Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T12:10:00.723Z Has data issue: false hasContentIssue false

Part III - Senescence in Plants

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ameisen, J. C. (2002). On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differentiation, 9, 367–93.CrossRefGoogle ScholarPubMed
Anfodillo, T., Carraro, V., Carrer, M., et al. (2006) Convergent tapering of xylem conduits in different woody species. New Phytologist, 169, 279–90.CrossRefGoogle ScholarPubMed
Angelier, F., Weimerskirch, H., Dano, S. & Chastel, O. (2007). Age, experience and reproductive performance in a long-lived bird: a hormonal perspective. Behavioural Ecology and Sociobiology, 61, 611–21.CrossRefGoogle Scholar
Ashok, B. & Ali, R. (1999). The aging paradox: free radical theory of aging. Experimental Gerontology, 34, 293303.CrossRefGoogle ScholarPubMed
Austad, S. N. (2001). An experimental paradigm for the study of slowly aging organisms. Experimental Gerontology, 36, 599605.CrossRefGoogle Scholar
Bartelink, H. H. (1997). Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Annales des Sciences Forestieres, 54, 3950.CrossRefGoogle Scholar
Boege, K., Barton, K. E. & Dirzo, R. (2011). Influence of tree ontogeny on plant-herbivore interactions. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 193214) (Dordrecht: Springer).CrossRefGoogle Scholar
Bond, B. J., Czarnomski, N. M., Cooper, C., et al. (2007). Developmental decline in height growth in Douglas fir. Tree Physiology, 27, 441–53.CrossRefGoogle ScholarPubMed
Brown, J. H., Gillooly, J. F., Allen, A. P., et al. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–89.Google Scholar
Bryant, J. P. & Julkunen-Tiitto, R. (1995). Ontogenetic development of chemical defense by seedling resin birch: energy cost of defense production. Journal of Chemical Ecology, 21, 883–96.CrossRefGoogle ScholarPubMed
Caswell, H. (2001). Matrix Population Models: Analysis, Construction and Interpretation (2nd edn.) (Sunderland, MA: Sinauer Associates).Google Scholar
Caswell, H. & Salguero-Gómez, R (2013). Age, stage, and senescence in plants. Journal of Ecology, 3, 585–95.Google Scholar
Cochran, M. E. & Ellner, S. P. (1992). Simple methods for calculating age-based life history parameters for stage-structured populations. Ecological Monographs, 62, 345–64.CrossRefGoogle Scholar
Chabot, B. F. & Hicks, D. J. (1982). The ecology of leaf life span. Annual Review of Ecology and Systematics, 13, 229–59.CrossRefGoogle Scholar
Chapin, F. S. III, Matson, P. A. & Vitousek, P. M. (2012). Plant carbon budgets. In Principles of Terrestrial Ecosystem Ecology (pp. 157–81) (New York: Springer).Google Scholar
Close, D. C., Davies, N. W. & Beadle, C.L. (2001). Temporal variation of tannins (galloylglucoses), flavonols and anthocyanins in leaves of Eucalyptus nitens seedlings: implications for light attenuation and antioxidant activities. Australian Journal of Plant Physiology, 28, 269–78.Google Scholar
Coyea, M. R. & Margolis, H. A. (1992). Factors affecting the relationship between sapwood area and leaf area in balsam fir. Canadian Journal of Forest Research, 22, 1684–93.CrossRefGoogle Scholar
Dangl, J. L., Dietrich, R. A. & Thomas, H. (2000). Senescence and programmed cell death. In Biochemistry and Molecular Biology of Plants, ed. Buchanan, B. B., Gruissem, W. & Jones, R. L. (pp. 10441100) (Rockville, MD: ASPP).Google Scholar
Davies, P. J. (2010). Plant Hormones: Biosynthesis, Signal Transduction, Action! (Dordrecht: Springer).CrossRefGoogle Scholar
Dietze, M. C., Sala, A., Carbone, M. S., et al. (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667–87.CrossRefGoogle ScholarPubMed
Donaldson, J. R., Stevens, M. T., Barnhill, H. R. & Lindroth, R. L. (2006). Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). Journal of Chemical Ecology, 32, 1415–29.CrossRefGoogle ScholarPubMed
England, J. R. & Attiwill, P. M. (2006). Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. Trees, 20, 7990.CrossRefGoogle Scholar
Evans, G. C. (1972). The Quantitative Analysis of Plant Growth (Berkeley: University of California Press).Google Scholar
Fageria, N. K. (2009). The Use of Nutrients in Crops Plants (Boca Raton, FL: CRC Press, Taylor & Francis Group).Google Scholar
Finkelstein, R., Gampala, S. & Rock, C. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell, 14, S1545.CrossRefGoogle ScholarPubMed
Fritz, R. S., Hochwender, C. G., Lewkiewicz, D. A., et al. (2001). Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance. Oecologia, 129, 8797.CrossRefGoogle Scholar
Galoch, E. (1985). Comparison of the content of growth regulators in juvenile and adult plants of birch (Betula verrucosa Ehrh.). Acta Physiologia Plantarum, 7, 205–15.Google Scholar
García, M. B. & Antor, R. J. (1995). Age and size structure in populations of a long-lived dioecious geophyte: Borderea pyrenaica (Dioscoreaceae). International Journal of Plant Sciences, 156, 236–43.CrossRefGoogle Scholar
Gartner, B. L. & Meinzer, F. C. (2005). Structure-function relationships in sapwood water transport and storage. In Vascular Transport in Plants, ed. Zwieniecki, M. & Holbrook, N. M. (pp. 307–31) (Oxford: Elsevier/Academic Press).Google Scholar
Goldschmidt, E. E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5, 727.CrossRefGoogle ScholarPubMed
Goodyear, C. P. (1997). Fish age determination from length: an evaluation of three methods using simulated data. Fisheries Bulletin, 95, 3946.Google Scholar
Gjerdrum, P. (2003). Heartwood in relation to age and growth rate in Pinus sylvestris L. in Scandinavia. Forestry, 76, 413–24.CrossRefGoogle Scholar
Haberer, G. & Kieber, J. J. (2002). New insights into a classic phytohormone. Plant Physiology, 128, 354–62.CrossRefGoogle ScholarPubMed
Haffner, V., Enjalric, F., Lardet, L. & Carron, M.P. (1991). Maturation of woody plants: a review of metabolic and genomic aspects. Annals of Forest Science, 48, 616–30.Google Scholar
Halliwell, B. & Gutteridge, J. M. C. (1989). Free Radicals in Biology and Medicine. (Oxford University Press).Google Scholar
Hamid, H. & Mencuccini, M. (2009). Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees. Tree Physiology, 29, 2738.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1966). Moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology, 11, 298300.CrossRefGoogle ScholarPubMed
Harman, D. (1981). The aging process. Proceedings of the National Academy of Sciences of the United States of America, 78, 7123–8.Google ScholarPubMed
Harper, J. L. (1977). Population Biology of Plants (New York: Academic Press).Google Scholar
Hellkvist, J., Richards, G. P. & Jarvis, P. G. (1974). Water potential and tissue water relations in Sitka spruce trees measured with the pressure chamber. Journal of Applied Ecology, 11, 637–67.CrossRefGoogle Scholar
Higuchi, T. (1997). Biochemistry and Molecular Biology of Wood (Berlin: Springer).CrossRefGoogle Scholar
Hillis, W. (1968). Chemical aspects of heartwood formation. Wood Science and Technology, 2, 241–59.CrossRefGoogle Scholar
Hillis, W. (1987). Heartwood and Tree Exudates (Berlin: Springer-Verlag).CrossRefGoogle Scholar
Hölttä, T., Kurppa, M. & Nikinmaa, E. (2013). Scaling of xylem and phloem transport capacity and resource usage with tree size. Frontiers in Plant Science, 4(496), 119.CrossRefGoogle ScholarPubMed
Ishii, H. (2011). How do changes in leaf/shoot morphology and crown architecture affect growth and physiological function of tall trees? In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 215–32) (Dordrecht: Springer).Google Scholar
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Jones, O. R., Gaillard, J.-M., Tuljapurkar, S., et al. (2008). Senescence rates are determined by ranking on the fast–slow life-history continuum. Ecology Letters, 11, 664–73.CrossRefGoogle ScholarPubMed
