrin-bound iron by rat liver. Implications for hepatic iron loading in iron overload states. J Clin Invest. 1985;76(4):1463–1470.CrossRefGoogle ScholarPubMed
Link, G, Pinson, A, Kahane, I, Hershko, C. Iron loading modifies the fatty acid composition of cultured rat myocardial cells and liposomal vesicles: effect of ascorbate and alpha-tocopherol on myocardial lipid peroxidation. J Lab Clin Med. 1989;114:243–249.Google ScholarPubMed
Gutteridge, J, Rowley, D, Griffiths, E, Halliwell, B. Low molecular weight iron complexes and oxygen radical reactions in idiopathic haemochromatosis. Clin Sci. 1985;68:463–467.CrossRefGoogle ScholarPubMed
Luca, C, Filosa, A, Grandinetti, M, Maggio, F, Lamba, M, Passi, S. Blood antioxidant status and urinary levels of catecholamine metabolites in beta-thalassemia. Free Radic Res. 1999;30(6):453–462.CrossRefGoogle ScholarPubMed
Link, G, Pinson, A, Hershko, C. Iron loading of cultured cardiac myocytes modifies sarcolemmal structure and increases lysosomal fragility. J Lab Clin Med. 1993;121(1):127–134.Google ScholarPubMed
Marx, JJM, Asbeck, BS. Use of chelators in preventing hydroxyl radical damage: adult respiratory distress syndrome as an experimental model for the treatment of oxygen-radical-mediated tissue damage. Acta Haematol. 1996;95:49–62.CrossRefGoogle ScholarPubMed
Gutteridge, J, Halliwell, B. Iron toxicity and oxygen radicals. Bailliere Clin Haematol. 1989;2:195–256.CrossRefGoogle ScholarPubMed
Kornbrust, DJ, Mavis, RD. Microsomal lipid peroxidation. 1. Characterisation of the role of iron and NADPH. Mol Pharmacol. 1980;17:400–407.Google Scholar
Bacon, BR, Tavill, AS, Brittenham, GM, Park, CH, Recknagel, RO. Hepatic lipid peroxidation in vivo in rats with chronic iron overload. J Clin Invest. 1983;71(3):429–439.CrossRefGoogle ScholarPubMed
Myers, BM, Prendergast, FG, Holman, R, Kuntz, SM, LaRusso, NF. Alterations in the structure, physicochemical properties, and pH of hepatocyte lysosomes in experimental iron overload. J Clin Invest. 1991;88(4):1207–1215.CrossRefGoogle ScholarPubMed
Sage, GD, Kost, LJ, Barham, SS, LaRusso, NF. Biliary excretion of iron from hepatocyte lysosomes in the rat: a major excretory pathway in experimental iron overload. J Clin Invest. 1986;77:90–97.Google Scholar
Link, G, Saada, A, Pinson, A, Konijn, AM, Hershko, C. Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. J Lab Clin Med. 1998;131(5):466–474.CrossRefGoogle ScholarPubMed
Zhao, M, Laissue, JA, Zimmermann, A. Hepatocyte apoptosis in hepatic iron overload diseases. Histol Histopathol. 1997;12(2):367–374.Google ScholarPubMed
Jacob, AK, Hotchkiss, RS, Swanson, PE, Tinsley, KW, Karl, IE, Buchman, TG. Injection of iron compounds followed by induction of the stress response causes tissue injury and apoptosis. Shock. 2000;14(4):460–464.CrossRefGoogle ScholarPubMed
Antunes, F, Cadenas, E, Brunk, UT. Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochem J. 2001;356(Pt 2):549–555.CrossRefGoogle ScholarPubMed
Houglum, K, Filip, M, Witztum, JL, Chojkier, M. Malondialdehyde and 4-hydroxynonenal protein adducts in plasma and liver of rats with iron overload. J Clin Invest. 1990; 86(6):1991–1998.CrossRefGoogle ScholarPubMed
Parola, M, Pinzani, A, Casini, E, et al. Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increased procollagen (I) gene expression in human fat storing cells. J Biol Chem. 1993;264:16957–16962.Google Scholar
Bissell, DM, Wang, SS, Jarnagin, WR, Roll, FJ. Cell specific expression of transforming growth factor-ß in the rat liver. J Clin Invest. 1995;96:447–455.CrossRefGoogle Scholar
Tsakamota, H, Horne, W, Kamimura, S, Niemela, O, Parkkila, S, Yia-Herttuala, S. Experimantal liver cirrhosis induced by alcohol and iron. J Clin Invest. 1995;96:620–630.CrossRefGoogle Scholar
Houglum, K, Ramm, GA, Crawford, DH, Witztum, JL, Powell, LW, Chojkier, M. Excess iron induces hepatic oxidative stress and transforming growth factor beta1 in genetic hemochromatosis. Hepatology. 1997;26(3):605–610.CrossRefGoogle ScholarPubMed
Eaton, JW, Qian, M. Molecular bases of cellular iron toxicity. Free Radic Biol Med 2002;32(9):833–840.CrossRefGoogle ScholarPubMed
Wolfe, L, Olivieri, N, Sallan, D, et al. Prevention of cardiac disease by subcutaneous deferoxamine in patients with thalassemia major. N Engl J Med. 1985;312(25):1600–1603.CrossRefGoogle ScholarPubMed
Zurlo, MG, Stefano, P, Borgna-Pignatti, C, et al. Survival and causes of death in thalassaemia major. Lancet. 1989;2(8653):27–30.CrossRefGoogle ScholarPubMed
Brittenham, GM, Griffith, PM, Nienhuis, AW, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major [see comments]. N Engl J Med. 1994;331(9):567–573.CrossRefGoogle Scholar
Borgna-Pignatti, C, Rugolotto, S, Stefano, P, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–1193.Google ScholarPubMed
Angelucci, E, Baronciani, D, Lucarelli, G, et al. Liver iron overload and liver fibrosis in thalassemia. Bone Marrow Transplant. 1993;12(Suppl 1):29–31.Google ScholarPubMed
Davis, B, O'Sullivan, C, Porter, J. Value of LVEF monitoring in the long-term management of beta-thalassaemia. 8th International Conference on Thalassemia and the Hemoglobinopathies (Athens) 2001.Abstract 056:147.
Olivieri, NF, Nathan, DG, MacMillan, JH, et al. Survival in medically treated patients with homozygous beta-thalassemia. N Engl J Med. 1994;331(9):574–578.CrossRefGoogle ScholarPubMed
Gabutti, V, Piga, A. Results of long-term iron-chelating therapy. Acta Haematol. 1996;95(1):26–36.CrossRefGoogle ScholarPubMed
Telfer, PT, Prestcott, E, Holden, S, Walker, M, Hoffbrand, AV, Wonke, B. Hepatic iron concentration combined with long-term monitoring of serum ferritin to predict complications of iron overload in thalassaemia major. Br J Haematol. 2000;110(4):971–977.CrossRefGoogle ScholarPubMed
Ladis, V, Chouliaras, G, Berdousi, H, Kanavakis, E, Kattamis, C. Longitudinal study of survival and causes of death in patients with thalassemia major in Greece. Ann NY Acad Sci. 2005;1054:445–450.CrossRefGoogle Scholar
Westwood, MA, Wonke, B, Maceira, AM, et al. Left ventricular diastolic function compared with T2* cardiovascular magnetic resonance for early detection of myocardial iron overload in thalassemia major. J Magn Reson Imaging. 2005;22(2):229–233.CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C, Rugolotto, S, Stefano, P, et al. Survival and disease complications in thalassemia major. Ann NY Acad Sci. 1998;850:227–231.CrossRefGoogle ScholarPubMed
Chatterjee, R, Katz, M, Cox, TF, Porter, JB. Prospective study of the hypothalamic-pituitary axis in thalassaemic patients who developed secondary amenorrhoea. Clin Endocrinol.1993;39(3):287–296.CrossRefGoogle ScholarPubMed
Chatterjee, R, Wonke, B, Porter, JB, Katz, M. Correction of primary and secondary amenorrhoea and induction of ovulation by pulsatile infusion of gonadotrophin releasing hormone (GnRH) in patients with beta thalassaemia major. In: Beuzard, Y, Lubin, B, Rosa, J, eds. Sickle Cell Disease and Thalassaemia: New Trends in Therapy. Colloq Inserm 1995;234:451–455.
Landau, H, Matoth, I, Landau-Cordova, Z, Golfarb, A, Rachmilewitz, EA, Glaser, B. Cross-sectional and longditudinal study of the pituitary-thyroid axis in patients with thalassaemia major. Clin Endocrinol. 1993;38:55–61.CrossRefGoogle Scholar
Sklar, CA, Lew, LQ, Yoon, DJ, David, R. Adrenal function in thalassemia major following long-term treatment with multiple transusions and chelation therapy. Evidence for dissociation of cortisol and adrenal androgen sectretion. Am J Dis Child. 1987;141:327–330.CrossRefGoogle Scholar
Pinna, AD, Argiolu, F, Marongiu, L, Pinna, DC. Indications and results for splenectomy for beta thalassemia in two hundred and twenty-one pediatric patients. Surg Gynecol Obstet. 1988;167(2):109–113.Google ScholarPubMed
Barry, DMJ, Reeve, AN. Increased incidence of gram-negative neonatal sepsis with intramuscular iron administration. Pediatrics. 1977;60:908–912.Google Scholar
Hwang, CF, Lee, CY, Lee, PI, et al. Pyogenic liver abscess in beta-thalassemia major–report of two cases. Chung Hua Min Kuo Hsiao Erh Ko I Hsueh Hui Tsa Chih. 1994;35(5):466–467.Google ScholarPubMed
Wanachiwanawin, W. Infections in E-beta thalassemia. J Pediatr Hematol Oncol. 2000;22(6):581–587.CrossRefGoogle ScholarPubMed
Li, CK, Shing, MM, Chik, KW, Lee, V, Yuen, PM. Klebsiella pneumoniae meningitis in thalassemia major patients. Pediatr Hematol Oncol. 2001;18(3):229–232.CrossRefGoogle ScholarPubMed
Skoutelis, AT, Lianou, E, Papavassiliou, T, Karamerou, A, Politi, K, Bassaris, HP. Defective phagocytic and bactericidal function of polymorphonuclear leucocytes in patients with beta-thalassaemia major. J Infect. 1984;8(2):118–122.CrossRefGoogle ScholarPubMed
Ballart, IJ, Estevez, ME, Sen, L, et al. Progressive dysfunction of monocytes associated with iron overload and age in patients with thalassemia major. Blood. 1986;67(1):105–109.Google ScholarPubMed
Kutukculer, N, Kutlu, O, Nisli, G, Oztop, S, Cetingul, N, Caglayan, S. Assessment of neutrophil chemotaxis and random migration in children with thalassemia major. Pediatr Hematol Oncol. 1996;13(3):239–245.CrossRefGoogle ScholarPubMed
Robins-Browne, R, Prpic, J. Effects of iron and desferrioxamine on infections with Yersinia Enterocolitica. Infect Immun. 1985;47:774–779.Google ScholarPubMed
Brownell, A, Lowson, S, Brozovic, M. Serum ferritin concentration in sickle crisis. J Clin Pathol. 1986;39:253–255.CrossRefGoogle Scholar
Harmatz, P, Heyman, MB, Cunningham, J, et al. Effects of red blood cell transfusion on resting energy expenditure in adolescents with sickle cell anemia. J Pediatr Gastroenterol Nutr. 1999;29(2):127–131.CrossRefGoogle ScholarPubMed
Brittenham, GM, Cohen, AR, McLaren, CE, et al. Hepatic iron stores and plasma ferritin concentration in patients with sickle cell anemia and thalassemia major. Am J Hematol. 1993;42(1):81–85.CrossRefGoogle ScholarPubMed
Comer, GM, Ozick, , Sachdev, RK, et al. Transfusion-related chronic liver disease in sickle cell anemia. Am J Gastroenterol. 1991;86(9):1232–1234.Google ScholarPubMed
Harmatz, P, Butensky, E, Quirolo, K, et al. Severity of iron overload in patients with sickle cell disease receiving chronic red blood cell transfusion therapy. Blood. 2000;96(1):76–79.Google ScholarPubMed
Olivieri, NF. Progression of iron overload in sickle cell disease. Semin Hematol. 2001;38(1 Suppl 1):57–62.CrossRefGoogle ScholarPubMed
Olivieri, NF, Saxon, BR, Nisbet-Brown, E, et al. Quantitive assessment of tissue iron in patients with sickle cell disease. In: Proceedings of 9th International Conference on Oral Iron Chelation. Hamburg, Germany; 1999:55.
Darbari, DS, Kple-Faget, P, Kwagyan, J, Rana, S, Gordeuk, VR, Castro, O. Circumstances of death in adult sickle cell disease patients. Am J Hematol. 2006;81(11):858–863.CrossRefGoogle ScholarPubMed
Westwood, MA, Shah, F, Anderson, LJ, et al. Myocardial tissue characterization and the role of chronic anemia in sickle cell cardiomyopathy. J Magn Reson Imaging. 2007;26(3):564–568.CrossRefGoogle ScholarPubMed
Vichinsky, E, Butensky, E, Fung, E, et al. Comparison of organ dysfunction in transfused patients with SCD or beta thalassemia. Am J Hematol. 2005;80(1):70–74.CrossRefGoogle ScholarPubMed
Fung, EB, Harmatz, PR, Lee, PD, et al. Increased prevalence of iron-overload associated endocrinopathy in thalassaemia versus sickle-cell disease. Br J Haematol. 2006;135(4):574–582.CrossRefGoogle ScholarPubMed
Phillips, G, Becker, B, Keller, VA, Hartman, J. Hypothyroidism in adults with sickle cell anemia. Am J Med. 1992;92(5):567–570.CrossRefGoogle ScholarPubMed
Siegelman, ES, Outwater, E, Hanau, CA, et al. Abdominal iron distribution in sickle cell disease: MR findings in transfusion and nontransfusion dependent patients. J Comput Assist Tomog. 1994; 18:63–67.CrossRefGoogle ScholarPubMed
Walter, PB, Fung, EB, Killilea, DW, et al. Oxidative stress and inflammation in iron-overloaded patients with beta-thalassaemia or sickle cell disease. Br J Haematol. 2006;135(2):254–263.CrossRefGoogle ScholarPubMed
Schafer, AI, Cheron, RG, Dluhy, R, et al. Clinical consequences of acquired transfusional iron overload in adults. N Engl J Med. 1981;304(6):319–324.CrossRefGoogle ScholarPubMed
Malcovati, L, Porta, MG, Pascutto, C, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23(30):7594–7603.CrossRefGoogle ScholarPubMed
Novel treatment options for transfusional iron overload in patients with myelodysplastic syndromes. Leuk Res. 2007; Suppl 3: S16–22.
Cazzola, M, Malcovati, L. Myelodysplastic syndromes–coping with ineffective hematopoiesis. N Engl J Med. 2005;352(6):536–538.CrossRefGoogle ScholarPubMed
Malcovati, L, Della Porta, MG, Cazzola, M. Predicting survival and leukemic evolution in patients with myelodysplastic syndrome. Haematologica. 2006;91(12):1588–1590.Google ScholarPubMed
Angelucci, E, Brittenham, GM, McLaren, CE, et al. Hepatic iron concentration and total body iron stores in thalassemia major. N Engl J Med. 2000;343(5):327–331.CrossRefGoogle ScholarPubMed
Cartwright, GE, Edwards, CQ, Kravitz, K, et al. Hereditary hemochromatosis. Phenotypic expression of the disease. N Engl J Med. 1979;301(4):175–179.CrossRefGoogle ScholarPubMed
Porter, JB, Davis, BA. Monitoring chelation therapy to achieve optimal outcome in the treatment of thalassaemia. Best Pract Res Clin Haematol. 2002;15(2):329–368.CrossRefGoogle ScholarPubMed
Angelucci, E, Baronciani, D, Lucarelli, G, et al. Needle liver biopsy in thalassaemia: analyses of diagnostic accuracy and safety in 1184 consecutive biopsies. Br J Haematol. 1995;89(4):757–761.CrossRefGoogle ScholarPubMed
Ambu, R, Crisponi, G, Sciot, R, et al. Uneven hepatic iron and phosphorus distribution in beta-thalassemia. J Hepatol. 1995;23(5):544–549.CrossRefGoogle ScholarPubMed
Villeneuve, JP, Bilodeau, M, Lepage, R, Cote, J, Lefebvre, M. Variability in hepatic iron concentration measurement from needle- biopsy specimens. J Hepatol. 1996;25(2):172–177.CrossRefGoogle ScholarPubMed
Barry, M, Sherlock, S. Measurement of liver-iron concentration in needle biopsy specimens. Lancet. 1971;1:100–103.CrossRefGoogle ScholarPubMed
Barry, M, Flynn, D, Letsky, E, Risdon, R. Long term chelation therapy in thalassaemia: effect on liver iron concentration, liver histology and clinical progress. Br Med J. 1974;2:16–20.CrossRefGoogle ScholarPubMed