Juvany, M., Müller, M. & Munné-Bosch, S. (2013). Photo-oxidative stress in emerging and senescing leaves: a mirror image? Journal of Experimental Botany, 64, 3087–98.CrossRefGoogle Scholar
Jyske, T. & Hölttä, T. (2014). Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytologist, 205, 102–15.Google ScholarPubMed
Karban, R. & Myers, J. H. (1989). Induced plant responses to herbivory. Annual Review of Ecology and Systematics, 20, 331–48.CrossRefGoogle Scholar
King, D. A. (2011). Size-related changes in tree proportions and their potential influence on the course of height growth. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 165–91) (Dordrecht: Springer).Google Scholar
Kitin, P., Fujii, T., Abe, H. & Takata, K. (2009). Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Annals of Botany, 103, 1145–57.CrossRefGoogle ScholarPubMed
Lambers, H. & Ribas-Carbo, M. (eds.) (2005). Plant respiration: from cell to ecosystem. In Advances in Photosynthesis and Respiration, Vol.18 (Dordrecht: Springer).Google Scholar
Larson, D. W. (2001). The paradox of great longevity in a short-lived tree species. Experimental Gerontology 36, 651–73.CrossRefGoogle Scholar
Mäkelä, A. & Valentine, H. T. (2006). The quarter-power scaling model does not imply size-invariant hydraulic resistance in plants. Journal of Theoretical Biology, 243, 283–5.CrossRefGoogle Scholar
Matsuzaki, J., Norisada, M., Kodaira, J., et al. (2005). Shoots grafted into the upper crowns of tall Japanese cedar (Cryptomeria japonica D. Don) show foliar gas exchange characteristics similar to those of intact shoots. Trees, 19, 198203.CrossRefGoogle Scholar
McDowell, N., Barnard, H., Bond, B. J., et al. (2002). The relationship between tree height and leaf area: sapwood area ratio. Oecologia, 132, 1220.CrossRefGoogle ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem in Biology (London: Lewis).Google Scholar
Mencuccini, M. & Grace, J. (1995). Climate influences the leaf-area sapwood area ratio in Scots pine. Tree Physiology, 15, 110.CrossRefGoogle ScholarPubMed
Mencuccini, M. & Grace, J. (1996). Developmental patterns of aboveground xylem conductance in a Scots pine (Pinus sylvestris L.) age sequence. Plant, Cell and Environment, 19, 939–48.CrossRefGoogle Scholar
Mencuccini, M. (2002). Hydraulic constraints in the functional scaling of trees. Tree Physiology, 22, 553–65.CrossRefGoogle ScholarPubMed
Mencuccini, M. (2003). The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell and Environment, 26, 163–82.CrossRefGoogle Scholar
Mencuccini, M., Martinez-Vilalta, J., Vanderklein, D., et al. (2005). Size-mediated ageing reduces vigour in tall trees. Ecology Letters, 8, 1183–90.CrossRefGoogle Scholar
Mencuccini, M., Martínez-Vilalta, J., Hamid, H. A., et al. (2007). Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiology, 27, 463–73.CrossRefGoogle ScholarPubMed
Mencuccini, M., Hölttä, T. & Martínez-Vilalta, J. (2011). Comparative criteria for models of the vascular transport systems of tall trees. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 309–39) (Dordrecht: Springer).Google Scholar
Mencuccini, M., Oñate, M., Rico, L., et al. (2014). No signs of meristem senescence in old Scots pine. Journal of Ecology, 102, 555–65.CrossRefGoogle Scholar
Metcalf, C. J. E., McMahon, S. M., Salguero-Gómez, R. & Jongejans, E. (2013). IPMpack: an R package for Integral Projection Models. Methods in Ecology and Evolution, 4, 195200.CrossRefGoogle Scholar
Mooney, H. A. (1972). The carbon balance of plants. Annual Review of Ecology and Systematics, 3, 315–46.CrossRefGoogle Scholar
Morales, M., García, M. B., Munné-Bosch, S. & Alegre, L. (2013). Photo-oxidative stress markers reveal absence of physiological deterioration with ageing in Borderea pyrenaica, an extraordinarily long-lived herb. Journal of Ecology, 101, 555–65.CrossRefGoogle Scholar
Morales, M., Munné-Bosch, S. & Alegre, L. (2015). Secret of long life lies underground. New Phytologist, 205, 463–7.CrossRefGoogle ScholarPubMed
Munné-Bosch, S., Jubany-Marí, T. & Alegre, L. (2001). Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant, Cell and Environment, 24, 1319–27.CrossRefGoogle Scholar
Munné-Bosch, S. & Alegre, L. (2002). Plant aging increases oxidative stress in chloroplasts. Planta, 214, 608–15.Google ScholarPubMed
Munné-Bosch, S. & Lalueza, P. (2007). Age-related changes in oxidative stress markers and abscisic acid levels in a drought-tolerant shrub, Cistus clusii grown under Mediterranean field conditions. Planta, 225, 1039–49.CrossRefGoogle Scholar
Nakaba, S., Sano, Y., Kubo, T. & Funada, R. (2006). The positional distribution of cell death of ray parenchyma in a conifer, Abies sachalinensis. Plant Cell Reports, 25, 1143–8.CrossRefGoogle Scholar
Nakaba, S., Kubo, T. & Funada, R (2008). Differences in patterns of cell death between ray parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida. Trees, 22, 623–30.CrossRefGoogle Scholar
Niklas, K. J. (1992). Plant Biomechanics (University of Chicago Press).Google Scholar
Nobuchi, T. & Hasegawa, J. (1994). Radial distribution of heartwood phenols and the cytological changes of ray parenchyma cells associated with heartwood formation in Japanese red pine (Pinus densiflora Sieb. et Zucc.). Bulletin of the Kyoto University Forests, 66, 132–42.Google Scholar
Oñate, M., García, M. B. & Munné-Bosch, S. (2012). Age and sex-related changes in cytokinins, auxins and abscisic acid in a centenarian relict herbaceous perennial. Planta, 235, 349–54.CrossRefGoogle Scholar
Oñate, M. & Munné-Bosch, S. (2008). Meristem aging is not responsible for age-related changes in growth and abscisic acid levels in the Mediterranean shrub, Cistus clusii. Plant Biology, 10, 148–55.CrossRefGoogle Scholar
Kozlowski, T. T. & Pallardy, S.G. (2010). Physiology of Woody Plants (Burlington, MA: Academic Press).Google Scholar
Pandalai, R. C., Nair, G. M. & Shah, J. J. (1985). Ultrastructure of ray parenchyma cells in the wood of Melia azedarach L. (Meliacae). Wood Science and Technology, 19, 201–9.CrossRefGoogle Scholar
Paschalidis, K. A. & Roubelakis-Angelakis, K. A. (2005). Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant: correlations with age, cell division/expansion, and differentiation. Plant Physiology, 138, 142–52.CrossRefGoogle ScholarPubMed
Peek, M. S. (2007). Explaining variation in fine root life span. Progress in Botany, 68, 382–98.CrossRefGoogle Scholar
Petit, G., Anfodillo, T. & Mencuccini, M. (2008). Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus L.) trees. New Phytologist, 177, 653–64.CrossRefGoogle Scholar
Petty, J. A. (1972). Aspiration of bordered pits in conifer wood. Proceedings of the Royal Society of London Series B: Biological Sciences, 181, 395406.Google Scholar
Poorter, L. & Rozendaal, D. M. A. (2008). Leaf size and leaf display of thirty-eight tropical tree species. Oecologia, 158, 3546.CrossRefGoogle ScholarPubMed
Poorter, L., Wright, S. J., Paz, H., et al. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908–20.CrossRefGoogle ScholarPubMed
Quirino, B. F., Noh, Y., Himelblau, E. & Amasino, R.M. (2000). Molecular aspects of leaf senescence. Trends in Plant Science, 5, 278–82.CrossRefGoogle ScholarPubMed
Rajjou, L., Duval, M., Gallardo, K., et al. (2012). Seed germination and vigor. Annual Review in Plant Biology, 63, 507–33.CrossRefGoogle ScholarPubMed
Rey, M., Tiburcio, A. F., Díaz-Sala, C. & Rodríguez, R. (1994). Endogenous polyamine concentrations in juvenile, adult and in vitro reinvigorated hazel. Tree Physiology, 14, 191200.CrossRefGoogle ScholarPubMed
Rustin, P., Kleist-Retzow, J., Vajo, Z., et al. (2000). For debate: defective mitochondria, free radicals, cell death, aging-reality or myth-ochondria? Mechanisms of Aging and Development, 114, 201–6.CrossRefGoogle ScholarPubMed
Ryan, M. G., Bond, B. J., Law, B. E., et al. (2000). Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia, 124, 553–60.CrossRefGoogle ScholarPubMed
Ryan, M. G., Phillips, N. & Bond, B. J. (2006). The hydraulic limitation hypothesis revisited. Plant, Cell and Environment, 29, 367–81.CrossRefGoogle ScholarPubMed
Sala, A., Fouts, W. & Hoch, G. (2011). Carbon storage in trees: does relative carbon supply decrease with tree size. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 287–30) (Dordrecht: Springer).Google Scholar
Sala, A. & Mencuccini, M. (2014). Plump trees win under drought. Nature Climate Change, 4, 666–7.CrossRefGoogle Scholar
Salguero-Gómez, R. & Casper, B. B. (2010). Keeping plant shrinkage in the demographic loop. Journal of Ecology, 98, 312–23.CrossRefGoogle Scholar
Salguero-Gómez, R. & Casper, B. B. (2011). A hydraulic explanation for size-specific plant shrinkage: developmental hydraulic sectoriality. New Phytologist, 189, 229–40.CrossRefGoogle ScholarPubMed
Schenk, H. J., Espino, S., Goedhart, C. M., et al. (2008). Hydraulic integration and shrub growth form linked across continental aridity gradients. Proceedings of the National Academy of Sciences of the United States of America, 105, 11248–53.Google ScholarPubMed
Shinozaki, K., Yoda, K., Hozumi, K. & Kira, T. (1964a). A quantitative analysis of plant form-the pipe model theory: I. Basic analysis. Japanese Journal of Ecology, 14, 97105.Google Scholar
Shinozaki, K., Yoda, K., Hozumi, K. & Kira, T. (1964b). A quantitative analysis of plant form-the pipe model theory: II. Further evidence of the theory and its application in forest ecology. Japanese Journal of Ecology, 14, 133–9.Google Scholar
Scholander, P. F., Hammel, H. T., Hemmingsen, E. A. & Bradstreet, E. D. (1964). Pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Sciences of the United States of America, 52, 119–25.Google ScholarPubMed
Scholz, F. G., Phillips, N. G., Bucci, S. J., et al. (2011). Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 341–61) (Dordrecht: Springer).Google Scholar
Spicer, R. (2005). Senescence in secondary xylem: heartwood formation as an active developmental program. In Vascular Transport in Plants, ed. Holbrook, N. & Zwieniecki, M. (pp. 457–75) (Oxford: Elsevier/Academic Press).Google Scholar
Steppe, K., Niinemets, U. & Teskey, R. O. (2011). Tree size- and age-related changes in leaf physiology and their influence on carbon gain. In Size and Age-Related Changes in Tree Structure and Function, ed. Meinzer, F. C., Lachenbruch, B. & Dawson, T. E. (pp. 235–53) (Dordrecht: Springer).Google Scholar
Szymanski, M., Pazdrowski, W., Kazmierczak, K., et al. (2008). Axial and radial variation in the proportions of sapwood and heartwood in stems of common oak (Quercus robur L.) depending on site type, age class and social class of tree position. Acta Scientiarum Polonorum, 7, 4558.Google Scholar
Tiburcio, A. F., Campos, J. L., Figueras, X. & Besford, R. T. (1993). Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regulation, 12, 331–40.CrossRefGoogle Scholar
Tyree, M. T. & Zimmerman, M. H. (2002). Xylem Structure and the Ascent of Sap (Berlin: Springer).CrossRefGoogle Scholar
Tuljapurkar, S. (1990). Population Dynamics in Variable Environments (Berlin: Springer).CrossRefGoogle Scholar
Valdés, A. E., Centeno, M. L., Espinel, S. & Fernández, B. (2002). Could plant hormones be the basis of maturation indices in Pinus radiata? Plant Physiology and Biochemistry, 40, 211–16.CrossRefGoogle Scholar
Valdés, A. E., Fernández, B. & Centeno, M. L. (2004). Hormonal changes throughout maturation and ageing in Pinus pinea. Plant Physiology and Biochemistry, 42, 335–40.CrossRefGoogle ScholarPubMed
Valdés, A. E., Centeno, M. L. & Fernández, B. (2005). Age-related changes in the hormonal status of Pinus radiata needle fascicle meristem. Plant Science, 167, 373–8.Google Scholar
Vanderklein, D., Martínez-Vilalta, J., Lee, S. & Mencuccini, M. (2007). Plant size, not age, regulates growth and gas exchange in grafted Scots pine trees. Tree Physiology, 27, 71–9.CrossRefGoogle Scholar
Watson, M. A. & Lu, Y. (2004). Factors regulating senescence in the annual shoots of perennial plants. In Cell Death in Plants, ed. Nooden, L. D. (pp. 259–69) (New York: Academic Press).Google Scholar
Webber, B. L. & Woodrow, I. E. (2009). Chemical and physical plant defence across multiple ontogenetic history stages in a tropical rainforest understorey tree. Journal of Ecology, 97, 761–71.CrossRefGoogle Scholar
West, G. B., Brown, J. H. & Enquist, B. J. (1999). The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science, 284, 1677–9.CrossRefGoogle ScholarPubMed
West, P. W. (2009). Tree and Forest Measurement (Berlin: Springer-Verlag).CrossRefGoogle Scholar
Westoby, M., Warton, D. & Reich, P. (2000). The time value of leaf area. American Naturalist, 155, 649–56.CrossRefGoogle ScholarPubMed
Westoby, M., Falster, D. S., Moles, A., et al. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125–59.CrossRefGoogle Scholar
Wilkes, J. (1991). Heartwood development and its relationship to growth in Pinus radiata. Wood Science and Technology, 25, 8590.CrossRefGoogle Scholar
Williams, G. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Yang, J. C., Zhang, J. H., Wang, Z. Q., et al. (2003). Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during rain filling. Plant, Cell and Environment, 26, 1621–31.CrossRefGoogle Scholar
Yang, K. C., Hazenberg, G., Bradfield, G. E. & Maze, J. R. (1985). Vertical variation of sapwood thickness in Pinus banksiana lanb and Larix laricina (Du Roi) K. Koch. Canadian Journal of Forest Research, 15, 822–8.CrossRefGoogle Scholar
Yang, K. C. & Hazenberg, G. (1991a). Relationship between tree age and sapwood heartwood width in Populus tremuloides Michx. Wood and Fiber Science, 23, 247–52.Google Scholar
Yang, K. C. & Hazenberg, G. (1991b). Sapwood and heartwood width in relationship to tree age in Pinus banksiana. Canadian Journal of Forest Research, 21, 521–5.CrossRefGoogle Scholar
Yang, K. C. (1993). Survival rate and nuclear irregularity index of sapwood ray parenchyma cells in 4 tree species. Canadian Journal of Forest Research, 23, 673–9.CrossRefGoogle Scholar
Yoder, B. J., Ryan, M. G., Waring, H., et al. (1994). Evidence of reduced photosynthetic rates in old trees. Forest Science, 40, 513–27.Google Scholar
Zaffari, G. R., Peres, L. E. P. & Kerbauy, G. B. (1998). Endogenous levels of cytokinins, indolacetic acid, abscisic acid and pigments in variegated somaclones of micropopagated banana leaves. Journal of Plant Growth Regulation, 17, 5961.CrossRefGoogle Scholar
Zotz, G., Wilhelm, K. & Becker, A. (2011). Heteroblasty: a review. Botanical Review, 77, 109–51.CrossRefGoogle Scholar
Zuidema, P. A., Jongejans, E., Chien, P. D., et al. (2010). Integral Projection Models for trees: a new parameterization method and a validation of model output. Journal of Ecology, 98, 345–55.CrossRefGoogle Scholar

References

Ågren, J., Oakley, C. G., McKay, J. K., et al. (2013). Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 110, 21077–82.Google Scholar
Ågren, J. & Schemske, D. W. (2012). Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range. New Phytologist, 194, 1112–22.CrossRefGoogle ScholarPubMed
Aikawa, S., Kobayashi, M. J., Satake, A., et al. (2010). Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proceedings of the National Academy of Sciences of the United States of America, 107, 11632–7.Google Scholar
Ainsworth, E. A. & Ort, D. R. (2010). How do we improve crop production in a warming world? Plant Physiology, 154, 526–30.CrossRefGoogle Scholar
Albani, M. C. & Coupland, G. (2010). Comparative analysis of flowering in annual and perennial plants. In Plant Development (San Diego: Elsevier Academic Press).Google Scholar
Andres, F. & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13, 627–39.CrossRefGoogle ScholarPubMed
Aronson, J., Kigel, J., Shmida, A. & Klein, J. (1992). Adaptive phenology of desert and Mediterranean populations of annual plants grown with and without water-stress. Oecologia, 89, 1726.CrossRefGoogle ScholarPubMed