Ropert-Bouchet, M, Turlin, B, Graham, G, et al. Drying methods affect the wet dry ratio of liver tissue samples and impact on iron content measurements. Bioiron 2005:107: 274 (Abstract).Google Scholar
Brittenham, GM, Farrell, , Harris, JW, et al. Magnetic-susceptibility measurement of human iron stores. N Engl J Med. 1982;307(27):1671–1675.CrossRefGoogle ScholarPubMed
Nielsen, P, Fischer, R, Engelhardt, R, Tondury, P, Gabbe, EE, Janka, GE. Liver iron stores in patients with secondary haemosiderosis under iron chelation therapy with deferoxamine or deferiprone. Br J Haematol. 1995;91:827–833.CrossRefGoogle ScholarPubMed
Piga, A, R F, T SP, et al. Comparison of LIC obtained from biopsy, BLS and R2-MRI in iron overloaded patients with beta-thalassemia, treated with deferasirox (Exjade®, ICL670). Blood. 2005;106(11): 2689a.Google Scholar
St Pierre, TG, Clark, PR, Chua-anusorn, W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood. 2005;105(2):855–861.CrossRefGoogle ScholarPubMed
Gandon, Y, Olivie, D, Guyader, D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet. 2004;363(9406):357–362.CrossRefGoogle ScholarPubMed
Worwood, M, Cragg, SJ, Jacobs, A, McLaren, C, Ricketts, C, Economidou, J. Binding of serum ferritin to concanavalin A: patients with homozygous beta thalassaemia and transfusional iron overload. Br J Haematol. 1980;46(3):409–416.CrossRefGoogle ScholarPubMed
Davis, BA, Porter, JB. Long-term outcome of continuous 24-hour deferoxamine infusion via indwelling intravenous catheters in high-risk beta-thalassemia. Blood. 2000;95(4):1229–1236.Google ScholarPubMed
Fischer, R, Longo, F, Nielsen, P, Engelhardt, R, Hider, RC, Piga, A. Monitoring long-term efficacy of iron chelation therapy by deferiprone and desferrioxamine in patients with beta-thalassaemia major: application of SQUID biomagnetic liver susceptometry. Br J Haematol. 2003;121(6):938–948.CrossRefGoogle ScholarPubMed
Walters, GO, Miller, R, Worwood, M. Serum ferritin concentration and iron stores in normal subjects. J Clin Pathol. 1973;26:770–2.CrossRefGoogle ScholarPubMed
Beamish, MR, Walker, R, Miller, F, et al. Transferrin iron, chelatable iron and ferritin in idiopathic haemochromatosis. Br J Haematol. 1974;27(2):219–228.CrossRefGoogle ScholarPubMed
Letsky, EA, Miller, F, Worwood, M, Flynn, DM. Serum ferritin in children with thalassaemia regularly transfused. J Clin Pathol. 1974;27:1213–6.CrossRefGoogle ScholarPubMed
Prieto, J, Barry, M, Sherlock, S. Serum ferritin in patients with iron overload and with acute and chronic liver disease. Gastroenterology. 1975;68(3):525–533.Google Scholar
Olivieri, NF, Brittenham, GM, Matsui, D, et al. Iron-chelation therapy with oral deferiprone in patients with thalassemia major [see comments]. N Engl J Med. 1995;332(14):918–922.CrossRefGoogle Scholar
Olivieri, NF, Brittenham, GM. Iron-chelating therapy and the treatment of thalassemia. Blood. 1997;89(3):739–761.Google ScholarPubMed
Chapman, RW, Hussain, MA, Gorman, A, et al. Effect of ascorbic acid deficiency on serum ferritin concentration in patients with beta-thalassaemia major and iron overload. J Clin Pathol. 1982;35(5):487–491.CrossRefGoogle ScholarPubMed
Berger, TM, Polidori, MC, Dabbagh, A, et al. Antioxidant activity of vitamin C in iron-overloaded human plasma. J Biol Chem. 1997;272(25):15656–15660.CrossRefGoogle ScholarPubMed
Davis, BA, O'Sullivan, C, Jarritt, PH, Porter, JB. Value of sequential monitoring of left ventricular ejection fraction in the management of thalassemia major. Blood. 2004;104(1):263–269.CrossRefGoogle ScholarPubMed
Porter, JB, Jaswon, MS, Huehns, ER, East, CA, Hazell, JW. Desferrioxamine ototoxicity: evaluation of risk factors in thalassaemic patients and guidelines for safe dosage. Br J Haematol. 1989;73(3):403–409.CrossRefGoogle ScholarPubMed
Leung, AW, Steiner, RE, Young, IR. NMR imaging of the liver in two cases of iron overload. J Comput Assist Tomogr. 1984;8(3):446–449.CrossRefGoogle ScholarPubMed
Stark, DD. Hepatic iron overload: paramagnetic pathology. Radiology. 1991;179(2):333–335.CrossRefGoogle ScholarPubMed
Brown, DW, Henkelman, RM, Poon, PY, Fisher, MM. Nuclear magnetic resonance study of iron overload in liver tissue. Magn Reson Imaging. 1985;3(3):275–282.CrossRefGoogle ScholarPubMed
Tanner, MA, He, T, Westwood, MA, Firmin, DN, Pennell, DJ. Multi-center validation of the transferability of the magnetic resonance T2* technique for the quantification of tissue iron. Haematologica. 2006;91(10):1388–1391.Google ScholarPubMed
Helpern, JA, Ordidge, RJ, Gorell, JM, Deniau, JC, Welch, KM. Preliminary observations of transverse relaxation rates obtained at 3 tesla from the substantia nigra of adult normal human brain. NMR Biomed. 1995;8(1):25–27.CrossRefGoogle ScholarPubMed
Chatterjee, R, Katz, M, Oatridge, A, Bydder, GM, Porter, JB. Selective loss of anterior pituitary volume with severe pituitary – gonadal insufficiency in poorly compliant male thalassemic patients with pubertal arrest. Ann NY Acad Sci. 1998;850:479–482.CrossRefGoogle ScholarPubMed
Argyropoulou, MI, Kiortsis, DN, Efremidis, SC. MRI of the liver and the pituitary gland in patients with beta-thalassemia major: does hepatic siderosis predict pituitary iron deposition?Eur Radiol. 2003;13(1):12–16.Google ScholarPubMed
Christoforidis, A, Haritandi, A, Perifanis, V, Tsatra, I, Athanassiou-Metaxa, M, Dimitriadis, AS. MRI for the determination of pituitary iron overload in children and young adults with beta-thalassaemia major. Eur J Radiol. 2007;62(1):138–142.CrossRefGoogle Scholar
Midiri, M, Lo Casto, A, Sparacia, G, et al. MR imaging of pancreatic changes in patients with transfusion-dependent beta-thalassemia major. AJR Am J Roentgenol. 1999;173(1):187–192.CrossRefGoogle ScholarPubMed
Au, WY, Lam, WW, Chu, W, et al. A T2* magnetic resonance imaging study of pancreatic iron overload in thalassemia major. Haematologica. 2008;93(1):116–119.CrossRefGoogle ScholarPubMed
Balcerzac, S, Westerman, M, Heihn, E, Taylor, F. Effect of desferrioxamine and DTPA in iron overload. Br J Med. 1968;2:1573–1576.Google Scholar
Pippard, MJ, Letsky, EA, Callender, ST, Weatherall, DJ. Prevention of iron loading in transfusion-dependent thalassaemia. Lancet. 1978;1(8075):1178–1181.CrossRefGoogle ScholarPubMed
Pippard, M, Johnson, D, Callender, S, Finch, C. Ferrioxamine excretion in iron loaded man. Blood. 1982;60:288–294.Google ScholarPubMed
Fillet, G, Cook, JD, Finch, CA. Storage iron kinetics. VII. A biologic model for reticuloendothelial iron transport. J Clin Invest. 1974;53(6):1527–1533.CrossRefGoogle ScholarPubMed
Frazer, DM, Wilkins, SJ, Millard, KN, McKie, AT, Vulpe, CD, Anderson, GJ. Increased hepcidin expression and hypoferraemia associated with an acute phase response are not affected by inactivation of HFE. Br J Haematol. 2004;126(3):434–436.CrossRefGoogle Scholar
Bradley, SJ, Gosriwitana, I, Srichairatanakool, S, Hider, RC, Porter, JB. Non-transferrin-bound iron induced by myeloablative chemotherapy [see comments]. Br J Haematol. 1997;99(2):337–343.CrossRefGoogle Scholar
Gosriwatana, I, Loreal, O, Lu, S, Brissot, P, Porter, J, Hider, RC. Quantification of non-transferrin-bound iron in the presence of unsaturated transferrin. Anal Biochem. 1999;273(2):212–220.CrossRefGoogle ScholarPubMed