Aschan, G. & Pfanz, H. (2003). Non-foliar photosynthesis: a strategy of additional carbon acquisition. Flora, 198, 8197.CrossRefGoogle Scholar
Balazadeh, S., Parlitz, S., Mueller-Roeber, B. & Meyer, R. C. (2008a). Natural developmental variations in leaf and plant senescence in Arabidopsis thaliana. Plant Biology, 10, 136–47.Google ScholarPubMed
Balazadeh, S., Riano-Pachon, D. M. & Mueller-Roeber, B. (2008b). Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biology, 10, 6375.CrossRefGoogle ScholarPubMed
Bannayan, M., Crout, N. M. J. & Hoogenboom, G. (2003). Application of the CERES-Wheat model for within-season prediction of winter wheat yield in the United Kingdom. Agronomy Journal, 95, 114–25.Google Scholar
Barth, C., Tullio, M. D. & Conklin, P. L. (2006). The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany, 57, 1657–65.CrossRefGoogle ScholarPubMed
Baudisch, A. (2008). Inevitable aging? Contributions to Evolutionary-Demographic Theory (Berlin, Springer).Google Scholar
Baudisch, A., Salguero-Gómez, R., Jones, O. R., et al. (2013). The pace and shape of senescence in angiosperms. Journal of Ecology, 101, 596606.CrossRefGoogle Scholar
Borges, R. M. (2009). Phenotypic plasticity and longevity in plants and animals: cause and effect? Journal of Biosciences, 34, 605–11.CrossRefGoogle ScholarPubMed
Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50, 248–60.CrossRefGoogle Scholar
Brommer, J. E. (2014). Senescence: detecting an evolutionary fingerprint in plants. Current Biology, 24, R267–9.CrossRefGoogle ScholarPubMed
Burghardt, L. T., Metcalf, C. J. E., Wilczek, A. M., et al. (2015). Modeling the influence of genetic and environmental variation on the expression of plant life cycles across landscapes. American Naturalist, 185(2), 212227.CrossRefGoogle ScholarPubMed
Charnov, E. L. & Schaffer, W. M. (1973). Life history consequences of natural selection: Cole’s result revisited. American Naturalist, 107, 791–3.CrossRefGoogle Scholar
Chuine, I. & Beaubien, E.G. (2001). Phenology is a major determinant of tree species range. Ecology Letters, 4, 500–10.CrossRefGoogle Scholar
Cole, L. C. (1954). The population consequences of life history phenomena. Quarterly Review of Biology, 29, 103–36.CrossRefGoogle ScholarPubMed
Crespi, B. J. & Teo, R. (2002). Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes. Evolution, 56, 1008–20.Google ScholarPubMed
Davies, P. J. & Gan, S. (2012). Towards an integrated view of monocarpic plant senescence. Russian Journal of Plant Physiology, 59, 467–78.CrossRefGoogle Scholar
Donohue, K., Dorn, D., Griffith, C., et al. (2005). The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution, 59, 758–70.Google ScholarPubMed
Earley, E. J., Ingland, B., Winkler, J. & Tonsor, S. J. (2009). Inflorescences contribute more than rosettes to lifetime carbon gain in Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 96, 786–92.CrossRefGoogle ScholarPubMed
Evans, M. E. K., Hearn, D. J., Hahn, W. J., et al. (2005). Climate and life history evolution in evening primroses (Oenothera, Onagraceae): a phylogenetic comparative analysis. Evolution, 59, 1914–27.Google ScholarPubMed
Flatt, T. & Schmidt, P. S. (2009). Integrating evolutionary and molecular genetics of aging. Biochimica et Biophysica Acta, 1790, 951–62.Google ScholarPubMed
Foster, T., Johnston, R. & Seleznyova, A. (2003). A morphological and quantitative characterization of early floral development in apple (Malus x domestica Borkh.). Annals of Botany, 92, 199206.CrossRefGoogle ScholarPubMed
Gammelvind, L. H., Schjoerring, J. K., Mogensen, V. O., et al. (1996). Photosynthesis in leaves and siliques of winter oilseed rape (Brassica napus L). Plant and Soil, 186, 227–36.CrossRefGoogle Scholar
Gombert, J., Etienne, P., Ourry, A. & Le Dily, F. (2006). The expression patterns of SAG12/CAB genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment. Journal of Experimental Botany, 57, 1949–56.CrossRefGoogle ScholarPubMed
Grbic, V. (2003). SAG2 and SAG12 protein expression in senescing Arabidopsis plants. Physiologia Plantarum, 119, 263–9.CrossRefGoogle Scholar
Guo, Y. F. & Gan, S. S. (2011). AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiology, 156, 1612–19.CrossRefGoogle ScholarPubMed
Hensel, L. L., Grbic, V., Baumgarten, D. A. & Bleecker, A. B. (1993). Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell, 5, 553–64.Google ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169173.CrossRefGoogle ScholarPubMed
de Jong, T.J., Klinkhamer, P.G.L. & de Heiden, J.L.H. (2000). The evolution of generation time in metapopulations of monocarpic perennial plants: some theoretical considerations and the example of the rare thistle Carlina vulgaris. Evolutionary Ecology, 14, 213231.CrossRefGoogle Scholar
Kim, E. & Donohue, K. (2011). Demographic, developmental and life-history variation across altitude in Erysimum capitatum. Journal of Ecology, 99, 1237–49.CrossRefGoogle Scholar
Klinkhamer, P. G. L., de Jong, T. J. & de Heiden, J. L. H. (1996). An eight-year study of population dynamics and life-history variation of the biennial Carlina vulgaris. Oikos, 75, 259–68.CrossRefGoogle Scholar
Klinkhamer, P. G. L., Meelis, E., de Jong, T. J. & Weiner, J. (1992). On the analysis of size-dependent reproductive output in plants. Functional Ecology, 6, 308–16.CrossRefGoogle Scholar
Lawrence, M. (1976). Variation in natural populations of Arabidopsis thaliana (L.) Heynh. In The Biology and Chemistry of the Cruciferae, ed. Vaghan, J. G., Macleod, A. J. & Jones, B. M. G. (London: Academic Press).Google Scholar
Li, J. H., Dijkstra, P., Hymus, G. J., et al. (2000). Leaf senescence of Quercus myrtifolia as affected by long-term CO2 enrichment in its native environment. Global Change Biology, 6, 727–33.CrossRefGoogle Scholar
Libert, S., Zwiener, J., Chu, X. W., et al. (2007). Regulation of Drosophila life span by olfaction and food-derived odors. Science, 315, 1133–7.CrossRefGoogle ScholarPubMed
Lim, P. O., Kim, H. J. & Nam, H. G. (2007). Leaf senescence. In Annual Review of Plant Biology (Palo Alto, CA: Annual Reviews, 58, 115136).Google Scholar
Mair, W., Goymer, P., Pletcher, S. D. & Partridge, L. (2003). Demography of dietary restriction and death in Drosophila. Science, 301, 1731–3.CrossRefGoogle ScholarPubMed
Medawar, P. (1952). The Uniqueness of the Individual (London: Methuen).Google Scholar
Meng, Y. Y., Li, H. Y., Wang, Q., et al. (2013). Blue light–dependent interaction between CRYPTOCHROME2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell, 25, 4405–20.CrossRefGoogle ScholarPubMed
Metcalf, C. J. E. & Mitchell-Olds, T. (2009). Life history in a model system: opening the black box with Arabidopsis thaliana. Ecology Letters, 12, 593600.CrossRefGoogle Scholar
Metcalf, J. C., Rose, K. E. & Rees, M. (2003). Evolutionary demography of monocarpic perennials. Trends in Ecology and Evolution, 18, 471–80.CrossRefGoogle Scholar
National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory (NOAA-GFDL) (2004). Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment and US Climate Change Science Program (CCSP) Projects. Princeton, NJ.Google Scholar
Nussey, D. H., Froy, H., Lemaître, J.-F., et al. (2013). Senescence in natural population of animals: widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214–25.CrossRefGoogle ScholarPubMed
Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. (2007). Environmental conditions in early life influence ageing rates in a wild population of red deer. Current Biology, 17, R1000–1.CrossRefGoogle Scholar
Onishi, K., Sano, Y. & Nakashima, H. (2003). Developmental fates of axillary for the pattern of life buds as a major determinant history in Lolium. Plant Production Science, 6, 179–84.CrossRefGoogle Scholar