Loreal, O, Gosriwatana, I, Guyader, D, Porter, J, Brissot, P, Hider, RC. Determination of non-transferrin-bound iron in genetic hemochromatosis using a new HPLC-based method [see comments]. J Hepatol. 2000;32(5):727–733.CrossRefGoogle Scholar
Porter, JB, Rafique, R, Srichairatanakool, S, et al. Recent insights into interactions of deferoxamine with cellular and plasma iron pools: implications for clinical use. Ann NY Acad Sci. 2005;1054:155–168.CrossRefGoogle ScholarPubMed
Porter, JB, Abeysinghe, RD, Marshall, L, Hider, RC, Singh, S. Kinetics of removal and reappearance of non-transferrin-bound plasma iron with deferoxamine therapy. Blood. 1996;88(2):705–713.Google ScholarPubMed
Jacobs, EM, Hendriks, JC, Tits, BL, et al. Results of an international round robin for the quantification of serum non-transferrin-bound iron: Need for defining standardization and a clinically relevant isoform. Anal Biochem. 2005;341(2):241–250.CrossRefGoogle Scholar
Singh, S, Hider, RC, Porter, JB. A direct method for quantification of non-transferrin bound iron (NTBI). Anal Biochem. 1990;186:320–323.CrossRefGoogle Scholar
Cabantchik, ZI, Breuer, W, Zanninelli, G, Cianciulli, P. LPI-labile plasma iron in iron overload. Best Pract Res Clin Haematol. 2005;18(2):277–287.CrossRefGoogle ScholarPubMed
Daar, S, Taher, A, Pathare, A, et al. Plasma LPI in thalassemia patients before and after treatment with Deferasirox (Exjade®, ICL670). Blood. 2005;106(11): 2697a.Google Scholar
Nemeth, E, Valore, EV, Territo, M, Schiller, G, Lichtenstein, A, Ganz, T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101(7):2461–2463.CrossRefGoogle ScholarPubMed
Porter, JB, Huehns, ER. The toxic effects of desferrioxamine. Baillieres Clin Haematol. 1989;2:459–474.CrossRefGoogle ScholarPubMed
Jacobs, A. Low molecular weight intracellular iron transport compounds. Blood. 1977;50:433–439.Google ScholarPubMed
Glickstein, H, El, RB, Shvartsman, M, Cabantchik, ZI. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood. 2005;106(9):3242–3250.CrossRefGoogle ScholarPubMed
Loreal, GET. Liver fibrosis in genetic hemochromatosis: Respective roles of iron and non iron related factors. J Hepatol. 1992;16:122.CrossRefGoogle ScholarPubMed
Hershko, C. Determinants of fecal and urinary iron excretion in rats. Blood. 1978;51:415–423.Google Scholar
Hershko, C, Grady, R, Cerami, A. Mechanism of desferrioxamine-induced iron excterion in the hypertransfused rat: definition of two alternative pathways of iron mobilisation. J Lab Clin Med. 1978;92:144–151.Google Scholar
Hershko, C, Rachmilewitz, E. Mechanism of desferrioxamine induced iron excretion in thalassaemia. Br J Haematol. 1979;42:125–132.CrossRefGoogle ScholarPubMed
Finch, CA, Deubelbeiss, K, Cook, JD, et al. Ferrokinetics in man. J Clin Invest. 1970;49:17–53.Google ScholarPubMed
Hershko, C. A study of the chelating agent diethylenetriaminepentacetic acid using selective radioiron probes of reticuloendothelial and parenchymal iron stires. J Lab Clin Med. 1975;85:913–921.Google Scholar
Saito, K, Nishisato, T, Grasso, JA, Aisen, P. Interaction of transferrin with iron loaded rat peritoneal macrophages. Br J Haematol. 1986;62:275–286.CrossRefGoogle ScholarPubMed
Hershko, C, Cook, J, Finch, C. Storage iron kinetics III. Study of desferrioxamine action by selective radioiron labels of RE and parenchymal cells. J Lab Clin Med. 1973;81:876–886.Google Scholar
Hershko, C, Konijn, AM, Nick, HP, Breuer, W, Cabantchik, ZI, Link, G. ICL670A: a new synthetic oral chelator: evaluation in hypertransfused rats with selective radioiron probes of hepatocellular and reticuloendothelial iron stores and in iron-loaded rat heart cells in culture. Blood. 2001;97(4):1115–1122.CrossRefGoogle ScholarPubMed
Link, G, Konijn, AM, Breuer, W, Cabantchik, ZI, Hershko, C. Exploring the “iron shuttle” hypothesis in chelation therapy: effects of combined deferoxamine and deferiprone treatment in hypertransfused rats with labeled iron stores and in iron-loaded rat heart cells in culture. J Lab Clin Med. 2001;138(2):130–138.CrossRefGoogle ScholarPubMed
Stefanini, S, Chiancone, E, Cavallo, S, Saez, V, Hall, AD, Hider, RC. The interaction of hydroxypyridinones with human serum transferrin and ovotransferrin. J Inorg Biochem. 1991;44(1):27–37.CrossRefGoogle ScholarPubMed
Kontoghiorghes, GJ, Goddard, JG, Bartlett, AN, Sheppard, L. Pharmacokinetic studies in humans with the oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one. Clin Pharmacol. 1990;48:255–261.Google ScholarPubMed
Breuer, W, Ermers, MJ, Pootrakul, P, Abramov, A, Hershko, C, Cabantchik, ZI. Desferrioxamine-chelatable iron, a component of serum non-transferrin- bound iron, used for assessing chelation therapy. Blood. 2001;97(3):792–798.CrossRefGoogle ScholarPubMed
Esposito, BP, Breuer, W, Sirankapracha, P, Pootrakul, P, Hershko, C, Cabantchik, ZI. Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood. 2003;102(7):2670–2677.CrossRefGoogle ScholarPubMed
Tabuchi, M, Yoshimori, T, Yamaguchi, K, Yoshida, T, Kishi, F. Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in HEp-2 cells. J Biol Chem. 2000;275(29):22220–22228.CrossRefGoogle ScholarPubMed
Weaver, J, Pollack, S. Low Mr iron isolated from guinea pig reticulocytes as AMP-Fe and ATP-Fe complexes. Biochem J. 1989;261:787–792.CrossRefGoogle Scholar
Pollack, S, Weaver, J, Zhan, H. Intracellular iron. Blood. 1990;76:15a.Google Scholar
Breuer, W, Epsztejn, S, Cabantchik, ZI. Dynamics of the cytosolic chelatable iron pool of K562 cells. FEBS Lett. 1996;382(3):304–308.CrossRefGoogle ScholarPubMed
Epsztejn, S, Kakhlon, O, Glickstein, H, Breuer, W, Cabantchik, I. Fluorescence analysis of the labile iron pool of mammalian cells. Anal Biochem. 1997;248(1):31–40.CrossRefGoogle ScholarPubMed
Pippard, M, Johnson, D, Finch, C. Hepatocyte iron kinetics in the rat explored with an iron chelator. Br J Haematol. 1982;52:211–224.CrossRefGoogle ScholarPubMed
Bailey-Wood, R, White, G, Jacobs, A. The use of chang cells in votro for the investigation of cellular iron metabolism. Br J Exp Pathol. 1975;56:358–362.Google Scholar
White, GP, Bailey-Wood, R, Jacobs, A. The effect of chelating agents on cellular iron metabolism. Clin Sci Mol Med. 1976;50:145–152.Google ScholarPubMed
Mulligan, M, Althus, B, Linder, M. Non-ferritin, non-heme iron pools in rat tissues. Int J Biochem. 1986;18:791–798.CrossRefGoogle ScholarPubMed
Rothman, RJ, Serroni, A, Farber, JL. Cellular pool of transient ferric iron, chelatable by deferoxamine and distinct from ferritin that is involved in oxidative cell injury. Mol Pharmacol. 1992;42(4):703–710.Google ScholarPubMed
Cooper, CE, Porter, JB. Ribonucleotide reductase, lipoxygenase and the intracellular low- molecular-weight iron pool. Biochem Soc Trans. 1997;25(1):75–80.CrossRefGoogle ScholarPubMed
Klausner, R, Rouault, T, Harford, J. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell. 1993 72:19–28.CrossRefGoogle ScholarPubMed
Porter, JB, Huehns, ER, Hider, RC. The development of iron chelating drugs. Baillieres Clin Haematol. 1989;2(2):257–292.CrossRefGoogle ScholarPubMed
Hoyes, KP, Porter, JB. Subcellular distribution of desferrioxamine and hydroxypyridin-4-one chelators in K562 cells affects chelation of intracellular iron pools. Br J Haematol. 1993;85(2):393–400.CrossRefGoogle ScholarPubMed
Zanninelli, G, Glickstein, H, Breuer, W, et al. Chelation and mobilization of cellular iron by different classes of chelators. Mol Pharmacol. 1997;51(5):842–852.CrossRefGoogle ScholarPubMed
Glickstein, H, El, RB, Link, G, et al. Action of chelators in iron-loaded cardiac cells: Accessibility to intracellular labile iron and functional consequences. Blood. 2006;108(9):3195–3203.CrossRefGoogle ScholarPubMed
Kayyali, R, Porter, JB, Liu, ZD, et al. Structure-function investigation of the interaction of 1- and 2- substituted 3-hydroxypyridin-4-ones with 5-lipoxygenase and ribonucleotide reductase. J Biol Chem. 2001;15:15.Google Scholar
Crichton, R, Roman, F, Roland, F. Iron mobilisation from ferritin by chelating agents. J Inorg Biochem. 1980;13:305–316.CrossRefGoogle ScholarPubMed
Brady, MC, Lilley, KS, Treffry, A, Harrison, PM, Hider, RC, Taylor, PD. Release of iron from ferritin molecules and their iron-cores by 3- hydroxypyridinone chelators in vitro. J Inorg Biochem. 1989;35(1):9–22.CrossRefGoogle ScholarPubMed
Dobbin, PS, Hider, RC, Hall, AD, et al. Synthesis, physicochemical properties, and biological evaluation of N- substituted 2-alkyl-3-hydroxy-4(1H)-pyridinones: orally active iron chelators with clinical potential. J Med Chem. 1993;36(17):2448–2458.CrossRefGoogle ScholarPubMed
Drysdale, J, Munro, J. Regulation of synthesis and turnover of ferritin in rat liver. J Biol Chem. 1966;241:3630–3637.Google ScholarPubMed
Cooper, PJ, Iancu, TC, Ward, RJ, Guttridge, KM, Peters, TJ. Quantitative analysis of immunogold labelling for ferritin in liver from control and iron-overloaded rats. Histochem J. 1988;20(9):499–509.CrossRefGoogle ScholarPubMed
Porter, J, Gyparaki, M, Burke, L, et al. Iron mobilization from hepatocyte monolayer cultures by chelators: the importance of membrane permeability and the iron binding constant. Blood. 1988;72:1497–1503.Google ScholarPubMed
Abeysinghe, RD, Roberts, PJ, Cooper, CE, MacLean, KH, Hider, RC, Porter, JB. The environment of the lipoxygenase iron binding site explored with novel hydroxypyridinone iron chelators. J Biol Chem. 1996;271(14):7965–7972.CrossRefGoogle ScholarPubMed
Cooper, CE, Lynagh, GR, Hoyes, KP, Hider, RC, Cammack, R, Porter, JB. The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase. J Biol Chem. 1996;271(34):20291–20299.CrossRefGoogle ScholarPubMed
Hoyes, KP, Hider, RC, Porter, JB. Cell cycle synchronization and growth inhibition by 3-hydroxypyridin-4- one iron chelators in leukemia cell lines. Cancer Res. 1992;52(17):4591–4599.Google ScholarPubMed
Hoyes, KP, Jones, HM, Abeysinghe, RD, Hider, RC, Porter, JB. In vivo and in vitro effects of 3-hydroxypyridin-4-one chelators on murine hemopoiesis. Exp Hematol. 1993;21(1):86–92.Google ScholarPubMed
Gutteridge, JMC, Richmond, R, Halliwell, B. Inhibition of iron catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem J. 1979;184:469–472.CrossRefGoogle ScholarPubMed
Hider, RC, Liu, ZD. Emerging understanding of the advantage of small molecules such as hydroxypyridinones in the treatment of iron overload. Curr Med Chem. 2003;10(12):1051–1064.CrossRefGoogle ScholarPubMed
Steinhauser, S, Heinz, U, Bartholomä, M, Weyhermüller, T, Nick, H, Hegetschweile, K. Complex Formation of ICL670 and Related Ligands with FeIII and FeII. Eur Inorg Chem. 2004;21:4177–4192.CrossRefGoogle Scholar
Hider, RC, Epemolu, O, Singh, S, Porter, JB. Iron chelator design. Adv Exp Med Biol. 1994;356:343–349.CrossRefGoogle ScholarPubMed
Hider, RC, Choudhury, R, Rai, BL, Dehkordi, LS, Singh, S. Design of orally active iron chelators. Acta Haematol. 1996;95(1):6–12.CrossRefGoogle ScholarPubMed
Porter, JB, Morgan, J, Hoyes, KP, Burke, LC, Huehns, ER, Hider, RC. Relative oral efficacy and acute toxicity of hydroxypyridin-4-one iron chelators in mice. Blood. 1990;76(11):2389–2396.Google ScholarPubMed
Liu, ZD, Kayyali, R, Hider, RC, Porter, JB, Theobald, AE. Design, synthesis, and evaluation of novel 2-substituted 3-hydroxypyridin-4-ones: structure-activity investigation of metalloenzyme inhibition by iron chelators. J Med Chem. 2002;45(3):631–639.CrossRefGoogle ScholarPubMed
Porter, JB, Abeysinghe, RD, Hoyes, KP, et al. Contrasting interspecies efficacy and toxicology of 1,2-diethyl-3- hydroxypyridin-4-one, CP94, relates to differing metabolism of the iron chelating site. Br J Haematol. 1993;85(1):159–168.CrossRefGoogle ScholarPubMed
Lu, SL, Gosriwatana, I, Liu, DY, Liu, ZD, Mallet, AI, Hider, RC. Biliary and urinary metabolic profiles of 1,2-diethyl-3-hydroxypyridin- 4-one (CP94) in the rat. Drug Metab Dispos. 2000;28(8):873–879.Google Scholar
Liu, DY, Liu, ZD, Lu, SL, Hider, RC. Hydrolytic and metabolic characteristics of the esters of 1-(3′- hydroxypropyl)-2-methyl-3-hydroxypyridin-4-one (CP41), potentially useful iron chelators. Pharmacol Toxicol. 2000;86(5):228–233.CrossRefGoogle Scholar
Porter, JB, Singh, S, Hoyes, KP, Epemolu, O, Abeysinghe, RD, Hider, RC. Lessons from preclinical and clinical studies with 1,2-diethyl-3- hydroxypyridin-4-one, CP94 and related compounds. Adv Exp Med Biol. 1994;356:361–370.CrossRefGoogle ScholarPubMed
Porter, J, Borgna-Pignatti, C, Baccarani, M, et al. Iron chelation efficiency of Deferasirox (Exjade, ICL670) in patients with transfusional hemosiderosis. Blood. 2005;106:2690a.Google Scholar
Hoffbrand, AV, Cohen, A, Hershko, C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood. 2003;102(1):17–24.CrossRefGoogle ScholarPubMed
al-Refaie, FN, Sheppard, LN, Nortey, P, Wonke, B, Hoffbrand, AV. Pharmacokinetics of the oral iron chelator deferiprone (L1) in patients with iron overload. Br J Haematol. 1995;89(2):403–408.CrossRefGoogle ScholarPubMed
Galanello, R, Piga, A, Alberti, D, Rouan, MC, Bigler, H, Sechaud, R. Safety, tolerability, and pharmacokinetics of ICL670, a new orally active iron-chelating agent in patients with transfusion-dependent iron overload due to beta-thalassemia. J Clin Pharmacol. 2003;43(6):565–572.CrossRefGoogle ScholarPubMed
Nisbet-Brown, E, Olivieri, NF, Giardina, PJ, et al. Effectiveness and safety of ICL670 in iron-loaded patients with thalassaemia: a randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet. 2003;361(9369):1597–1602.CrossRefGoogle ScholarPubMed
Porter, J, Davis, B, Weir, T, et al. Preliminary findings with single-dose evaluation of a new depot formulation of deferoxamine (ICL 749B) for transfusion-dependent beta-thalassemia. Florida: The Saratoga Group, Ponte Verde Beach; 2000.
Bannerman, R, Callender, S, Williams, D. Effect of desferrioxamine and DTPA in iron overload. Br Med J. 1962;2:1573–1576.CrossRefGoogle Scholar
Sephton-Smith, R. Iron excretion in thalassaemia major after administration of chelating agents. Br Med J. 1962;2:1577–1580.CrossRefGoogle Scholar
Propper, RL, Cooper, B, Rufo, RR, et al. Continuous subcutaneous administration of deferoxamine in patients with iron overload. N Engl J Med. 1977;297:418–423.CrossRefGoogle ScholarPubMed
Hussain, MA, Green, N, Flynn, DM, Hussein, S, Hoffbrand, AV. Subcutaneous infusion and intramuscular injection of desferrioxamine in patients withy transfusional iron overload. Lancet. 1976;2(7998):1278–1280.CrossRefGoogle Scholar
Pippard, MJ, Callender, ST, Weatherall, DJ. Intensive iron-chelation therapy with desferrioxamine in iron-loading anaemias. Clin Sci Mol Med. 1978;54(1):99–106.Google ScholarPubMed