Picó, F. X. (2012). Demographic fate of Arabidopsis thaliana cohorts of autumn- and spring-germinated plants along an altitudinal gradient. Journal of Ecology, 100, 1009–18.CrossRefGoogle Scholar
Poggio, S. L., Satorre, E. H., Dethiou, S. & Gonzalo, G. M. (2005). Pod and seed numbers as a function of photothermal quotient during the seed set period of field pea (Pisum sativum) crops. European Journal of Agronomy, 22, 5569.CrossRefGoogle Scholar
Pujol, B., Marrot, P. & Pannell, J. R. (2014). A quantitative genetic signature of senescence in a short-lived perennial plant. Current Biology, 24, 744–7.CrossRefGoogle Scholar
Quirino, B. F., Noh, Y. S., Himelblau, E. & Amasino, R. M. (2000). Molecular aspects of leaf senescence. Trends in Plant Science, 5, 278–82.CrossRefGoogle ScholarPubMed
Rees, M., Childs, D. Z., Metcalf, J. C., et al. (2006). Seed dormancy and delayed flowering in monocarpic plants: selective interactions in a stochastic environment. American Naturalist, 168, e53.CrossRefGoogle Scholar
Reinsdorf, E., Koch, H. J. & Marlander, B. (2013). Phenotype related differences in frost tolerance of winter sugar beet (Beta vulgaris L. ). Field Crops Research, 151, 2734.CrossRefGoogle Scholar
Remington, D. L., Leinonen, P. H., Leppala, J. & Savolainen, O. (2013). Complex genetic effects on early vegetative development shape resource allocation differences between Arabidopsis lyrata populations. Genetics, 195, 10871102.CrossRefGoogle ScholarPubMed
Richter, R., Bastakis, E. & Schwechheimer, C. (2013). Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiology, 162, 19922004.CrossRefGoogle ScholarPubMed
Roach, D. A. (2003). Evolutionary and demographic approaches to the study of whole plant senescence. In Plant Cell Death Processes, ed. Nooden, L. D. (New York: Academic Press).Google Scholar
Roff, D. A. (2003). Life History Evolution (Sunderland, MA: Sinauer Associates).Google Scholar
Satake, A., Kawagoe, T., Saburi, Y., et al. (2013). Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Nature Communications, 4.CrossRefGoogle ScholarPubMed
Seo, E., Lee, H., Jeon, J., et al. (2009). Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell, 21, 3185–97.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The Evolution of Life Histories (New York, Oxford University Press).Google Scholar
Thomas, H. (2013). Senescence, ageing and death of the whole plant. New Phytologist, 197, 696711.CrossRefGoogle ScholarPubMed
Wang, J. Y. (1960). A critique of the heat unit approach to plant-response studies. Ecology, 41, 785–90.CrossRefGoogle Scholar
Wang, R., Farrona, S., Vincent, C., et al. (2009). PEP1 regulates perennial flowering in Arabis alpina. Nature, 459, 423–7.CrossRefGoogle ScholarPubMed
Watanabe, M., Balazadeh, S., Tohge, T., et al. (2013). Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiology, 162, 12901310.CrossRefGoogle ScholarPubMed
Wilczek, A. M., Burghardt, L. T., Cobb, A. R., et al. (2010). Genetic and physiological bases for phenological responses to current and predicted climates. Philosophical Transactions of the Royal Society Series B: Biological Sciences, 365, 3129–47.CrossRefGoogle ScholarPubMed
Wilczek, A. M., Roe, J. L., Knapp, M. C., et al. (2009). Effects of genetic perturbation on seasonal life-history plasticity. Science, 323, 930–4.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural-selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Wingler, A. (2011). Interactions between flowering and senescence regulation and the influence of low temperature in Arabidopsis and crop plants. Annals of Applied Biology, 159, 320–38.CrossRefGoogle Scholar
Woo, H. R., Kim, H. J., Nam, H. G. & Lim, P. O. (2013). Plant leaf senescence and death: regulation by multiple layers of control and implications for aging in general. Journal of Cell Science, 126, 4823–33.Google ScholarPubMed
Young, T. P. (1990). Evolution of semelparity in Mount Kenya Lobelias. Evolutionary Ecology, 4, 157–71.CrossRefGoogle Scholar
Zentgraf, U., Laun, T. & Miao, Y. (2010). The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. European Journal of Cell Biology, 89, 133–7.CrossRefGoogle ScholarPubMed

References

Ally, D., Ritland, K. & Otto, S. P. (2010). Ageing in a long-lived clonal tree. PLoS Biology, 8, 18.CrossRefGoogle Scholar
Antonovics, J. (1972). Population dynamics of the grass Anthoxanthum odoratum on a zinc mine. Journal of Ecology, 60, 351–66.CrossRefGoogle Scholar
Baudisch, A. & Vaupel, J. W. (2012). Getting to the root of ageing. Science, 338, 618–19.CrossRefGoogle Scholar
Baudisch, A., Salguero-Gómez, R., Jones, O. R., et al. (2013). The pace and shape of senescence in angiosperms. Journal of Ecology, 101, 596606.CrossRefGoogle Scholar
Borges, R. M. (2009). Phenotypic plasticity and longevity in plants and animals: cause and effect? Journal of Biosciences, 34, 605–11.CrossRefGoogle ScholarPubMed
Canfield, R. H. (1957). Reproduction and life span of some perennial grasses of southern Arizona. Journal of Range Management, 10, 199203.CrossRefGoogle Scholar
Caswell, H. (2001). Matrix Population Models: Construction, Analysis and Interpretation (2nd edn.) (Sunderland, MA: Sinauer Associates).Google Scholar
Caswell, H. & Salguero-Gómez, R. (2013). Age, stage and senescence in plants. Journal of Ecology, 101, 585–95.CrossRefGoogle ScholarPubMed
Childs, D. Z., Rees, M., Rose, K. E., et al. (2003). Evolution of complex flowering strategies: an age- and size-structured integral projection model. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 1829–38.CrossRefGoogle ScholarPubMed
Chu, C. & Adler, P. B. (2014). When should plant population models include age structure? Journal of Ecology, 102, 531–43.CrossRefGoogle Scholar
Cook, R. E. (1983). Clonal plant populations. American Scientist, 71, 244–53.Google Scholar
Dahlgren, J. P., Garcia, M. B. & Ehrlén, J. (2011). Nonlinear relationships between vital rates and state variables in demographic models. Ecology 92, 1181–7.CrossRefGoogle ScholarPubMed
de Witte, L. C. & Stöcklin, J. (2010). Longevity of clonal plants: why it matters and how to measure it. Annals of Botany, 106, 859–70.CrossRefGoogle Scholar
Dahlgren, J. P., Rizzi, S., Schweingruber, F. H., Hellmann, L. & Büntgen, U. (2016). Age distributions of Greenlandic dwarf shrubs support concept of negligible actuarial senescence. Ecosphere, 7, e01521.CrossRefGoogle Scholar
Ehlers, B. K. & Olesen, J. M. (2004). Flower production in relation to individual plant age and leaf production among different patches of Corydalis intermedia. Plant Ecology, 174, 71–8.CrossRefGoogle Scholar
Fair, J., Lauenroth, W. K. & Coffin, D. P. (1999). Demography of Bouteloua gracilis in a mixed prairie: analysis of genets and individuals. Journal of Ecology, 87, 233–43.CrossRefGoogle Scholar
Garcia, M. B., Dahlgren, J. P. & Ehrlén, J. (2011). No evidence of senescence in a 300-year-old mountain herb. Journal of Ecology, 99, 1424–30.CrossRefGoogle Scholar
Gardener, S. H. & Mangel, M. (1997). When can a clonal organism escape senescence? American Naturalist, 150, 462–90.Google Scholar
Geber, M. A., de Kroon, H. & Watson, M. A. (1997). Organ preformation in mayapple as a mechanism for historical effects on demography. Journal of Ecology, 85, 211–23.CrossRefGoogle Scholar
Good, T. P. & Tatar, M. (2001). Age-specific mortality and reproduction respond to adult dietary restriction in Drosophila melanogaster. Journal of Insect Physiology, 47, 1467–73.CrossRefGoogle ScholarPubMed
Hadfield, J. D. (2007). Estimating evolutionary parameters when viability selection is operating. Proceedings of the Royal Society of London Series B: Biological Sciences, 275, 723–34.Google Scholar
Hanzawa, F. M. & Kalisz, S. (1993). The relationship between age, size, and reproduction in Trilliu grandiflorum (Liliaceae). American Journal of Botany, 80, 405–10.CrossRefGoogle Scholar
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Harper, J. L. & White, J. (1974). The demography of plants. Annual Review of Ecology and Systematics, 5, 419–63.CrossRefGoogle Scholar