Nienhuis, AW, Griffith, P, Strawczynski, H, et al. Evaluation of cardiac function in patients with thalassemia major. Ann NY Acad Sci. 1980;344:384–396.CrossRefGoogle ScholarPubMed
Marcus, RE, Davies, SC, Bantock, HM, Underwood, , Walton, S, Huehns, ER. Desferrioxamine to improve cardiac function in iron overloaded patients with thalassaemia major. Lancet. 1984; 1:392–393.CrossRefGoogle Scholar
Cohen, AR, Mizanin, J, Schwartz, E. Rapid removal of excessive iron with daily high dose intravenous chelation therapy. J Pediatr. 1987; 115:151–155.CrossRefGoogle Scholar
Freeman, AP, Giles, RW, Berdoukas, VA, Talley, PA, Murray, IP. Sustained normalization of cardiac function by chelation therapy in thalassaemia major. Clin Lab Haematol. 1989;11(4):299–307.CrossRefGoogle ScholarPubMed
Davies, SC, Marcus, RE, Hungerford, JL, Miller, HM, Arden, GB, Huehns, ER. Ocular toxicity of high-dose intravenous desferrioxamine. Lancet. 1983;2:181–184.CrossRefGoogle ScholarPubMed
Olivieri, NF, Buncic, JR, Chew, E, et al. Visual and auditory neurotoxicity in patients receiving subcutaneous deferoxamine infusions. N Engl J Med. 1986;314(14):869–873.CrossRefGoogle ScholarPubMed
Virgillis, S, Congia, M, Frau, F, et al. Desferrioxamine-induced growth retardation in patients with thalassaemia major. J Pediatr. 1988; 113:661–669.CrossRefGoogle Scholar
Piga, A, Luzzatto, L, Capalbo, P, Gambotto, S, Tricta, F, Gabutti, V. High dose desferrioxamine as a cause of growth failure in thalassaemic patients. Eur J Haematol. 1988;40: 380–381.Google Scholar
Andriani, M, Nordio, M, Saporiti, E. Estimation of statistical moments for desferrioxamine and its iron and aluminum chelates: contribution to optimisation of therapy in uremic patients. Nephron. 1996;72:218–224.CrossRefGoogle ScholarPubMed
Lee, P, Mohammed, N, Abeysinghe, RD, Hider, RC, Porter, JB, Singh, S. Intravenous infusion pharmacokinetics of desferrioxamine in thalassaemia patients. Drug Metab Dispos. 1993;21(4): 640–644.Google Scholar
Porter, JB, Faherty, A, Stallibrass, L, Brookman, L, Hassan, I, Howes, C. A trial to investigate the relationship between DFO pharmacokinetics and metabolism and DFO-related toxicity. Ann NY Acad Sci. 1998;850:483–487.CrossRefGoogle ScholarPubMed
Pippard, MJ. Desferrioxamine-induced iron excretion in humans. Baillieres Clin Haematol. 1989;2.2:323–343.CrossRefGoogle ScholarPubMed
Modell, CB, Beck, J. Long term desferrioxamine therapy in thalassaemia. Ann NY Acad Sci. 1974;232:201–210.CrossRefGoogle Scholar
Cohen, A, Martin, M, Schwartz, E. Response to long term deferrioxamine therapy in thalassemia. J Pediatr. 1981;99:689–694.CrossRefGoogle Scholar
Cohen, A, Martin, M, Schwartz, E. Depletion of excessive iron stores with desferrioxamine. Br J Haematol. 1984;58:369–373.CrossRefGoogle ScholarPubMed
Aldouri, MA, Wonke, B, Hoffbrand, AV, et al. Iron state and hepatic disease in patients with thalassaemia major, treated with long term subcutaneous desferrioxamine. J Clin Pathol. 1987;40:1353–1359.CrossRefGoogle ScholarPubMed
Olivieri, NF, Brittenham, GM, McLaren, CE, et al. Long-term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major [see comments]. N Engl J Med. 1998;339(7):417–423.CrossRefGoogle Scholar
Cappellini, MD, Cohen, A, Piga, A, et al. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood. 2006;107(9):3455–3462.CrossRefGoogle Scholar
Modell, B, Letsky, E, Flynn, D, Peto, R, Weatherall, D. Survival and desferrioxamine in thalassaemia major. Br Med J. 1982;284:1081–1084.CrossRefGoogle ScholarPubMed
Gabutti, V, Borgna-Pignatti, C. Clinical manifestations and therapy of transfusional haemosiderosis. Bailliere Clin Haematol. 1994;7:919–940.CrossRefGoogle ScholarPubMed
Freeman, AP, Giles, RW, Berdoukas, VA, Walsh, WF, Choy, D, Murray, PC. Early left ventricular dysfunction and chelation therapy in thalassemia major. Ann Intern Med. 1983;99(4):450–454.CrossRefGoogle ScholarPubMed
Aldouri, MA, Hoffbrand, AV, Flynn, DM, Ward, SE, Agnew, JE, Hilson, AJW. High incidence of cardiomyopathy in beta-thalassemia patients receiving transfusion and iron chelation: reversal by intensified chelation. Acta Haematol. 1990;84:113–117.CrossRefGoogle ScholarPubMed
Cohen, AR, Mizanin, J, Schwartz, E. Rapid removal of excessive iron with daily, high-dose intravenous chelation therapy. J Pediatr. 1989;115(1):151–155.CrossRefGoogle ScholarPubMed
Tamary, H, Goshen, J, Carmi, D, et al. Long-term intravenous deferoxamine treatment for noncompliant transfusion-dependent beta-thalassemia patients. Isr J Med Sci. 1994;30:658–664.Google ScholarPubMed
Miskin, H, Yaniv, I, Berant, M, Hershko, C, Tamary, H. Reversal of cardiac complications in thalassemia major by long-term intermittent daily intensive iron chelation. Eur J Haematol. 2003;70(6):398–403.CrossRefGoogle ScholarPubMed
Olivieri, NF, Berriman, AM, Tyler, BJ, Davis, SA, Francombe, WH, Liu, PP. Reduction in tissue iron stores with a new regimen of continuous ambulatory intravenous deferoxamine. Am J Hematol. 1992;41(1):61–63.CrossRefGoogle ScholarPubMed
Pennell, DJ, Berdoukas, V, Karagiorga, M, et al. Randomized controlled trial of deferiprone or deferoxamine in beta-thalassemia major patients with asymptomatic myocardial siderosis. Blood. 2006;107(9):3738–3744.CrossRefGoogle ScholarPubMed
Tanner, MA, Galanello, R, Dessi, C, et al. A randomized, placebo-controlled, double-blind trial of the effect of combined therapy with deferoxamine and deferiprone on myocardial iron in thalassemia major using cardiovascular magnetic resonance. Circulation. 2007;115(14):1876–1884.CrossRefGoogle ScholarPubMed
Porter, JB, A. TM, J. PD, P E. Improved Myocardial T2* in Transfusion Dependent Anemias Receiving ICL670 (Deferasirox). Blood. 2005;106(11):3600a.Google Scholar
Bronspiegel-Weintrob, N, Olivieri, NF, Tyler, B, Andrews, DF, Freedman, MH, Holland, FJ. Effect of age at the start of iron chelation therapy on gonadal function in beta-thalassemia major. N Engl J Med. 1990;323(11):713–719.CrossRefGoogle ScholarPubMed
Fosburg, M, Nathan, DG. Treatment of Cooleys anaemia. Blood. 1990;76:435–444.Google Scholar
Rahko, PS, Salerni, R, Uretsky, BF. Successful reversal by chelation therapy of congestive cardiomyopathy due to iron overload. J Am Coll Cardiol. 1986;8:436–440.CrossRefGoogle ScholarPubMed
Freeman, AP, Giles, RW, Berdoukas, VA, Talley, PA, Murray, IP. Sustained normalisation of cardiac function by chelation therapy in thalassaemia major. Clin Lab Haematol. 1989;11(4):299–307.CrossRefGoogle Scholar
Flynn, DM, Hoffbrand, AV, Politis, D. Subcutaneous desferrioxamine: the effect of three years' treatment on liver, iron, serum ferritin, and comments on echocardiography. Birth Defects Orig Artic Series. 1982;18(7):347–353.Google ScholarPubMed
Olivieri, NF, Rees, DC, Ginder, GD, et al. Treatment of thalassaemia major with phenylbutyrate and hydroxyurea. Lancet. 1997;350(9076):491–492.CrossRefGoogle ScholarPubMed
Sanctis, V, Pinamonti, A, Di Palma, A, et al. Growth and development in thalassaemia major patients with severe bone lesions due to desferrioxamine. Eur J Pediatr. 1996;155(5):368–372.CrossRefGoogle ScholarPubMed
Arden, GB, Wonke, B, Kennedy, C, Huehns, ER. Ocular changes in patients undergoing long term desferrioxamine treatment. Br J Ophthalmol. 1984; 68: 873–877.CrossRefGoogle ScholarPubMed
Robins-Browne, R, Prpic, J. Desferrioxamine and systemic yersiniosis. Lancet. 1983;2:1372.CrossRefGoogle ScholarPubMed