Hautekèete, N.-C., Piquot, Y. & van Dijk, H. (2002). Life span in Beta vulgaris ssp. maritima: the effects of age at first reproduction and disturbance. Journal of Ecology, 90, 508–16.CrossRefGoogle Scholar
Horvitz, C. C. & Tuljapurkar, S. (2008). Stage dynamics, period survival, and mortality plateaus. American Naturalist, 172, 203–15.CrossRefGoogle ScholarPubMed
Hutchings, M. J. (2010). The population biology of the early spider orchid Ophrys sphegodes Mill: III. Demography over three decades. Journal of Ecology, 98, 867–78.CrossRefGoogle Scholar
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kaplan, H. S. & Robson, A. J. (2009). We age because we grow. Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 1837–44.Google ScholarPubMed
Kirkwood, T. B. & Holliday, R. (1979). The evolution of ageing and longevity. Proceedings of the Royal Society of London Series B: Biological Sciences, 205, 531–46.Google ScholarPubMed
Lauenroth, W. K. & Adler, P. B. (2008). Demography of perennial grassland plants: survival, life expectancy and life span. Ecology, 96,1023–32.Google Scholar
Laskowski, M. J., Williams, M. E., Nusbaum, H. C. & Sussex, I. M. (1995). Formation of lateral root meristems is a two-stage process. Development, 121, 3303–10.CrossRefGoogle ScholarPubMed
Law, R., Bradshaw, A. D. & Putwain, P. D. (1977). Life history variation in Poa annua. Evolution, 31, 233–46.CrossRefGoogle ScholarPubMed
Long, J. & Barton, M. K. (2000). Initiation of axillary and floral meristems in Arabidopsis. Developmental Biology, 218, 341–53.CrossRefGoogle ScholarPubMed
Mencuccini, M., Martinez-Vilalta, J., Hamid, H. A., et al. (2005). Size-mediated ageing reduces vigour in trees. Ecology Letters, 8, 1183–90.CrossRefGoogle ScholarPubMed
Menges, E. S. & Quintana-Ascencio, F. (2004). Population viability with fire in Eryngium cuneifolium: deciphering a decade of demographic data. Ecological Monographs, 74, 7999.CrossRefGoogle Scholar
Metcalf, J. C., Rose, K. E. & Rees, M. (2003). Evolutionary demography of monocarpic perennials. Trends in Ecology and Evolution, 18, 471–80.CrossRefGoogle Scholar
Miller, T. E. X., Williams, J. L., Jongejans, E., et al. (2012). Evolutionary demography of iteroparous plants: incorporating non-lethal costs of reproduction into integral projection models. Proceedings of the Royal Society of London Series B: Biological Sciences, 279, 2831–40.Google ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Monaghan, P., Charmantier, A., Nussey, D. H. & Ricklefs, R. E. (2008). The evolutionary ecology of senescence. Functional Ecology, 22, 371–8.CrossRefGoogle Scholar
Morales, M., Oñate, M. Garcia, M. B. and Munné-Bosch, S. (2013). Photo-oxidative stress markers reveal absence of physiological deterioration with ageing in Borderea pyrenaica, an extraordinarily long-lived herb. Journal of Ecology, 101, 555–65.CrossRefGoogle Scholar
Mossberg, B. & Stenberg, L. (2003). Den nya nordiska floran (Stockholm: Wahlström & Widstrand).Google Scholar
Münzbergova, Z., Krivanek, M., Bucharova, A., et al. (2005). Ramet performance in two tussock plants: do the tussock-level parameters matter? Flora, 200, 275–84.CrossRefGoogle Scholar
Nobis, M. P. & Schweingruber, F. H. (2013). Adult age of vascular plant species along an elevational land-use and climate gradient. Ecography, 36, 1076–85.CrossRefGoogle Scholar
Noodén, L. D. (1988). Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). Journal of Experimental Botany, 52, 2151–9.Google Scholar
Nussey, D. H., Coulson, T., Festa-Bianchet, M. & Gaillard, J.-M. (2008). Measuring senescence in wild animal populations: towards a longitudinal approach. Functional Ecology, 22, 393406.CrossRefGoogle Scholar
Obeso, J. R. (2002). The costs of reproduction in plants. New Phytologist, 155, 321–48.CrossRefGoogle ScholarPubMed
Oñate, M., García, M. B. & Munné-Bosch, S. (2012). Age and sex-related changes in cytokinins, auxins and abscisic acid in a centenarian relict herbaceous perennial. Planta, 235, 349–58.CrossRefGoogle Scholar
Orive, M. E. (1995). Senescence in organisms with clonal reproduction and complex life histories. American Naturalist, 145, 90108.CrossRefGoogle Scholar
Pedersen, B. (1999). Senescence in plants. In Life History Evolution in Plants (pp. 239–74) (Dordrecht: Kluwer).Google Scholar
Perkins, D. L., Parks, C. G., Dwire, K. A., et al. (2006). Age structure and age-related performance of sulfur cinquefoil (Potentilla recta). Weed Science, 54, 8793.CrossRefGoogle Scholar
Pico, F. X. & Retana, J. (2008). Age-specific, density-dependent and environment-based mortality of a short-lived perennial herb. Plant Biology, 10, 374–81.CrossRefGoogle ScholarPubMed
Pino, J. & Roa, E. (2007). Population biology of Kosteletzkya pentacarpos (Malvaceae) in the Llobregat delta (Catalonia, NE of Spain). Plant Ecology, 188, 116.CrossRefGoogle Scholar
Pujol, B., Marrot, P. & Pannell, J. R. (2014). A quantitative genetic signature of senescence in a short-lived perennial plant. Current Biology, 24, 744–7.CrossRefGoogle Scholar
Roach, D. A. (1993). Evolutionary senescence in plants. Genetica, 91, 5364.CrossRefGoogle Scholar
Roach, D. A. (2003). Age-specific demography in Plantago: variation among cohorts in a natural plant population. Ecology, 84, 749–56.CrossRefGoogle Scholar
Roach, D. A. (2012). Age, growth and size interact with stress to determine life span and mortality. Experimental Gerontology, 47, 782–6.CrossRefGoogle ScholarPubMed
Roach, D. A. & Gampe, J. (2004). Age-specific demography in Plantago: uncovering age dependent mortality in a natural population. American Naturalist, 164, 60–9.CrossRefGoogle Scholar
Roach, D. A, Ridley, C. E. & Dudycha, J. L. (2009). Longitudinal analysis of Plantago: age by environment interactions reveal aging. Ecology, 90, 1427–33.CrossRefGoogle ScholarPubMed
Rose, R. J., Clarke, R. T. & Chapman, S. B. (1998). Individual variation and the effects of weather, age and flowering history on survival and flowering of the long-lived perennial Gentiana pneumonanthe. Ecography, 21, 317–26.CrossRefGoogle Scholar
Sarukhán, J. & Harper, J. L. (1973). Studies on plant demography: Ranunculus repens L., R. bulbosus L. and R. acris L.: I. Population flux and survivorship. Journal of Ecology, 61, 675716.CrossRefGoogle Scholar
Schweingruber, F. H. & Poschlod, P. (2005). Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow and Landscape Research, 79(3), 195415.Google Scholar
Seymour, R. M. & Doncaster, C. P. (2007). Density dependence triggers runaway selection of reduced senescence. PLoS Computational Biology, 3, e256.CrossRefGoogle ScholarPubMed
Shefferson, R. P. & Roach, D. A. (2013). Longitudinal analysis in Plantago: strength of selection and reverse age analysis reveal age-indeterminate senescence. Journal of Ecology, 101, 577–84.CrossRefGoogle ScholarPubMed
Shefferson, R. P., Warren, R. J., II & Pulliam, H. R. (2014). Life history costs make perfect sprouting maladaptive in two herbaceous perennials. Journal of Ecology 102:1318–28.CrossRefGoogle Scholar
Silvertown, J. & Charlesworth, D. (2001). Introduction to Plant Population Biology (Oxford: Blackwell Science).Google Scholar
Silvertown, J, Franco, M. & Perez-Ishiwara, R. (2001). Evolution of senescence in iteroparous perennial plants. Evolutionary Ecology Research, 3, 393412.Google Scholar
Solbrig, O. T., Newell, S. J. & Kincaid, D. T. (1980). The population biology of the genus Viola: I. The demography of Viola sororia. Journal of Ecology, 68, 521–46.CrossRefGoogle Scholar
Tamm, C. O. (1956). Further observations on the survival and flowering of some perennial herbs, part I. Oikos, 7, 273–92.CrossRefGoogle Scholar
Tamm, C. O. (1972a). Survival and flowering of perennial herbs: II. The behaviour of some orchids on permanent plots. Oikos, 23, 23–8.Google Scholar
Tamm, C. O. (1972b). Survival and flowering of perennial herbs: III. The behavior of Primula veris on permanent plots. Oikos, 23, 23–8.Google Scholar
Thomas, H. (2013). Senescence, ageing and death of the whole plant. New Phytologist, 197, 696711.CrossRefGoogle ScholarPubMed
Tuomi, J., Crone, E. E., Gremer, J. R., et al. (2013). Prolonged dormancy interacts with senescence for two perennial herbs. Journal of Ecology, 101, 566–76.CrossRefGoogle Scholar
van Dijk, H. (2009). Ageing effects in an iteroparous plant species with a variable life span. Annals of Botany, 104, 115–24.CrossRefGoogle Scholar
Vaupel, J. W., Baudisch, A., Dolling, M., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65, 339–51.CrossRefGoogle ScholarPubMed
Vaupel, J. W. & Yashin, A. I. (1985). Heterogeneity’s ruses: some surprising effects of selection on population dynamics. American Statistician, 39, 176–85.Google ScholarPubMed
Wachter, K. W., Evans, S. N. & Steinsaltz, D. (2013). The age-specific force of natural selection and biodemographic walls of death. Proceedings of the National Academy of Sciences of the United States of America, 110, 10141–6.Google ScholarPubMed
Watkinson, A. (1992). Plant senescence. Trends in Ecology and Evolution, 7, 417–20.CrossRefGoogle ScholarPubMed
Watson, J. & Riha, K. (2010). Telomeres, ageing, and plants: from weeds to Methuselah – a mini-review. Gerontology, 57, 129–36.Google ScholarPubMed
Wensink, M. J., Wrycza, T. F. & Baudisch, A. (2014). No senescence despite declining selection pressure: Hamilton’s result in broader perspective. Journal of Theoretical Biology, 347, 176–81.CrossRefGoogle ScholarPubMed
Willems, J. H. & Dorland, E. (2000). Flowering frequency and plant performance and their relation to age in the perennial orchid Spiranthes spiralis (L.) Chevall. Plant Biology, 2, 344–9.CrossRefGoogle Scholar
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Young, T. P. & Augspurger, C. K. (1991). Ecology and evolution of long-lived semelparous plants. Trends in Ecology and Evolution, 6, 285–9.CrossRefGoogle ScholarPubMed

References

Ally, D., Ritland, K. & Otto, S. P. (2010). Aging in a long-lived clonal tree. PLoS Biology, 8(8).CrossRefGoogle Scholar
Baudisch, A., Salguero-Gómez, R., Jones, O. R., et al. (2013). The pace and shape of senescence in angiosperms. Journal of Ecology, 101(3), 596606.CrossRefGoogle Scholar
Becker, G. F., Busso, C. A., Montani, T., et al. (1997). Effects of defoliating Stipa tenuis and Piptochaetium napostaense at different phenological stages: tiller demography and growth. Journal of Arid Environments, 35(2), 251–68.Google Scholar
Bierzychudek, P. (1982). Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytologist, 90(4), 757–76.CrossRefGoogle Scholar
Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation (Sunderland, MA, Sinauer Associates).Google Scholar
Caswell, H. & Salguero-Gómez, R. (2013). Age, stage and senescence in plants. Journal of Ecology, 101(3), 585–95.CrossRefGoogle ScholarPubMed
Chen, Y. T., Shen, C. H., Lin, W. D., et al. (2013). Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant Biology, 15(1), 2736.CrossRefGoogle ScholarPubMed
Chu, C. & Adler, P. B. (2014). When should plant population models include age structure? Journal of Ecology, 102(2), 531–43.CrossRefGoogle Scholar
Cochran, M. E. & Ellner, S. (1992). Simple methods for calculating age-based life-history parameters for stage-structured populations. Ecological Monographs, 62(3), 345–64.CrossRefGoogle Scholar
Colman, R. J., Beasley, T. M., Kemnitz, J. W., et al. (2014). Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nature Communications, 5.CrossRefGoogle ScholarPubMed
Dalgleish, H. J., Koons, D. N., Hooten, M. B., et al. (2011). Climate influences the demography of three dominant sagebrush steppe plants. Ecology, 92(1), 7585.CrossRefGoogle ScholarPubMed
Darlington, H. & Steinbauer, G. P. (1961). Eighty-year period for Dr. Beal’s seed viability experiment. American Journal of Botany, 48(4), 321.Google Scholar
Dawson, T. E., Mambelli, S., Plamboeck, A. H., et al. (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507–59.CrossRefGoogle Scholar
Easterling, M. R., Ellner, S. P. & Dixon, P. M. (2000). Size-specific sensitivity: applying a new structured population model. Ecology, 81(3), 694708.CrossRefGoogle Scholar
Ehlers, B. K. & Olesen, J. M. (2004). Flower production in relation to individual plant age and leaf production among different patches of Corydalis intermedia. Plant Ecology, 174(1).CrossRefGoogle Scholar
Ehrlén, J. (2000). The dynamics of plant populations: does the history of individuals matter? Ecology, 81(6), 1675–84.CrossRefGoogle Scholar
Ehrlén, J. & Lehtilä, K. (2002). How perennial are perennial plants? Oikos, 98(2), 308–22.CrossRefGoogle Scholar
Ellis, M. M., Williams, J. L., Lesica, P., et al. (2012). Matrix population models from 20 studies of perennial plant populations. Ecology, 93(4), 951.CrossRefGoogle Scholar
Ellner, S. P. & Rees, M. (2006). Integral projection models for species with complex demography. American Naturalist, 167(3).CrossRefGoogle ScholarPubMed
Finch-Savage, W. E. & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501–23.CrossRefGoogle ScholarPubMed
Finkel, T. & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–47.CrossRefGoogle ScholarPubMed
Garcia, M. B., Dahlgren, J. P. & Ehrlén, J. (2011). No evidence of senescence in a 300-year-old mountain herb. Journal of Ecology, 99(6), 1424–30.CrossRefGoogle Scholar
Goodman, L. A. (1969). Analysis of population growth when birth and death rates depend upon several factors. Biometrics, 25(4), 659.CrossRefGoogle ScholarPubMed
Gremer, J. R., Crone, E. E. & Lesica, P. (2012). Are dormant plants hedging their bets? Demographic consequences of prolonged dormancy in variable environments. American Naturalist, 179(3), 315–27.CrossRefGoogle ScholarPubMed
Gremer, J. R. & Sala, A. (2013). It is risky out there: the costs of emergence and the benefits of prolonged dormancy. Oecologia, 172(4), 937–47.CrossRefGoogle ScholarPubMed
Gremer, J. R., Sala, A. & Crone, E. E. (2010). Disappearing plants: why they hide and how they return. Ecology, 91(11), 3407–13.CrossRefGoogle ScholarPubMed
Hackett, W. P. (1985). Juvenility, maturation, and rejuvenation in woody plants. Horticultural Reviews, 7, 109–55.Google Scholar
Hutchings, M. J. (1987). The population biology of the early spider orchid, Ophrys sphegodes Mill: II. Temporal patterns in behaviour. Journal of Ecology, 75, 729–42.CrossRefGoogle Scholar
Jäkäläniemi, A. (2011). Narrow climate and habitat envelope affect the survival of relict populations of a northern Arnica Angustifolia. Environmental and Experimental Botany, 72(3), 415–21.Google Scholar
Jäkäläniemi, A., Crone, E. E., Närhi, P. & Tuomi, J. (2011). Orchids do not pay costs at emergence for prolonged dormancy. Ecology, 92(7), 1538–43.CrossRefGoogle Scholar
Jäkäläniemi, A., Kauppi, A., Pramila, A. & Vähätaini, K. (2004). Survival strategies of Silene tatarica (Caryophyllaceae) in riparian and ruderal habitats. Canadian Journal of Botany, 82(4), 491502.CrossRefGoogle Scholar
Kalisz, S. & McPeek, M. A. (1993). Extinction dynamics, population-growth and seed banks: an example using an age-structured annual. Oecologia, 95(3), 314–20.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of aging. Nature, 270(5635), 301–4.CrossRefGoogle Scholar
Kuss, P., Rees, M., Aegisdottir, H. H., et al. (2008). Evolutionary demography of long-lived monocarpic perennials: a time-lagged integral projection model. Journal of Ecology, 96(4), 821–32.CrossRefGoogle Scholar
Lanner, R. M. & Connor, K. F. (2001). Does bristlecone pine senesce? Experimental Gerontology, 36(4–6).CrossRefGoogle ScholarPubMed
Lesica, P. & Crone, E. E. (2007). Causes and consequences of prolonged dormancy for an iteroparous geophyte, Silene spaldingii. Journal of Ecology, 95(6), 1360–9.CrossRefGoogle Scholar