Gallant, R, Freedman, M, Vellend, H, Francome, W. Yersinia sepsis in patients with iron overload treated with desferrioxamine. N Engl J Med. 1986;314:1643.Google Scholar
Kouides, PA, Slapak, CA, Rosenwasser, LJ, Miller, KB. Pneumocystis carinii. pneumonia as a complication of desferrioxamine therapy. Br J Haematol. 1988;70:382–384.CrossRefGoogle ScholarPubMed
Boelaert, JR, Verauwe, PL, Vandepitte, JM. Mucormycosis infections in dialysis patients. Ann Intern Med. 1987;107(5):782–783.CrossRefGoogle ScholarPubMed
Miller, KB, Rosenwasser, LJ, Bessette, JM, Beer, DJ, Rocklin, RE. Rapid desenstitisation for desferrioxamine anaphylactic reaction. Lancet. 1981;1:1059. (Letter)CrossRefGoogle ScholarPubMed
Bosquet, J, Navarro, M, Robert, G, Aye, P, Michel, FB. Rapid desensitisation for desferrioxamine anaphylactoid reaction. Lancet. 1983;2:859–860.CrossRefGoogle Scholar
Koren, G, Bentur, Y, Strong, D, et al. Acute changes in renal function associated with desferrioxamine therapy. Am J Dis Child. 1990;143(9):1077–1080.Google Scholar
Koren, G, Kochavi Atiya, Y, Bentur, Y, Olivieri, NF. The effects of subcutaneous deferoxamine administration on renal function in thalassemia major. Intl J Hematol. 1991;54(5):371–375.Google ScholarPubMed
Tenenbein, M, Kowalski, S, Sienko, A, Bowden, DH, Adamson, IYR. Pulmonary toxic effects of continuous desferrioxamine administration in acute iron poisoning. Lancet. 1992;339:699–701.CrossRefGoogle ScholarPubMed
Freedman, MH, Grisaru, D, Olivieri, NF, MacLusky, I, Thorner, PS. Pulmonary syndrome in patients with thalassaemia receiving intravenous desferrioxamine infusions. Am J Dis Child. 1990; 144:565–569.Google Scholar
Blake, DR, Winyard, P, Lunec, J, et al. Cerebral and ocular toxicity induced by desferrioxamine. Q J Med. 1985;56:345–355.Google ScholarPubMed
Walker, JA, Sherman, RA, Eisinger, RP. Thrombocytopenia associated with intravenous desferrioxamine. Am J Kidney Dis. 1985;6:254–256.CrossRefGoogle ScholarPubMed
Modell, B. Advances in the use of iron-chelating agents for the treatment of iron overload. Prog Haematol. 1979;11:267–312.Google ScholarPubMed
Dickerhoff, R. Acute aphasia and loss of vision with desferrioxamine overdose. J Pediatr Hematol Oncol. 1987;9:287–288.Google ScholarPubMed
Olivieri, NF, Koren, G, Matsui, D, et al. Reduction of tissue iron stores and normalization of serum ferritin during treatment with the oral iron chelator L1 in thalassemia intermedia. Blood. 1992;79(10):2741–2748.Google ScholarPubMed
Rodda, CP, Reid, ED, Johnson, S, Doery, J, Matthews, R, Bowden, DK. Short stature in homozygous beta-thalassaemia is due to disproportionate truncal shortening. Clin Endocrinol. 1995;42(6):587–592.CrossRefGoogle ScholarPubMed
Piga, A, Facello, O, Gaglioti, G, Pucci, A, Pietribiasi, F, Zimmerman, A. No progression of liver fibrosis in thalassaemia major during deferiprone or desferrioxamine iron chelation. Blood. 1998;92 (Supple 2)(10):21b. (Abstract)Google Scholar
Berkovitch, M, Collins, AF, Papadouris, D, et al. Need for early, low-dose chelation therapy in young children with transfused homozygous beta thalassemia. Blood. 1993;82:359a.Google Scholar
Araujo, A, Kosaryan, M, MacDowell, A, et al. A novel delivery system for continuous desferrioxamine infusion in transfusional iron overload. Br J Haematol. 1996;93(4):835–837.CrossRefGoogle ScholarPubMed
Jensen, PD, Heickendorff, L, Pedersen, B, et al. The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload. Br J Haematol. 1996;94(2):288–299.CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C, Cohen, A. Evaluation of a new method of administration of the iron chelating agent deferoxamine. J Pediatr. 1997;130(1):86–88.CrossRefGoogle ScholarPubMed
Yarali, N, Fisgin, T, Duru, F, et al. Subcutaneous bolus injection of deferoxamine is an alternative method to subcutaneous continuous infusion. J Pediatr Hematol Oncol. 2006;28(1):11–16.Google ScholarPubMed
Collins, AF, Fassos, FF, Stobie, S, et al. Iron-balance and dose-response studies of the oral iron chelator 1,2- dimethyl-3-hydroxypyrid-4-one (L1) in iron-loaded patients with sickle cell disease. Blood. 1994;83(8):2329–2933.Google ScholarPubMed
Hider, R, Kontoghiorghes, G, Silver, J. Pharmaceutical Compositions. UK Patent GB 2118176A, 1982.
Kontoghiorghes, GJ, Aldouri, MA, Hoffbrand, AV, et al. Effective chelation of iron in beta thalassaemia with the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one. Br Med J. 1987;295(6612):1509–1512.CrossRefGoogle ScholarPubMed
Kontoghiorghes, GJ, Aldouri, MA, Sheppard, L, Hoffbrand, AV. 1,2-dimethyl-3-hydroxypyrid-4-one, an orally active chelator for treatment of iron overload. Lancet. 1987b;1:1294–1295.CrossRefGoogle ScholarPubMed
Porter, J, Hoyes, K, Abeysinghe, R, Huehns, E, Hider, R. Animal Toxicology of iron chelator L1. Lancet. 1989;2:156. (Letter)CrossRefGoogle ScholarPubMed
Porter, JB, Hoyes, KP, Abeysinghe, RD, Brooks, PN, Huehns, ER, Hider, RC. Comparison of the subacute toxicity and efficacy of 3-hydroxypyridin-4-one iron chelators in overloaded and nonoverloaded mice. Blood. 1991;78(10):2727–2734.Google ScholarPubMed
Hoffbrand, A, Bartlett, A, Veys, P, O'Connor, N, Kontoghiorghes, G. Agranulocytosis and thrombocytopenia in patient with Blackfan-Diamond anaemia during oral chelator trial. Lancet. 1989;2:457.CrossRefGoogle ScholarPubMed
al-Refaie, FN, Wickens, DG, Wonke, B, Kontoghiorghes, GJ, Hoffbrand, AV. Serum non-transferrin-bound iron in beta-thalassaemia major patients treated with desferrioxamine and L1. Br J Haematol. 1992;82(2):431–436.CrossRefGoogle ScholarPubMed
al-Refaie, FN, Veys, PA, Wilkes, S, Wonke, B, Hoffbrand, AV. Agranulocytosis in a patient with thalassaemia major during treatment with the oral iron chelator, 1,2-dimethyl-3-hydroxypyrid-4-one. Acta Haematol. 1993;89(2):86–90.CrossRefGoogle Scholar
Carthew, P, Dorman, BM, Edwards, RE, Francis, JE, Smith, AG. A unique rodent model for both cardiotoxic and heptatotoxic effects of prolonged iron overload. Lab Invest. 1993;69:217–222.Google Scholar
Carthew, P, Smith, AG, Hider, RC, Dorman, B, Edwards, RE, Francis, JE. Potentiation of iron accumulation in cardiac myocytes during the treatment of iron overload in gerbils with the hydroxypyridinone iron chelator CP94. Biometals. 1994;7(4):267–71.CrossRefGoogle ScholarPubMed
Berdoukas, V, Bentley, P, Frost, H, Schnebli, HP. Toxicity of oral iron chelator L1. Lancet. 1993;341(8852):1088.CrossRefGoogle ScholarPubMed
Cohen, AR, Galanello, R, Piga, A, Sanctis, V, Tricta, F. Safety and effectiveness of long-term therapy with the oral iron chelator deferiprone. Blood. 2003;102(5):1583–1587.CrossRefGoogle ScholarPubMed
Pippard, MJ, Pattanapanyssat, K, Tiperkae, J, Hider, RC. Metabolism of the iron chelates of desferrioxamine and hydroxypyridinones in the rat. In: Proceedings of the European Iron Club. Budapest, Hungary; 1989:55.
Olivieri, NF, Koren, G, Hermann, C, et al. Comparison of oral iron chelator L1 and desferrioxamine in iron-loaded patients. Lancet. 1990;336(8726):1275–1279.CrossRefGoogle ScholarPubMed
Lange, R, Lameijer, W, Roozendaal, KL, Kersten, M. Pharmaceutical analysis and pharmacokinetics of the oral iron chelator 1,2-dimethyl-3-hydroxypyridi-4-one (DMHP). In: Proceedings of 4th International Conference on Oral Chelation. Limasol, Cyprus; 1993.
Kontoghiorghes, G, Sheppard, L, Barr, J, et al. Iron Balance studies with the oral chelator 1,2,dimethyl-3-hydroxypyridin-4-one. Br J Haematol. 1988;69:129a.Google Scholar
Hoffbrand, AV, Al-Refaie, F, Davis, B, et al. Long-term trial of deferiprone in 51 transfusion-dependent iron overloaded patients. Blood. 1998;91(1):295–300.Google ScholarPubMed
Agarwal, MB, Gupte, SS, Viswanathan, C, et al. Long-term assessment of efficacy and safety of L1, an oral iron chelator, in transfusion dependent thalassaemia: Indian trial. Br J Haematol. 1992;82(2):460–466.CrossRefGoogle ScholarPubMed
Longo, F, Fischer, R, Engelbert, R, Nielsen, P, Sachetti, L, Piga, A. Iron balance in thalassemia patients treated with deferiprone. Blood. 1998;92(Suppl 1):235a.Google Scholar
Maggio, A, D'Amico, G, Morabito, A, et al. Deferiprone versus deferoxamine in patients with thalassemia major: a randomized clinical trial. Blood Cells Mol Dis. 2002;28(2):196–208.CrossRefGoogle ScholarPubMed
Gomber, S, Saxena, R, Madan, N. Comparative efficacy of desferrioxamine, deferiprone and in combination on iron chelation in thalassemic children. Indian Pediatr. 2004;41(1):21–27.Google ScholarPubMed
Ha, SY, Chik, KW, Ling, SC, et al. A randomized controlled study evaluating the safety and efficacy of deferiprone treatment in thalassemia major patients from Hong Kong. Hemoglobin. 2006;30(2):263–274.CrossRefGoogle ScholarPubMed
Roberts, D, Brunskill, S, Doree, C, Williams, S, Howard, J, Hyde, C. Oral deferiprone for iron chelation in people with thalassaemia. Cochrane Database Syst Rev. 2007(3):CD004839.CrossRefGoogle ScholarPubMed
Tondury, P, Zimmermann, A, Nielsen, P, Hirt, A. Liver iron and fibrosis during long-term treatment with deferiprone in Swiss thalassaemic patients. Br J Haematol. 1998;101(3):413–415.CrossRefGoogle ScholarPubMed
Olivieri, N, Brittenham, G. Final Results of the randomised trial of deferiprone and deferoxamine. Blood. 1997;90(Suppl 1):264a.Google Scholar
Ceci, A, Baiardi, P, Felisi, M, et al. The safety and effectiveness of deferiprone in a large-scale, 3-year study in Italian patients. Br J Haematol. 2002;118(1):330–336.CrossRefGoogle Scholar
Piga, A, Gaglioti, C, Fogliacco, E, Tricta, F. Comparative effects of deferiprone and deferoxamine on survival and cardiac disease in patients with thalassemia major: a retrospective analysis. Haematologica. 2003;88(5):489–496.Google ScholarPubMed
Telfer, P, Coen, P, Christou, Sea. Survival of medically treated thalassemia patients in Cyprus. Trends and risk factors over the period 1980–2004. Haematologica. 2006;91:1187–1192.Google ScholarPubMed
Anderson, LJ, Wonke, B, Prescott, E, Holden, S, Walker, JM, Pennell, DJ. Comparison of effects of oral deferiprone and subcutaneous desferrioxamine on myocardial iron concentrations and ventricular function in beta-thalassaemia. Lancet. 2002;360(9332):516–520.CrossRefGoogle ScholarPubMed
al-Refaie, FN, Hershko, C, Hoffbrand, AV, et al. Results of long-term deferiprone (L1) therapy: a report by the International Study Group on Oral Iron Chelators. Br J Haematol. 1995;91(1):224–229.CrossRefGoogle Scholar
Hoffbrand, AV. Prospects for oral iron chelation therapy. J Lab Clin Med. 1994;123(4):492–494.Google ScholarPubMed
Cohen, A, Galanello, R, Piga, A, Vullo, C, Tricta, F. A multi-center safety trial of the oral iron chelator deferiprone. Ann NY Acad Sci. 1998;850:223–226.CrossRefGoogle ScholarPubMed
Naithani, R, Chandra, J, Sharma, S. Safety of oral iron chelator deferiprone in young thalassaemics. Eur J Haematol. 2005;74(3):217–220.CrossRefGoogle ScholarPubMed
Maclean, KH, Cleveland, JL, Porter, JB. Cellular zinc content is a major determinant of iron chelator-induced apoptosis of thymocytes. Blood. 2001;98(13):3831–3839.CrossRefGoogle ScholarPubMed
Bartlett, AN, Hoffbrand, AV, Kontoghiorghes, GJ. Long-term trial with the oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one (L1). II. Clinical observations. Br J Haematol. 1990;76(2):301–304.CrossRefGoogle ScholarPubMed
Cermak, J, Brabec, V. [Treatment of iron overload states with oral administration of the chelator agent, L1 (Deferiprone)]. Vnitr Lek. 1994;40(9):586–590.Google Scholar
Cohen, AR, Galanello, R, Piga, A, Dipalma, A, Vullo, C, Tricta, F. Safety profile of the oral iron chelator deferiprone: a multicentre study. Br J Haematol. 2000;108(2):305–312.CrossRefGoogle ScholarPubMed
Choudhry, VP, Pati, HP, Saxena, A, Malaviya, AN. Deferiprone, efficacy and safety. Indian J Pediatr. 2004;71(3):213–216.CrossRefGoogle ScholarPubMed
Berdoukas, V, Bohane, T, Eagle, C, et al. The Sydney Children's Hospital experience with the oral iron chelator deferiprone (L1). Transfusion Sci. 2000;23(3):239–240.CrossRefGoogle Scholar
Wanless, IR, Sweeney, G, Dhillon, AP, et al. Lack of progressive hepatic fibrosis during long-term therapy with deferiprone in subjects with transfusion-dependent beta-thalassemia. Blood. 2002;100(5):1566–1569.CrossRefGoogle ScholarPubMed
Schubert, J, Derr, SK. Mixed ligand chelate therapy for plutonium and cadmium poisoning. Nature. 1978;275(5678):311–313.CrossRefGoogle ScholarPubMed
May, PM, Williams, DR. Computer simulation of chelation therapy. Plasma mobilizing index as a replacement for effective stability constant. FEBS Lett. 1977;78(1):134–138.CrossRefGoogle ScholarPubMed
Jackson, GE, May, PM, Williams, DR. The action of chelating agents in the removal of copper from ceruloplasmin: an in vitro study. FEBS Lett. 1978;90(1):173–177.CrossRefGoogle ScholarPubMed
Grady, R, Giardina, P. Iron Chelation: Rationale for Combination Therapy. Florida: The Saratoga Group; 2000.
Giardina, PJ, Grady, RW. Chelation therapy in beta-thalassemia: an optimistic update. Semin Hematol. 2001;38(4):360–366.CrossRefGoogle ScholarPubMed
Mourad, FH, Hoffbrand, AV, Sheikh-Taha, M, Koussa, S, Khoriaty, AI, Taher, A. Comparison between desferrioxamine and combined therapy with desferrioxamine and deferiprone in iron overloaded thalassaemia patients. Br J Haematol. 2003;121(1):187–189.CrossRefGoogle ScholarPubMed
Galanello, R, Kattamis, A, Piga, A, et al. A prospective randomized controlled trial on the safety and efficacy of alternating deferoxamine and deferiprone in the treatment of iron overload in patients with thalassemia. Haematologica. 2006;91(9):1241–1243.Google ScholarPubMed
Aydinok, Y, Ulger, Z, Nart, D, et al. A randomized controlled 1-year study of daily deferiprone plus twice weekly desferrioxamine compared with daily deferiprone monotherapy in patients with thalassemia major. Haematologica. 2007;92(12):1599–1606.CrossRefGoogle ScholarPubMed
Origa, R, Bina, P, Agus, A, et al. Combined therapy with deferiprone and desferrioxamine in thalassemia major. Haematologica. 2005;90(10):1309–1314.Google ScholarPubMed
Kattamis, A, Ladis, V, Berdousi, H, et al. Iron chelation treatment with combined therapy with deferiprone and deferioxamine: a 12-month trial. Blood Cells Mol Dis. 2006;36(1):21–25.CrossRefGoogle ScholarPubMed
Nick, H, Acklin, P, Lattmann, R, et al. Development of tridentate iron chelators: from desferrithiocin to ICL670. Curr Med Chem. 2003;10:1065–1076.CrossRefGoogle ScholarPubMed
Wood, JC, Otto, M, Aguilar, M, et al. Cardiac iron determines cardiac T2*, T2, and T1 in the gerbil model of iron cardiomyopathy. Circulation. 2005;112:535–543.CrossRefGoogle Scholar
Piga, A, Galanello, R, Forni, GL, et al. Randomized phase II trial of deferasirox (Exjade, ICL670), a once-daily, orally-administered iron chelator, in comparison to deferoxamine in thalassemia patients with transfusional iron overload. Haematologica. 2006;91:873–880.Google Scholar
Porter, J, Waldmeier, F, Bruin, G, et al. Pharmacokinetics, metabolism and elimination of the iron chelator drug ICL670 in patients, following single oral doses of 1000 mg [14C]labelled drug at steady state. Blood. 2003;102:5b: Abstract 3720.Google Scholar
Eleftheriou, P, Tanner, M, Pennell, D, Porter, J. Response of myocardial T2* to oral deferasirox monotherapy for 1 year in 29 patients with transfusion-dependent anaemias; a subgroup analysis. Haematologic. 2006;91 (suppl):Abstract 999.Google Scholar
Wood, J, Thompson, A, Paley, C, et al. Exjade® reduces cardiac iron burden in chronically transfused β-thalassemia patients: an MRI T2* Study. Blood. 2007;110:Abstract 2781.Google Scholar
Cappellini, MD, Vichinsky, E, Ford, JM, Porter, J. Long-term safety of deferasirox (Exjade®, ICL670) in the management of blood transfusion-induced iron overload: results after a median reatment duration of 3.5 years. Submitted 2008.
Ong, L, Malasit, P, Ong, S, et al. Renal function in adult beta-thalassemia/HB E disease. Nephron. 1998:78:156–161.Google Scholar
Cappellini, M, Vinchinsky, E, Ford, J, Rabault, B, Porter, J. Evaluation of deferasirox (Exjade®, ICL670) therapy in patients with transfusional iron overload who achieve serum ferritin (SF) ≤1000 ng/ml in long-term studies. Session type: Blood. 2007;110 16b:Abstract 3795.Google Scholar
Donovan, JM, Plone, M, Dagher, R, Bree, M, Marquis, J. Preclinical and clinical development of deferitrin, a novel, orally available iron chelator. Ann N Y Acad Sci. 2005;1054:492–449.CrossRefGoogle ScholarPubMed
Dragsten, PR, Hallaway, PE, Hanson, GJ, Berger, AE, Bernard, B, Hedlund, BE. First human studies with a high-molecular-weight iron chelator. J Lab Clin Med. 2000;135:57–65.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×