Lesica, P. & Steele, B. M. (1994). Prolonged dormancy in vascular plants and implications for monitoring studies. Natural Areas Journal, 14, 209–12.Google Scholar
Martin, J. G. A. & Festa-Bianchet, M. (2011). Age-independent and age-dependent decreases in reproduction of females. Ecology Letters, 14(6), 576–81.CrossRefGoogle ScholarPubMed
Masoro, E. J. (2005). Overview of caloric restriction and ageing. Mechanisms of Ageing and Development, 126(9), 913–22.CrossRefGoogle ScholarPubMed
Mattison, J. A., Roth, G. S., Beasley, T. M., et al. (2012). Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature, 489(7415), 318–21.CrossRefGoogle ScholarPubMed
McNamara, J. M., Houston, A. I., Barta, Z., et al. (2009). Deterioration, death and the evolution of reproductive restraint in late life. Proceedings of the Royal Society if London Series B: Biological Sciences, 276(1675), 4061–6.Google ScholarPubMed
Mencuccini, M., Oñate, M., Peñuelas, J., et al (2014). No signs of meristem senescence in old Scots pine. Journal of Ecology, 102(3), 555–65.CrossRefGoogle Scholar
Merow, C., Dahlgren, J. P., Metcalf, C. J. E., et al. (2014). Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 5(2), 99110.CrossRefGoogle Scholar
Moriuchi, K. S., Venable, D. L., Pake, C. E. & Lange, T. (2000). Direct measurement of the seed bank age structure of a Sonoran Desert annual plant. Ecology, 81(4), 1133–8.CrossRefGoogle Scholar
Munné-Bosch, S. (2008). Do perennials really senesce? Trends in Plant Science, 13(5), 216–20.CrossRefGoogle ScholarPubMed
Nilsson, P., Tuomi, J. & Åström, M. (1996). Bud dormancy as a bet-hedging strategy. American Naturalist, 147(2), 269–81.CrossRefGoogle Scholar
Oñate, M. & Munné-Bosch, S. (2008). Meristem aging is not responsible for age-related changes in growth and abscisic acid levels in the mediterranean shrub, Cistus clusii. Plant Biology, 10, 148–55.CrossRefGoogle Scholar
Ott, J. P. & Hartnett, D. C. (2012). Contrasting bud bank dynamics of two co-occurring grasses in tallgrass prairie: implications for grassland dynamics. Plant Ecology, 213(9), 1437–48.CrossRefGoogle Scholar
Pedersen, B. (1999). Senescence in Plants: Life History Evolution in Plants, ed. Vuorisalo, T. O. & Mutikainen, P. K. (pp. 239–74) (Dordrecht: Kluwer).CrossRefGoogle Scholar
Peñuelas, J. & Munné-Bosch, S. (2010). Potentially immortal? New Phytologist, 187(3), 564–7.CrossRefGoogle ScholarPubMed
Rabotnov, T. A. (1969). On coenopopulations of perennial herbaceous plants in natural coenoses. Vegetatio, 19(1–6), 8795.CrossRefGoogle Scholar
Reintal, M., Tali, K., Haldna, M. & Kull, T. (2010). Habitat preferences as related to the prolonged dormancy of perennial herbs and ferns. Plant Ecology, 210(1), 111–23.CrossRefGoogle Scholar
Rice, K.J. & Dyer, A. R. (2001). Seed aging, delayed germination and reduced competitive ability in Bromus tectorum. Plant Ecology, 155(2), 237–43.CrossRefGoogle Scholar
Ricklefs, R. E. (2000). Intrinsic aging-related mortality in birds. Journal of Avian Biology, 31(2), 103–11.CrossRefGoogle Scholar
Roach, D. A. (1993). Evolutionary senescence in plants. Genetica, 91(1–3).CrossRefGoogle Scholar
Roach, D. A. (2004). Evolutionary and demographic approaches to the study of whole plant senescence. In Plant Cell Death Processes, ed. Nooden, L. D. (pp. 341–8) (New York: Academic Press).Google Scholar
Roach, D. A., Ridley, C. E. & Dudycha, J. L. (2009). Longitudinal analysis of Plantago: age-by-environment interactions reveal aging. Ecology, 90(6).CrossRefGoogle ScholarPubMed
Saatkamp, A., Affre, L., Dutoit, T. & Poschlod, P. (2009). The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses. Annals of Botany, 104(4), 715–24.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R. & Casper, B. B. (2010). Keeping plant shrinkage in the demographic loop. Journal of Ecology, 98(2), 312–23.CrossRefGoogle Scholar
Salguero-Gómez, R., Shefferson, R. P. & Hutchings, M. J. (2013). Plants do not count … or do they? New perspectives on the universality of senescence. Journal of Ecology, 101(3), 545–54.CrossRefGoogle ScholarPubMed
Schaal, B. A. & Levin, D. A. (1976). The demographic genetics of Liatris cylindracea Michx. (Compositae). American Naturalist, 110, 191206.CrossRefGoogle Scholar
Shefferson, R. P. (2009). The evolutionary ecology of vegetative dormancy in mature herbaceous perennial plants. Journal of Ecology, 97(5), 1000–9.CrossRefGoogle Scholar
Shefferson, R. P., Proper, J., Beissinger, S. R. & Simms, E. L. (2003). Life history trade-offs in a rare orchid: the costs of flowering, dormancy, and sprouting. Ecology, 84(5), 11991206.CrossRefGoogle Scholar
Shefferson, R. P., Kull, T. & Tali, K. (2006). Demographic response to shading and defoliation in two woodland orchids. Folia Geobotanica, 41(1), 95106.CrossRefGoogle Scholar
Shefferson, R. P., Kull, Y., Tali, K. & Kellett, K. M. (2012). Linking vegetative dormancy to fitness in two long-lived herbaceous perennials. Ecosphere, 3(2).CrossRefGoogle Scholar
Shefferson, R. P. & Roach, D. A. (2013). Longitudinal analysis in Plantago: strength of selection and reverse age analysis reveal age-indeterminate senescence. Journal of Ecology, 101(3), 577–84.CrossRefGoogle ScholarPubMed
Shefferson, R. P. & Tali, K. (2007). Dormancy is associated with decreased adult survival in the burnt orchid, Neotinea ustulata. Journal of Ecology, 95(1), 217–25.CrossRefGoogle Scholar
Shefferson, R. P., Kull, T. & Tali, K. (2005). Adult whole-plant dormancy induced by stress in long-lived orchids. Ecology, 86(11), 30993104.CrossRefGoogle Scholar
Shefferson, R. P., Warren, R. J. & Pulliam, H. R. (2014). Life-history costs make perfect sprouting maladaptive in two herbaceous perennials. Journal of Ecology, 102(5), 1318–28.CrossRefGoogle Scholar
Silvertown, J., Franco, M. & Perez-Ishiwara, R. (2001). Evolution of senescence in iteroparous perennial plants. Evolutionary Ecology Research, 3(4), 393412.Google Scholar
Silvertown, J., Franco, M., Pisanty, I. & Mendoza, A. (1993). Comparative plant demography: relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology, 81(3), 465–76.CrossRefGoogle Scholar
Sohal, R. S. & Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science, 273(5271), 5963.CrossRefGoogle ScholarPubMed
Stephenson, N. L., Das, A. J., Condit, R., et al. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507(7490), 90–3.CrossRefGoogle ScholarPubMed
Taiz, L. & Zeiger, E. (eds.) (2006). Plant Physiology (Sunderland, MA, Sinauer Associates).Google Scholar
Tamm, C. O. (1972). Survival and flowering of some perennial herbs: II. The behaviour of some orchids on permanent plots. Oikos, 23(1), 23–8.Google Scholar
Tatar, M., Chien, S. A. & Priest, N. K. (2001). Negligible senescence during reproductive dormancy in Drosophila melanogaster. American Naturalist, 158(3), 248–58.CrossRefGoogle ScholarPubMed
Thomas, H. (2002). Ageing in plants. Mechanisms of Ageing and Development, 123(7), 747–53.CrossRefGoogle ScholarPubMed
Tuomi, J., Crone, E. E., Gremer, J. R., et al. (2013). Prolonged dormancy interacts with senescence for two perennial herbs. Journal of Ecology, 101(3), 566–76.CrossRefGoogle Scholar
Vega, E. & Montana, C. (2004). Spatio-temporal variation in the demography of a bunch grass in a patchy semiarid environment. Plant Ecology, 175(1), 107–20.CrossRefGoogle Scholar
Wendling, I., Trueman, S. J. & Xavier, A. (2014). Maturation and related aspects in clonal forestry: II. Reinvigoration, rejuvenation and juvenility maintenance. New Forests, 45(4), 473–86.CrossRefGoogle Scholar
Williams, G. C. (1957). Pleiotropy, natural-selection, and the evolution of senescence. Evolution, 11(4).CrossRefGoogle Scholar
Wyka, T. P. (1999). Storage, growth and reproduction in an alpine herbaceous plant, Oxytropis sericea. PhD dissertation, University of Missouri.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×